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PAPER

Two-Stage Block-Based Whitened Principal Component Analysis
with Application to Single Sample Face Recognition

Biao WANG†a), Wenming YANG†b), Nonmembers, Weifeng LI†c), Member, and Qingmin LIAO†∗d), Nonmember

SUMMARY In the task of face recognition, a challenging issue is the
one sample problem, namely, there is only one training sample per person.
Principal component analysis (PCA) seeks a low-dimensional representa-
tion that maximizes the global scatter of the training samples, and thus is
suitable for one sample problem. However, standard PCA is sensitive to
the outliers and emphasizes more on the relatively distant sample pairs,
which implies that the close samples belonging to different classes tend
to be merged together. In this paper, we propose two-stage block-based
whitened PCA (TS-BWPCA) to address this problem. For a specific probe
image, in the first stage, we seek the K-Nearest Neighbors (K-NNs) in the
whitened PCA space and thus exclude most of samples which are distant
to the probe. In the second stage, we maximize the “local” scatter by per-
forming whitened PCA on the K nearest samples, which could explore the
most discriminative information for similar classes. Moreover, block-based
scheme is incorporated to address the small sample problem. This two-
stage process is actually a coarse-to-fine scheme that can maximize both
global and local scatter, and thus overcomes the aforementioned shortcom-
ings of PCA. Experimental results on FERET face database show that our
proposed algorithm is better than several representative approaches.
key words: face recognition, one sample problem, principal component
analysis, whitening transform, K-Nearest Neighbors

1. Introduction

Automatic face recognition has remained an extensively
studied topic during the last several decades. Lots of ef-
fective approaches have been proposed to date [1]. Provided
with large representative training samples, machine vision
can surpass human vision on the recognition of frontal
faces [2]. However, one challenging problem for machine
based face recognition technology is the poor generalization
ability from one training sample per person, which is the
well-known one sample problem [3]. The lack of adequate
training samples often results in misclassification for probe
images with aging, illumination and pose variations. How-
ever, due to the laborious effort to collect multiple samples
and the heavy cost to store and process them, it’s common
that only a single sample for each person is stored in many
face recognition applications, e.g., surveillance identifica-
tion, forensic identification and access control. Thus, one
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sample problem has emerged as an active topic in the face
recognition community.

In recent years, a variety of approaches have been pro-
posed to address the one sample problem. They can be
roughly divided into two categories. The first category takes
advantage of a generic face database consisting of multiple
training samples per person, which are different from the
gallery subjects [4], [5]. However, the underlying assump-
tion that feature transformation learned from the generic
face database can be used to extract the discriminative fea-
tures of variable unseen probes is arguable [6].

Without resorting to the generic face database, the sec-
ond category takes advantage of the existing training set
which consists of a single sample for each subject, either to
directly extract robust features as matching templates [7], [8]
or to learn a low-dimensional feature space [5], [9]. Eigen-
faces (PCA with L2 norm as the similarity measure) tries
to seek a low-dimensional representation of data such that
the global scatter is maximized [9]. It is the first effective
technology for modern face recognition and is usually set as
a baseline for performance evaluation. Various extensions
have been proposed to further improve the performance
of standard PCA. For example, Wu et al. [10] proposed
projection-combined PCA ((PC)2A) by performing PCA on
a combination of original image and its first-order projection
map. Zhang et al. [11] proposed Enhanced (PC)2A by in-
cluding a second-order projection map. Recently, whitened
PCA (WPCA) with the cosine distance as the similarity
measure has proved to be significantly better than Eigen-
faces [5], [12], [13]. The whitening transform treats vari-
ances along all principal component axes as equally sig-
nificant and scales each principal direction according to the
corresponding eigenvalue to uniform the spread of the data
and is arguably appropriate for single sample problem [13].
Two-dimensional PCA (2DPCA) uses 2D image matrices
rather than 1D vectors for covariance matrix estimation [14].
However, 2DPCA is not suitable for the local descriptors,
such as Gabor wavelets and LBP, which have been shown to
be more discriminative than pixel intensity [7], [8]. In [15],
the authors argue that by dividing an image into several non-
overlapped blocks and performing whitened PCA block-
wisely, one will get significant performance improvement.
The underlying reason may be that block-based PCA is suit-
able for small sample size problem. Moreover, 2DPCA has
proved to be a special case of block-based PCA [16].

In this paper, we propose a novel global-to-local,
coarse-to-fine scheme to address the one sample problem
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for face recognition. Our work is inspired by the fact that to
maximize global scatter, PCA emphasizes more on the rel-
atively distant sample pairs and tends to merge the similar
classes together, which is known as local confusion limita-
tion [5]. To further improve the recognition performance,
one should focus on the local concentrations consisting of
the similar classes and map the close sample pairs to be
distant. Therefore, a two-stage scheme is proposed. In the
first stage, whitened transform is utilized to partially resolve
the local confusion limitation of PCA. For a specific probe
image, we search K-NNs in the whitened PCA space and
exclude the distant samples that are unlikely to be the gen-
uine subject. In the second stage, we perform WPCA on
the local concentration formed by the K-NNs to uniform the
pairwise distances. Furthermore, block-based scheme is in-
corporated to address the small sample size problem. Ex-
periments demonstrated that the proposed TS-BWPCA al-
gorithm outperforms Eigenfaces by large margins ranging
form 12.2% to 34.0%.

2. Motivation and the Proposed Method

2.1 The Local Confusion Limitation of PCA

Given a set of N training samples x1, x2, · · · , xN , where xi is
a column vector in D-dimensional space, PCA tries to seek a
low-dimensional representation y1, y2, · · · , yN by projecting
each xi onto the projection axis w such that the global scatter
is maximized, which could be formulated as follows:

max
||w||=1
wTΣw, (1)

where Σ is the covariance matrix and defined as follows:

Σ =
1
N

N∑

i=1

(xi − x)(xi − x)T

=
1

2N2

N∑

i=1

N∑

j=1

(xi − x j)(xi − x j)
T ,

(2)

As can be seen from Eq. (2), the covariance matrix describes
the pairwise distance between any two samples. For face
recognition with single sample per person, the PCA sub-
space can roughly maximize the pairwise distance between
all subjects. From this respect, the PCA subspace is suitable
for one sample problem, which agrees with the conclusion in
[4] that when complex image variations are presented, many
previous proposed methods perform no better than the sim-
plest Eigenfaces method.

However, there is a fundamental limitation for PCA
based single sample face recognition. The objective func-
tion illustrated in Eq. (1) emphasizes more on the relatively
distant sample pairs, while the close sample pairs belonging
to different classes tend to be merged together. This prob-
lem is first pointed out by Deng et al., and is known as “local
confusion limitation” [5]. Figure 1 gives a simple intuitive
illustration of the aforementioned phenomenon.

Fig. 1 The PCA subspace tends to merge similar classes together.

2.2 Whitened PCA

Despite of the local confusion limitation mentioned above,
it’s shown that the leading eigenvectors mainly encode the
illumination and expression variation rather than discrim-
inative information [17]. The whitening transform scales
each principal direction with weights inversely proportional
to the corresponding eigenvalue.

Wwpca = WpcaD̃−
1
2 , (3)

where the PCA projection matrix Wpca is the solution of
Eq. (1), and usually formed by reserving P (P < N − 1)
eigenvectors of Σ which correspond to the P largest eigen-
values. D̃ denotes the diagonal matrix of P eigenvalues.
Consequently, the data in whitened PCA space tends to be
uniform and the negative impact of the leading eigenvectors
are reduced, while the discriminative information encoded
in the trailing eigenvectors is emphasized.

For the purpose of classification, different choices of
similarity measure have a significant impact on the perfor-
mance. It has shown that compared with popular similar-
ity measures like L1 distance, L2 distance, Mahalanobis
distance, cosine similarity measure performs best in the
whitened PCA space [12]. The WPCA algorithm for face
recognition is summarized in Table 1.

2.3 Local Binary Pattern

Instead of using pixel intensity directly, current face recog-
nition techniques often take advantage of low-level features
such as local binary pattern (LBP) [5], [7], [18] or Gabor
wavelet [8], [13], [19], which have been shown to be robust
to the variations due to illumination and expression. The
LBP operator was originally defined by encoding each pixel
with 8 bit code, each of which is determined by thresholding
the 3× 3 neighborhood with the center pixel [20]. Formally,
it could be described as follows:

LBP(xc, yc) =
7∑

n=0

2ns(In − Ic), (4)
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Table 1 Description of whitened PCA algorithm.

Training Stage:
Input:
X = [x1, x2, · · · , xN] ∈ RD×N : Data matrix.
P: the number of largest eigenvectors to be reserved.
Output:
x̄ ∈ RD×1: Data Mean.
Wwpca ∈ RD×P: the Transformation Matrix of Whitened PCA.
X̃ ∈ RP×N : the low-dimensional representation of X.

1. Data Centering: X̂ = [x̂1, x̂2, · · · , x̂N],

where x̂i = xi − x̄, and x = 1
N

N∑
i=1

xi.

2.Whitened PCA:
Decompose X̂ by singular value decomposition as follows:

X̂ = UDVT ,
Let D̃ be the diagonal matrix with P largest singular values,
Ũ is the matrix of corresponding left singular vectors.

Wwpca = ŨD̃−1,
Whitened data matrix:

X̃ = [x̃1, x̃2, · · · , x̃N] ∈ RP×N , in which x̃i = WT
wpca x̂i.

Testing Stage:
Input:
X̃ = [x̃1, x̃2, · · · , x̃N] ∈ RP×N .
x̄ ∈ RD×1: Data Mean.
y ∈ RD×1: A probe feature vector.
Output:
label: the ID of the gallery the nearest to the probe.

1. Seek low-dimensional representation :
ỹ = (Wwpca)T (y − x̄),

2. Classification:
label = arg min

j
similarity(x̃ j, ỹ),

in which similarity(x, y) = − xT y

||x||||y|| .

Fig. 2 The illustration of LBP encoding process.

in which (xc, yc) is the location of the center pixel, Ic and
In are the intensity of the central pixel and its n-th neigh-
bor, and s(u) is 1 for u ≥ 0 and 0 otherwise. The encoding
process of LBP is illustrated in Fig. 2.

Two important extensions were proposed by Ojala
et al. [21]. The first one extends LBP to multiscale by defin-
ing neighborhood of different sizes. The second defines the
so-called uniform patterns: a LBP code is ‘uniform’ if it
contains no more than two 0 − 1/1 − 0 transitions. For ex-
ample, the LBP code in Fig. 2 is non-uniform. LBP was first
successfully applied to face recognition by Ahonen et al. in
2004 [7]. To encode both texture and structure information
for human face, the LBP map (see Fig. 3) of a face image

Fig. 3 (a) A sample face image and (b) its corresponding LBP map (uni-
form pattern).

is divided into several nonoverlapping blocks and histogram
computed in each block is concatenated together to form the
final representation. In this paper, we use LBP pattern by
thresholding 8 neighboring pixels in a circle of radius 2 and
extracted the histograms in 8 × 8 blocks with 59 bins, each
corresponding to a uniform pattern. For more details, please
refer to [7].

2.4 Two-Stage Block-based Whitened PCA

As pointed out in the above subsection, PCA is suitable for
the application of single sample face recognition, but still
suffers from the local confusion limitation which tends to
merge the similar classes together. This is because in the
process of seeking the maximum global scatter, PCA fo-
cuses more on the relatively distant samples. To obtain
more discriminative information for the similar classes, one
should focus more on the local concentrations consisting of
similar samples and try to maximize the pairwise distances
in the local concentrations. Therefore, we propose a two-
stage whitened PCA (TS-WPCA) algorithm. In the first
stage, for a specific probe, we perform WPCA to seek K-
NNs as candidates and discard the distant ones (outliers),
which would significantly reduce the side impact of local
confusion limitation of PCA. The K nearest samples have
high probability to include the genuine subject and are sim-
ilar to each other, and thus form a local concentration. In
the second stage, we perform WPCA with the K samples,
which tries to maximize the pairwise distance among them
and thus makes it easier to distinguish the similar subjects.

A simple intuitive illustration of the proposed method
is given in Fig. 4. It is much like a “Coarse-to-Fine” scheme.
It first maximizes global scatter and makes it easy to exclude
distant subjects. Then it maximizes “local” scatter on the
local concentrations formed by the similar classes. Another
advantage of our proposed method is that the determination
of local concentration is probe dependent. This is reason-
able because for different probes, even if they belong to the
same class, the most K confusable classes are different due
to different illumination, expression, aging variations.

However, small sample size (SSS) problem, i.e., the ex-
tracted feature dimensionality is much larger than the num-
ber of training samples, still exists in the proposed method.
This problem is even serious in the second stage WPCA be-
cause we discard most of the samples which are relatively
distant to the probe. However, by dividing the original im-
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Fig. 4 A intuitive illustration of our proposed algorithm.

Table 2 Training stage of the proposed TS-BWPCA algorithm.

Input:
T = {I1, I2, · · · , IN }: the training set with N face images.
S : number of nonoverlapping blocks.
P: the number of largest eigenvectors to be reserved.
Output: (i = 1, 2, · · · , S )

hi ∈ RD×1: mean for the LBP histograms of i-th blocks.
Wi
wpca ∈ RD×P: WPCA transformation matrix for the i-th blocks.

H̃i ∈ RP×N : low-dimensional projection for the i-th blocks.

1. For I j ∈ T ( j = 1, 2, · · · ,N), compute its block-based LBP
representation according to Steps 1.1 − 1.2.

1.1 Compute its LBP maps L j.
1.2 Divide L j into S nonoverlapping blocks Li

j(i = 1, 2, · · · , S ),
for each block, further partition each block into several
sub-blocks, each with size 8 × 8. For each sub-block,
calculate the histogram and concatenate the histograms of
all sub-blocks. one gets LBP representation for the ith
block of the jth sample and denote it as hi

j.
2. For each block i (i = 1, 2, · · · , S ),

Data Centering: Ĥi = [ĥi
1, ĥ

i
2, · · · , ĥi

N ],

where ĥi
j = hi

j − hi, and hi = 1
N

N∑
j=1

hi
j

3. First-Stage Whitened PCA:

Decompose Ĥi
j by singular value decomposition as follows:

Ĥi = UDVT ,
Let D̃ be the diagonal matrix with P largest singular values,
Ũ is the matrix of corresponding left singular vectors.

Wi
wpca1 = ŨD̃−1,

Whitened data matrix:
H̃i = [h̃i

1, h̃
i
2, · · · , h̃i

N ] ∈ RP×N ,
in which h̃i

j = (Wi
wpca1)T ĥi

j.

age into several nonoverlapping blocks and performing sub-
space analysis block-wisely, the SSS problem is much alle-
viated. This “divide and conquer” strategy is also used in
[15], [19]. Therefore, we incorporate the block-based strat-
egy into our algorithm and finally get the two-stage block-
based whitened PCA scheme (TS-BWPCA). The detailed
description of the training stage and testing stage for our
proposed TS-BWPCA algorithm is summarized in Table 2
and Table 3. The block diagram is illustrated in Fig. 5.

Table 3 Testing stage of the proposed TS-BWPCA algorithm.

Input:
S : number of nonoverlapping blocks.
h̄i ∈ RD×1: mean for the LBP histograms of i-th blocks.
Wi
wpca ∈ RD×P: WPCA transformation matrix for the i-th blocks.

H̃i ∈ RP×N : low-dimensional projection for the i-th blocks.
V: A probe face image.
K: the number of nearest neighbors to search for each probe.
Output:
label: the ID of gallery which is the nearest to the probe.

1. For V , compute its block-based LBP representation yi

(i = 1, 2, · · · , S ). This process is the same as in Step 1
for training stage.
Perform WPCA on yi: ỹi = (Wi

wpca1)T (yi − h̄i).
2. Seek the K-NNs of probe image V .

The distance of V to each gallery I j( j = 1, 2, · · · ,N), is
determined by the summation of block-wise similarity:

dist(V, I j) =
S∑

i=1
similarity(ỹi, h̃i

j),

in which similarity(x, y) = − xT y
||x||||y|| .

Denote Q = [t1, t2, · · · , tK ] as the labels of the K nearest
neighbors for probe image V .

3. Second-Stage Whitened PCA:
For each i(i = 1, 2, · · · , S ), denote Gi = [h̃i

t1
, h̃i

t2
, · · · , h̃i

tK
].

G̃i = [h̃i
t1
− ḡi, h̃i

t2
− ḡi, · · · , h̃i

tK
− ḡi] and ḡi =

K∑
k=1

h̃i
tk

.

Decompose G̃i by singular value decomposition as follows:
G̃i = UDVT ,

Let D̃ be the diagonal matrix with K − 1 largest singular values,
Ũ is the matrix of corresponding left singular vectors.

Wi
wpca2 = ŨD̃−1,

Whitened transformation of G̃i:
Ǧi = [ȟi

t1
, ȟi

t2
, · · · , ȟi

tK
] ∈ R(K−1)×K ,

in which ȟi
tk
= (Wi

wpca2)T (h̃i
tk
− ḡi).

Whitened transformation of ỹi: y̌i = (Wi
wpca2)T (ỹi − ḡi).

4. Classification:

label = arg min
tk

S∑
i=1

similarity(y̌i, ȟi
tk

),

in which similarity(x, y) = − xT y
||x||||y|| .

3. Experimental Results

3.1 Experiment Setting

In this section, experiments are conducted on one pub-
licly available large-scale face database, namely, FERET
database to illustrate the effectiveness of our proposed
method. All face images are properly aligned, cropped and
resized to 128 × 128 with the centers of the eyes fixed at
(29,34) and (99,34). No further preprocessing is performed.

We use the standard FERET protocol to conduct our
experiments. The gallery set Fa consists of 1,196 images
of 1,196 subjects. There are four probe sets: Fb (different
expressions with gallery, 1,195 images of 1,196 subjects),
Fc (different illumination conditions with gallery, 194 im-
ages of 194 subjects), Dup I (images taken later in time, 722
images of 243 subjects), Dup II (images taken at least 18
months after the corresponding gallery, 234 images of 75
subjects). Figure 6 shows samples of the same person from
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Fig. 5 Block diagram of our proposed TS-BWPCA algorithm.

Fig. 6 Sample face images from the FERET database. (a) Fa (b) Fb (c)
Fc (d) Dup I (e) Dup II.

Fig. 7 Partition face image into S nonoverlapping blocks.

the five sets.

3.2 Performance Evaluation

As illustrated in Table 2 and Table 3, there are basically four
parameters in our proposed method:

(a) S : number of nonoverlapping blocks. We will try three
different block partitioning schemes: S = {1, 4, 16}, as
illustrated in Fig. 7.

(b) P: dimensionality of first-stage WPCA. We will try P =
{200, 300, 400, 500, 600}.

(c) K: number of nearest neighbors to search in the WPCA
space. We will try K = {10, 20, 30, 40, 50}.

(d) Dimensionality of second-stage WPCA: it’s set to be

K − 1 as illustrated in Table 3.

We conducted face recognition experiments on FERET
database with 75 (3 × 5 × 5) different configurations of pa-
rameters. We found that for S = 1 and S = 4, our pro-
posed TS-BWPCA consistently improves the performance
of block-based WPCA. However, for S = 16, TS-BWPCA
performs even worse than block-based WPCA. The reason
may be that by dividing face image into such small blocks
(as shown in Fig. 7 (c)), we lose much structure information
and thus it’s meaningless to perform second-stage WPCA
for each block. In our experiment, the best choice of P for
S = 4 is Popt = 400. The choice of proper K is critical in
our proposed method. If this value is too small, there are too
few train samples and the small sample size problem will be
serious in the second-stage WPCA. If it’s too large, rela-
tively distant samples will be included and the local confu-
sion limitation takes effect. Figure 8 shows the recognition
rates with various choices of K. As can be seen, Kopt = 20
yields the highest recognition rate. However, the optimal
value for K is actually expected to be dependent on the
data set and it’s not easy to develop a method to determine
it theoretically. We empirically check this on CAS-PEAL
database [22], which is another widely used face database,
and find that K with a range from 15 to 40 always provides
better performance than BWPCA, similar to that has illus-
trated in Fig. 8.

The experimental results are illustrated in Table 4.
To demonstrate advantages of the proposed method, we
compare it with WPCA [12] and block-based WPCA (BW-
PCA) [15]. Moreover, we also present the results of Eigne-
faces [9] and LBP + χ2 distance [7] as baselines.

From Table 4, we could draw the following conclu-
sions:

(a) In the whitened PCA space, cosine similarity measure
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Fig. 8 Recognition rates vs. different choices of K.

Table 4 Recognition rates (%) of several basic approaches on FERET database.

Methods Similarity Measure Dimensionality Fb Fc Dup I Dup II

LBP χ2 15104 92.9 81.4 72.6 72.2
LBP + Eigenfaces L2 500 84.9 61.3 61.5 60.7
LBP + PCA Cos 500 85.6 46.4 66.5 55.6
LBP +WPCA L2 500 76.4 59.8 51.9 54.3
LBP +WPCA Cos 500 96.0 93.8 86.0 80.8
LBP + BWPCA Cos 1600 96.7 94.3 86.2 82.1
LBP+TS-BWPCA Cos 1600 97.0 94.3 88.6 88.0

performs much better than L2 distance. This agrees
with the conclusion in [12].

(b) Among the four PCA related methods (i.e., TS-
BWPCA, BWPCA, WPCA and PCA), TS-BWPCA
achieves the best performance. Here we assume cosine
similarity measure is adopted for each method. Whiten-
ing transform uniforms the data spread by scaling the
principal axis, and thus could partially resolve the local
confusion limitations of PCA. BWPCA weakens the
small sample size problem by dividing images into sev-
eral nonoverlapping blocks. Our proposed TS-BWPCA
algorithm inherits their merits and further proposes a
global-to-local, coarse-to-fine scheme to maximize both
the global and local scatter.

(c) It seems that TS-BWPCA could improve the perfor-
mance of aging face recognition. Compared with BW-
PCA, TS-BWPCA improves the recognition rate of Dup
I and Dup II from 86.2%, 82.1% to 88.6%, 88.0% re-
spectively. It’s known that both shape and appearance of
human face will change as time elapses. By maximizing
the local scatter in the second-stage, the variations due
to aging will be covered.

Note that for Fb and Fc, we see little priority of TS-
BWPCA to BWPCA, while significant improvement exists
in Dup I and Dup II. This could be understood as fol-

lows. Variations corresponding to illumination and expres-
sion mostly change the prototypical representation of face
images and can be regarded as low frequencies, while the
fine details which are crucial for face recognition mainly
correspond to high frequencies. The local limitation confu-
sion actually implies the Mean-Square-Error principal un-
derlying PCA preferentially weights low frequencies [23]
and makes the discriminative information contained in the
high frequency components contribute little for face recog-
nition. WPCA resolve this problem by re-scaling each prin-
cipal direction according to the corresponding eigenvalue
and thus can effectively utilize the discriminative informa-
tion in high frequencies. Gradual aging changes the fine
details of face (e.g., wrinkles appear in forehead and the
corner of the eyes) and mainly corresponds to high fre-
quencies. Such variations corresponds to high frequencies
may be overemphasized in the first-stage WPCA, which is
harmful for robust aging-face recognition. Our proposed
second-stage WPCA can select the most discriminative fea-
tures among the local concentration formed by the K-NNs
and remove these variations. We design another experiment
to testify this assumption. We take a noise-polluted (‘salt
and pepper’ noise, mainly corresponding to high frequen-
cies) version of Fa as the probe set. Several sample images
and their corresponding images with noise are illustrated in
Fig. 9. The performance of the above four approaches are il-
lustrated in Table 5, from which we can see that TS-BWPCA
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Fig. 9 Sample faces (the first row) and the corresponding images with
‘salt & pepper’ noise (the second row).

Table 5 Recognition rates (%) of several basic approaches on the noise-
polluted probe set.

PCA WPCA BWPCA TS-BWPCA
0.59 44.06 63.04 70.48

Table 6 Performance comparison of TS-BWPCA with several state-of-
the-art approaches on FERET database.

Methods Dim Fb Fc Dup I Dup II
FERET97 Best [25] N/A 96.0 82.0 59.0 52.0
LBP [7] 2891 97.0 79.0 66.0 64.0
LGBPHS [8] 519200 98.0 97.0 74.0 71.0
HGPP [26] 737280 97.6 98.5 77.7 76.1
LGBP +WPCA [13] < 1000 98.1 98.9 83.8 81.6
LBP + UP [5] 400 96.5 94.8 88.5 86.3
LBP+TS-BWPCA 1600 97.0 94.3 88.6 88.0

is indeed robust to high frequency variations and provides
the best performance. More specifically, we improve the
recognition rate of BWPCA from 63.04% to 70.48%, i.e.,
89 people that were originally misclassified by BWPCA are
now correctly recognized by our algorithm.

To further demonstrate the effectiveness of TS-
BWPCA, we compare it with other state-of-the-art meth-
ods reported in literatures. The results are summarized in
Table 6. As can be seen, TS-BWPCA outperforms all the
others on the Dup I and Dup II probe set with relatively low
dimensionality. Gabor (or Gabor + LBP) based method per-
forms better than LBP on Fb and Fc probe set due to multi-
scale representation. However, our TS-BWPCA is a general
framework and could be easily incorprated with Gabor fea-
tures. Moreover, for the face recognition in various illumi-
nation conditions, several effective illumination normaliza-
tion methods have been proposed [18], [24]. But these are
all beyond the concern of this paper.

However, a disadvantage of the proposed TS-BWPCA
is the extra computation cost. For PCA, the most time-
demanding operation is the eigenvalue decomposition. Typ-
ically, for an N × N matrix, this complexity is O(N3). When
applied to rank-1 face recognition, the projection matrix
learning of PCA, WPCA and BWPCA can be performed
off-line and the time complexity is O(NP) for nearest neigh-
bor searching, in which N represents the number of samples
and P is the projected dimension, respectively. However, for
TS-BWPCA, the complexity for K-NNs searching and the
second-stage WPCA are O(NPK) and O(K3), respectively.

Although we typically set K << N, the extra computation
cost maybe restricts TS-BWPCA to the applications that are
sensitive to the time issue.

4. Conclusion

The proposed TS-BWPCA method is designed to address
the one sample problem for face recognition. Standard PCA
maximizes the global scatter and focuses more on the dis-
tant sample pairs, which results in the so-called local confu-
sion limitation. Whitening transform can partially reduce
this side effect but it’s not enough. We propose a two-
stage scheme to address these limitations. For a specific
probe, in the first stage, K nearest neighbors are searched
in the whitened PCA space, thus excluding most of the
distant classes. In the second stage, a second WPCA is
performed to maximize the “local” scatter. Moreover, the
block-based scheme is incorporated to address the small
sample size problem. Experimental results demonstrated the
advantages of our proposed method on high frequency vari-
ations. Although in this paper TS-BWPCA is proposed to
address the one sample problem in face recognition. This
global-to-local, coarse-to-fine scheme expects successfully
applications to finger, palm recognition [27] and image re-
trieval [28].
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