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Incorporating Top-Down Guidance for Extracting Informative
Patches for Image Classification
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SUMMARY In this letter, we introduce a novel patch sampling strategy
for the task of image classification, which is fundamentally different from
current patch sampling strategies. A top-down guidance learned from train-
ing images is used to guide patch sampling towards informative regions.
Experiment results show that this approach achieved noticeable improve-
ment over baseline patch sampling strategies for the classification of both
object categories and scene categories.
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1. Introduction

In image classification, incorporating top-down information
is a common strategy. However, to utilize high-level infor-
mation as top-down guidance often involves constructing a
specific model for each class [9], [10]. Consequently, com-
plex algorithms and intensive computation both in model
training and testing are necessary. This makes it difficult to
extend to a large number of classes, and approaches based
on specific class models are sensitive to variations of image
contents.

On the other hand, the bag of visual words (BOVW)
approach appears to be discriminative and robust for image
classification despite of its simplicity [1]. In this framework,
first, a codebook of visual words is constructed by applying
vector quantization to local image patches extracted from
training images. Then, every extracted patch of an image
is encoded by assigning it to its nearest visual word in the
codebook. In this way, an image is represented as a his-
togram indicating the frequency of visual words appearing
in it. The BOVW framework represents image categories
implicitly by the distribution of visual words over the code-
book.

Since BOVW was introduced into the field of image
classification, it has attracted more attention. As one essen-
tial step of this framework, to extract informative patches
for creating image representations plays an important role
in computation efficiency and classification performance. At
first, patches are extracted based on interest point detectors
such as Harris-Laplace [2] and Difference of Gaussian [3].
However, in these cases, patches are extracted through a
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data-driven process. Although they are salient in an indi-
vidual image, it does not necessarily guarantee that they are
informative for image categories. Later, the work in [4]
showed that dense sampling is able to outperform interest
point detectors, if a large number of patches are used. Nev-
ertheless, this will increase the requirement of computation
and memory, accordingly. Therefore, to be practical, pro-
cedures must be designed to extract a limited number of in-
formative features for creating image representations, where
merely relying on low-level information is not enough.

Recently, approaches are proposed to incorporate high-
level information to select a small number of informative
patches from all extracted patches. In [5], the point-wise
mutual information between each extracted patch and im-
age categories is calculated to evaluate how informative this
patch is. In [12], the authors propose to use co-occurrence
and spatial information of image patches to construct a con-
textual saliency measure for each extracted patch. In these
approaches, after extracted patches are evaluated, weighted
re-sampling is performed based on evaluation results. So
patches with high evaluation value are more likely to be se-
lected. Finally, only re-sampled patches are used for creat-
ing image representations. Although effective, these meth-
ods are not able to increase the computation and memory
efficiency, since patch selection is performed after they are
extracted. Considerable amount of resources has been spent
for extracting these patches and evaluating them.

Approaches which are more closely related to our work
are [11], [13]. These methods are designed to determine re-
gions of interest, beforehand. Then, in the patch extraction
stage, patch sampling is biased towards determined regions
of interest. In [11], loose top-down prior information of each
object category is learnt from labeled segments of training
images. Then, the top-down information is explored to gen-
erate a probabilistic map which indicates the probability for
the object of interest to appear within a certain region. [13]
proposed to learn object categories against backgrounds and
use prior knowledge about where the classifier can detect
discriminative features to create a saliency map. However,
to build the probability map or saliency map, prior knowl-
edge of specific object classes has to be obtained and stored,
which increases human labor and the complexity of these
approaches, and makes them sensitive to image contents.
Furthermore, these approaches can not be applied to scene
image classification.

In this paper, we propose a novel patch sampling strat-
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egy by incorporating top-down guidance. This approach
can determine informativeness of image regions beforehand.
At the same time, no specific class information is needed.
Therefore, it is computationally effective and robust for im-
age contents. Moreover, the proposed method can be easily
incorporated into other image classification frameworks.

2. Incorporating Top-Down Guidance for Image Patch
Sampling

In image classification, the idea to pay more attention to a
region that is representative for the category it comes from
but difficult to distinguish from some other categories is in-
tuitive. And it is reasonable to use the number of patches
extracted from a region to represent the attention paid to it.
Therefore, the first step of the proposed method is to de-
sign an approach to evaluate the informativeness of image
regions for the task of image classification. To do this, just
focusing on one image is not enough. Instead, one region
in an image should be investigated with respect to other im-
ages from both the same category and other categories. The
informativeness of an image region should be evaluated sta-
tistically. After that, we extract image patches from each re-
gion based on the evaluation result. The number of patches
extracted from an image region is proportional to its infor-
mativeness. The framework of the proposed method is given
in Fig. 1.

2.1 Learning Top-Down Guidance for Patch Extraction
Based on Training Images

To create a discriminative image representation, image re-
gions that are representative for the category it comes from
but difficult to distinguish from other categories need more
attention. In information theory, entropy is used to measure
the uncertainty associated with a random variable. The more
uncertain a variable, the more informative it is. Therefore, in

Fig. 1 Process to determine the distribution of patch extraction in an im-
age. Images are divided into regular grids. Grids from training images are
used to learn a top-down guidance by investigating statisitcal property of
grid features. Then, the informativeness of grids in each image is evalu-
ated. Finally, different numbers of patches are sampled from each image
grid based on its informativeness.

the proposed method, entropy is adopted to evaluate regions
in an image. In the following part, we introduce how to uti-
lize entropy values to determine informativeness of image
regions.

To investigate statistical property of image regions, we
first divide each training image into regular n×n grids, which
are described by the SIFT feature [3]. To make the grid SIFT
feature easier to handle, we reduce their dimension to 30 us-
ing PCA. After we extracted a fixed number of grid features
from each training image, we apply k-means to them to ob-
tain K clusters. This set of grid feature clusters are used to
evaluate the informativeness of grid features in each image.
We calculate a modified entropy value for each cluster over
all images of all categories using the equation below

H(i) = − 1
C

C∑

c=1

Mc∑

m=1

Pcm(i) ln Pcm(i)

− γ · max

⎛⎜⎜⎜⎜⎜⎝−
C∑

c=1

Pc(i) ln Pc(i) − θ0, 0
⎞⎟⎟⎟⎟⎟⎠ , (1)

Pcm(i) =
# f i

m

# f i
c
,

Pc(i) =
# f i

c

# f i
,

where H(i) is the modified entropy value calculated for clus-
ter i over all categories, based on training images. C is the
number of categories used, and Mc denotes the number of
images in category c. pcm(i) is the ratio between # f i

m which
is the number of features from image m of category c in clus-
ter i and # f i

c which is the number of features from category
c in cluster i. Pc(i) is the ratio between # f i

c and # f i which
is the number of features in cluster i. γ and θ0 are constant
values.

The former part of Eq. (1) represents the distribution of
a cluster i over all images of all categories. When a cluster
distributes uniformly over all images of all categories, it ob-
tains its highest value. The later part represents the distribu-
tion of a cluster over all categories. It is used for penalizing
clusters that distribute uniformly across many categories.
Since when a cluster distributes across many categories, it
may represent background information. Therefore, clusters
that distribute uniformly over many images of a small num-
ber of categories will have higher H(i) value. In this case,
this cluster contains representative information of a small
number of categories, for which their regions are similar in
appearance and need to be checked in detail to distinguish
them.

By employing the above procedure, the modified en-
tropy value of each cluster is calculated and recorded. At
the same time, we represent each cluster by using the mean
value and covariance of all grid features in this cluster,
which are calculated

μi =
1
ni

ni∑

j=1

xi j (2)
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S i =
1

ni − 1

ni∑

j=1

(xi j − μi)(xi j − μi)
T (3)

where μi is the mean value of cluster i, and xi j is grid feature
in cluster i, while S i is the covariance of features in cluster
i. All the above attained values are recorded together with
their corresponding cluster for use in later stage.

2.2 Image Patch Extraction Distribution Calculation

After we constructed the set of grid feature clusters and cal-
culated the values associated with each cluster, we use these
information to determine the informativeness of each grid
in an image. For an image divided into regular grids, each
grid of this image is represented as a SIFT feature as in the
previous section. To determine how informative a grid in
an image is, we first calculate the Mahalanobis distance be-
tween a given grid feature and each cluster,

d2
i j = (x j − μi)

T S −1
i (x j − μi), (4)

where di j is the Mahalanobis distance between image grid
feature j and cluster i. x j is the jth regular grid feature ex-
tracted from an image, μi and S i are the mean value and
covariance of cluster i. After the distances between a regu-
lar grid feature and each cluster are calculated, its N nearest
clusters are preserved to calculate its informativeness. That
is only clusters with distances d ji1 , d ji2 , · · · , d jiN < ∀d jik (1 ≤
ik ≤ K, ik � i1, i2, · · · , iN) are preserved. Then using the N
preserved nearest clusters, we calculate a saliency value for
this grid feature:

sal(x j) =
1
N

iN∑

i=i1

exp(−α · di j) exp(β · H(i)), (5)

where di j is the Mahalanobis distance between grid feature
x j and its preserved nearest cluster i, α and β are constant
values. H(i) is the modified entropy of cluster i. By uti-
lizing this equation, the closer a grid feature to a cluster in
Mahalanobis distance, and the higher entropy value for this
preserved cluster to have, the higher saliency value for this
grid feature to have. Higher saliency value indicates that the
grid feature is more informative for the task of image clas-
sification.

Based on the saliency value of each grid feature in an
image, the number of patches extracted from each grid is
determined. Extracted patches in this stage are used to cre-
ate image representations. Assume L patches are going to
be extracted from the whole image, then, the distribution of
extracted patches in an image is proportional to the distri-
bution of saliency values of grids. The number of patches
extracted from a regularly divided grid i is calculated by

li = L · sal(xi)∑n×n
g=1 sal(xg)

, (6)

where li is the number of image patches extracted from grid
i, and

∑n×n
g=1 sal(xg) is the saliency value normalization over

all grids in this image.
From the above procedure, we evaluate the informa-

tiveness of grids in an image. Based on evaluation result
of each grid feature, more patches are extracted from more
informative regions, while fewer patches are extracted from
less informative regions.

3. Experiments and Results

In this section, experiments are designed to evaluate the
proposed method. After image patches are extracted based
on the proposed method, we test its performance following
traditional bag of visual words procedure. A codebook of
1000 visual words are created by applying k-means to im-
age patches extracted from training images. An image is
represented by assigning patches from it to their nearest vi-
sual words in the codebook. At last, we use SVM classi-
fier to classify image representations, where RBF kernel is
adopted. We used LIBSVM [6] in this work.

In the experiments, datasets Caltech 256 [7] and
SceneClass13 [8] are used. For dataset Caltech 256, 10 ob-
ject classes are selected randomly with each class contain-
ing around 100 images, and for dataset ScnceClass13, all
13 classes of scene images are used with each class con-
taining 100 images. In experiments, each class is divided
into two parts with 50 images for training and the other
50 images for testing. Each evaluation experiment is per-
formed three times under different training and testing sets
division. The average is taken as the final result. We use
average classification accuracy to measure the performance
of patch sampling strategies. The proposed method is com-
pared with interest point detectors [2], [3], random sampling
and other feature sampling strategies utilizing top-down in-
formation [5], [12]. For object classes, saliency map learn-
ing [13] is also compared. Figure 2 shows some sample im-
ages giving the distribution of extracted patches based on
the proposed method.

We first evaluate the proposed methed under different
image divisions 8 × 8, 10 × 10, 12 × 12. After that, the
proposed method under image division 10× 10 is compared

Fig. 2 Sample images indicating the distribution of extracted patches in
an image. In the top images, the number in red color is the number of
patches extracted from the corresponding regular grid. In the bottom im-
ages, the red dots indicate positions where image patches are extracted.
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Fig. 3 Performance evaluation of the proposed method on different im-
age divisions and its comparison with baseline patch extraction strategies
on dataset Caltech 256.

Fig. 4 Performance evaluation of the proposed method on different im-
age divisions and its comparison with baseline patch extraction strategies
on dataset SceneClass 13.

with other baseline patch sampling strategies. Experiment
results on dataset Caltech256 are given in Fig. 3. And exper-
iment results on dataset SceneClass13 are given in Fig. 4. In
the experiments, interest point detectors are based on opti-
mized parameters. Because the numbers of extracted inter-
est points from images are usually small, we plot the interest
point detectors on the patch number of 500 in Figs. 3 and 4.

From the above results, we can see that for both
datasets Caltech 256 and SceneClass13, the proposed
method has demonstrated superior performance over other
baseline methods. In the case of object category dataset,
interest point detector gained better performance than other
baseline sampling strategies, when the number of extracted
patches is small. And it is close to the result of the proposed
method. However, when the number of patches extracted
from each image increases, the performance of the proposed
method also increases accordingly. Finally, it outperformed
the interest point detector noticeably. While for the scene
categories, the proposed method demonstrated much better
performance than the baseline methods except the method
based on contextual co-occurrence which has similar perfor-
mance with the proposed method. Furthermore, the perfor-
mance of the proposed method also increases as the number
of extracted patches increases. The obtained results demon-
strated the effectiveness of the proposed method.

4. Discussion

From the results shown in Figs. 3 and 4, it is noticeable that
the results obtained from image division of 12 by 12 and di-
vision of 10 by 10 are better than the division of 8 by 8. The
reason is that grids in fine scales can be evaluated in more
detail, so that information can be represented more specif-
ically. However, this process also increases the computa-
tional burden. At the same time, when the image grid gets
smaller, it also becomes unstable. Therefore, the division of
images should be a tradeoff between computation cost and
classification performance.

5. Conclusion

In this letter, we have proposed a novel top-down guidance
mechanism to guide patch extraction towards informative
image regions for image classification. In our algorithm, the
informativeness of each image region is evaluated by utiliz-
ing entropy of image grid feature clusters. Then, based on
the evaluation result, the number of image patches extracted
from each image region is determined. We compared the
proposed method with interest point detectors, random sam-
pling and other patch sampling strategies which explored
top-down information on both object category dataset and
scene category dataset. The results demonstrated the supe-
riority of the proposed method.
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