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Super-Resolution for Facial Images Based on Local Similarity
Preserving

Jin-Ping HE†a), Member, Guang-Da SU†, and Jian-Sheng CHEN†, Nonmembers

SUMMARY To reconstruct low-resolution facial photographs which
are in focus and without motion blur, a novel algorithm based on local sim-
ilarity preserving is proposed. It is based on the theories of local manifold
learning. The innovations of the new method include mixing point-based
entropy and Euclidian distance to search for the nearest points, adding
point-to-patch degradation model to restrict the linear weights and com-
pensating the fusing patch to keep energy coherence. The compensation
reduces the algorithm dependence on training sets and keeps the luminance
of reconstruction constant. Experiments show that our method can effec-
tively reconstruct 16 × 12 images with the magnification of 8 × 8 and the
32 × 24 facial photographs in focus and without motion blur.
key words: super-resolution for facial images, manifold learning, local
similarity preserving, point-based entropy, energy-coherent compensation

1. Introduction

Super-resolution (SR) is a technology of reconstructing
high-resolution (HR) images from low-resolution (LR) im-
ages according to certain prior knowledge. The traditional
technique of SR has two categories: interpolation and recon-
struction with sequences. Most of the restrictions in inter-
polating algorithms lead to the loss of high frequency (HF)
information. On the other hand, the method of sequences-
based reconstruction can not satisfy the requirement of
large-scale arrangement in reality, because this method has
high demands on collection equipment [1]. In recent years, a
novel learning-based SR algorithm was proposed. It can not
only overcome the limit of magnification and multi-frame
of sequences-based reconstruction, but also nonlinearly add
HF through learning manner. It has become an active re-
search direction of SR in international area.

The method of learning-based SR is firstly proposed
by Freeman et al. in 1999 [2]. They adopt Markov net-
work to describe the relationship between LR patches and
HR patches. Baker et al. in Carnegie-Mellon laboratory [3]
proposed hallucinating faces in the same year. The 16 × 12
faces were well reconstructed with magnification of 8 × 8.
Furthermore, this technology was applied on two facial pho-
tographs in focus and without motion blur [4], and one with
good luminance was well reconstructed.

According to the scope of processing images, learning-
based SR can be categorized into three classes: integrat-
ing global and local algorithm, global algorithm [5] and lo-
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cal algorithm [2]–[4]. In recent years, the new proposed
approaches of learning-based SR [6]–[8] for facial images
mainly tend to integrating global and local algorithm or lo-
cal algorithm. The basic reason lies in the fact that the global
algorithms just find the global linear structure of high di-
mension (HD) database. However, the local algorithm can
obtain the nonlinear geometry structure of database. From
the experimental results of existing articles, most testing im-
ages were acquired through down-sampling, and the best re-
sult was reconstructing 16 × 12 LR faces with the magnifi-
cation of 8 × 8. There are just few actual results for face
photographs. Besides Baker’s [4], Zhuang et al. in Zhejiang
University [9] and Liu et al. [10] show some reconstructed
face photographs of their own.

In a word, firstly, integrating global and local algorithm
or local algorithm has become the main development direc-
tion because of the nonlinear advantage; Secondly, the ac-
tual applications of face SR are very little, and there are just
few results for face photographs in focus and without mo-
tion blur. Because the assumption of Locally Linear Em-
bedding (LLE) is not always correct, a novel local SR algo-
rithm based on manifold learning is proposed with directly
restricting HR weights. Experimental results verify the ef-
fectiveness of our method.

2. Manifold Assumption and Advantages in SR

Manifold learning in general contains linear projection tech-
nologies, such as Principal Component Analysis (PCA),
Multidimensional Scaling (MDS), and new nonlinear meth-
ods, such as ISOmetrical MAPing (ISOMAP), LLE,
Laplacian Eigenmap, Local Tangent Space Alignment
(LTSA) and so on. Nevertheless, linear methods of man-
ifold learning just find the global linear structure of HD
database, and they are incapable of reconstructing nonlin-
ear geometry structure. Chang [11] in 2004 applied LLE
to SR reconstruction. The algorithm implemented nonlin-
ear estimation of the global image through linearly embed-
ding local similar manifolds in HD space. Its basic as-
sumption was that if a linear combination were expected
to be constructed between each data point and its neigh-
bors in HD space with a weights vector, each weight in
the vector would be retained in low dimension space for
each HD counterpart. Unfortunately, this is not always
the case. As shown in Fig. 1 (a) it is a 3 × 3 patch be-
ing selected from one target LR face (size of 64 × 48 pix-
els). Its five neighbors are searched from one hundred sam-
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ples (seen Fig. 1 (b)). The patch in Fig. 1 (a) can be repre-
sented by linearly combining the five neighbors in Fig. 1 (b)
according to the method in [11]. The weights vector is
[0.82436 1.1322 − 0.59864 − 0.13612 − 0.19324]T. On the
other hand, the HR combining weights of 12 × 12 counter-
parts (seen Fig. 1 (c) and (d)) can also be calculated. The HR
vector is [0.35149 0.69683 − 0.31911 0.21261 0.096682]T.
From the above experimental results, each corresponding
weights of the two vectors are completely different. The
assumption of LLE which is keeping neighbors’ zooming
invariable is not always correct in SR applications.

However, in Fig. 1 it is worthwhile to note that after
the target patch and its neighbors of LR are mapped to HR
space, their counterparts of HR have the extreme similar-
ity with each other. This is the applied foundation of local
manifold learning in SR. It is identical with the assumption
of Laplacian Eigenmap of nonlinear manifold learning. We
name it “Local Similarity Preserving (LSP)” for short. In
brief, the points of being close to each other in LR space
were mapped into HR space, and the counterparts of HR
will be also near by.

Furthermore, the local manifold learning methods can
reconstruct the locally nonlinear geometry structure (seen
Fig. 2). The center points of LR patches in Fig. 2 (a) and
(c) are corresponding to the black rectangles of HR patches
in Fig. 2 (b) and (d). The target HR patch of black rectan-
gle contains some nonlinear HF. We can utilize the HF
of black rectangles in Fig. 2 (d) to reconstruct the patch of
Fig. 2 (b) through local learning. By contrast, the traditional
interpolation impossibly restores the HF of black rectangle
in Fig. 2 (b).

Fig. 1 An illustration of local similarity preserving with 4×4 magnifica-
tion: (a) one input LR patch; (b) five nearest LR patches selecting from 100
training images; (c) the ground true HR patch corresponding to (a); (d) the
HR patches corresponding to (b).

Fig. 2 The LSP advantage for reconstructing the locally nonlinear ge-
ometry structure: (a) one input LR patch; (b) the ground true HR patch
corresponding to (a); (c) five nearest LR patches selecting from 10 training
samples; (d) five HR patches corresponding to (c).

3. The SR Reconstruction Based on LSP

For solving the problem that the LLE assumption is not al-
ways correct, a new method which is directly restricting the
HR weights is proposed. The inputs of the algorithm are the
target LR image ỹ and HR training set {xk}Tk=1. Firstly faces
{xk}Tk=1 were aligned according to the positions of two eyes
and chin. We summarize our algorithm as follows:
Step 1: Acquire the LR training set according to degradation
model;

Chang [11] utilized LLE to reconstruct the LR images
without adding any priors, and the assumption excessively
interfered with reconstructing effect. In this letter we adopt
the degradation model [12] shown in (1) as prior.

ỹ(i, j) = D(PR
i j(h ∗ x̃)) + η (1)

Here, h is the blurring function. ∗ represents convo-
lution operation. x̃ is the HR image. η represents random
noise. R is the magnification. PR

i j(•) represents the image
patch which row number is from R(i − 1) + 1 to Ri and col-
umn number is from R( j−1)+1 to R j. D(•) is the sampling
function. ỹ(i, j) is the gray intensity of point (i, j) for ỹ. Our
aim is reconstructing LR facial photographs in focus and
without motion blur, so we set h to identity matrix and η to
0. D(•) is set to the mathematical function of image patch
for the expected value.

The main task of first step is obtaining the magnifica-
tion R according to the size of ỹ and {xk}Tk=1, and calculating
LR training set {yk}Tk=1 according to (1).
Step 2: For one LR point y(i, j), search its K nearest neigh-
bors in the set {yk(i, j)}Tk=1 by mixing point-based entropy
(PE) and Euclidian distance;

Baker [3] used the parent structure vector (PSV) as
learning basis. The PSV consists of Laplacian pyramid, the
horizontal and vertical derivative pyramid, and the second
derivative pyramids. As shown in Fig. 3, the edge image
obtained from the average of PSV does not contain enough
HF in comparison with our proposed PE. The local features
which PSV can provide are considerably limited. It can not
embody all local details. Furthermore, the edge image af-
ter PE transformation has the abundant local textures (seen
Fig. 3 (b)). So we can find the best matching points for y(i, j)
by the comprehensive parameter of mixing PE and Euclid-
ian distance.

Fig. 3 Comparison of edge images using different methods: (a) the aver-
age edge image of Baker’s PSV [3]; (b) edge images after PE transforma-
tion; (c) the original image.



894
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.3 MARCH 2012

According to the definition and characters of local en-
tropy [13], we construct PE transformation. LR ỹ and {yk}Tk=1
are converted to PE feature space according to (2) and (3).
Then we can obtain the corresponding entropy image H̃ and
{Hk}Tk=1.

H̃(i, j) = −Ci j log2(Ci j) (2)

Ci j = ỹ(i, j)

/ Z1∑
m=−Z1

Z1∑
n=−Z1

ỹ(i + m, j + n) (3)

Due to the point-to-patch degradation model, in LR
space we adopt point values instead of patches. However,
the point-to-point distance in LR space is terribly incor-
rect for measuring the similarity. So we select their neigh-
bor windows as local geometry features for matching. The
neighbor windows center at (i, j). The LR samples {ŷm}Km=1
corresponding to the K nearest points can be calculated
by (4).

{ŷm}Km=1= arg min
yk

×
⎛⎜⎜⎜⎜⎜⎝α Z2∑

p=−Z2

Z2∑
q=−Z2

‖ỹ(i+p, j+q)−yk(i+p, j+q)‖2

+ β

Z2∑
p=−Z2

Z2∑
q=−Z2

‖H̃(i+p, j+q)−Hk(i+p, j+q)‖2
⎞⎟⎟⎟⎟⎟⎠ (4)

Record the HR {x̂m}Km=1 which are corresponding to
{ŷm}Km=1, and the patches PR

i j({x̂m}Km=1).
Step 3: Linearly combine the HR patches PR

i j({x̂m}Km=1);
Suppose that {wm}Km=1 represents the combination

weights of the corresponding PR
i j({x̂m}Km=1) and x̃′ is the pre-

liminary estimation of ỹ. We can acquire the HR preliminary
estimation of point ỹ(i, j) according to (5). The {wm}Km=1
can be calculated through minimizing the sampling error
‖D(PR

i j(x̃′)) − D(PR
i j(x̃))‖2, and it can be expressed by (6) re-

ferring (1).

PR
i j(x̃′) =

K∑
m=1

wmPR
pq(x̂m) (5)

{wm}Km=1 = arg min ‖D(PR
i j(x̃′)) − ỹ(i, j)‖2 (6)

It is a constrained least squares problem for the un-
known {wm}Km=1. We can solve it through a linear equa-
tion system which is constructed by letting the first partial
derivative of each wm equal zero in (6).
Step 4: Implement energy-coherent compensation to linear
combination patches;

When retrieving the training set {yk(i, j)}Tk=1 and the
found patches are not very close to y(i, j), the algorithm will
produce the error fusing patch. For example, when the train-
ing set {yk}Tk=1 are all with the white background and the tar-
get y(i, j) is at the gray background, it will be difficult to
find the closest gray intensity at point (i, j) in {yk(i, j)}Tk=1.
Apparently, the sampling point value represents a statisti-
cal energy of the corresponding HR patch. In order to pre-
serve the energy coherence before and after reconstruction,

and decrease the dependence of training set, we propose to
compensate the sampling error instead of the LLE constraint

K∑
m=1

wm = 1. The sampling error is calculated by (7) referring

to (1).

e = D(PR
i j(x̃)) − D(PR

i j(x̃′)) = ỹ(i, j) − D(PR
i j(x̃′)) (7)

The final estimation of HR patch is obtained by (8).

PR
i j(x̃) = PR

i j(x̃′) + e (8)

This step makes each intensity of the preliminary patch
increase e. Consequently, the expected value of the final
patch also increases e. The found patches at the white back-
ground are converted to gray background through this self-
adapted compensation. And this operation enhances the ap-
plicability of different databases.
Step 5: Smooth the blocking effect between adjacent HR
patches;

The whole reconstructing face is obtained by mosaic
of final HR patches. So there will be abundant of artificial
blocking effects between adjacent patches. In order to re-
duce the artificial traces, our method is designed to reserve
an overlap of one pixel between adjacent HR patches. We
adopt a simple method to smooth blocking effect by averag-
ing the gray intensities in overlapped regions between adja-
cent HR patches.
Step 6: Repeat Step2 to5 until all points of ỹ are calculated;
Step 7: Output the final HR estimation x̃.

4. Experiments

In order to demonstrate our method’s efficacy and its appli-
cability for different face database, we respectively perform
our SR method on FERET database and Tsinghua Univer-
sity students’ face database. Our method has five parame-
ters to determine. The optimal parameters are all acquired
through experiments. We set Z1 = 2, Z2 = 1, α = 0.9975,
β = 0.0025, K = 5 in the following results.

Firstly, FERET is considered as public database. The
standard database contains more than 1000 images. Most
of faces in these images are around 128 × 96 pixels or
larger. The LR test faces are acquired through the degra-
dation model shown in (1). We utilize a subset (549 images)
of FERET for evaluation because more samples need a lot of
time for registration. From Fig. 4 we can see that the results
of our method are with fewer artifacts and more credible
HF. The method in [5] just can reconstruct the 32 × 24 pix-
els while the SR result of LR 16 × 12 is seriously distorted.
So in the sequent display for LR 16 × 12 the results in [5]
are not listed.

The faces in FERET database are with different races,
expressions and illumination conditions. To reduce the ef-
fect of the skin color, expression and illumination, we adopt
the Tsinghua University students’ face database as the train-
ing set for photographs in focus and without motion blur.

Suppose that the size of LR image ỹ is M × N. The
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Fig. 4 SR results of LR 32× 24, 16× 12 form top to bottom respectively
with 4×4 and 8×8 manification. (a) LR images; (b) Bi-linear interpolation;
(c) method in [5]; (d) method in [11]; (e) our results; (f) HR images.

Table 1 Comparison of RMS using different methods.

Fig. 5 SR results of LR 16 × 12 for 8 × 8 manification. (a) LR images;
(b) Bi-linear interpolation; (c) method in [11]; (d) our results; (e) HR im-
ages.

objective assessment for reconstructed HR image x̃ is eval-
uated by Root Mean Square (RMS) which can be calculated
by (9). We select the first 100 images in Tsinghua database
as training set and select the following 100 images as test
set. As shown in Table 1, the fist line show the mean RMS
of 100test set after reconstructing LR 32 × 24 faces with
R = 4. We can see that our method’s RMS is obviously
lower than others.

E =

√√√RM∑
i=1

RN∑
j=1

(x̃(i, j) − x(i, j))2/(R2MN) (9)

Figure 5 shows the reconstructed results of LR 16 × 12
using Tsinghua database. The other parameters are respec-
tively R = 8 and T = 500. And our method outperforms
other methods in global contour and details.

Furthermore, in Fig. 6 we show the photographs’ SR
results of LR 32× 24 to display the reconstruction ability of
our method. We set T = 500 and utilize Tsinghua database.
From all the experiment results, we can see our method is
effective and stable on different LR image sizes and different
face database.

In this paper, a new method based on manifold learning
is proposed. The important steps which make our method
superior to the one in [11] are directly restricting the HR

Fig. 6 Photographs’ SR results of LR 32 × 24: (a) LR images;
(b) Bi-linear interpolation; (c) method in [11]; (d) our results.

weights and further compensating the error instead of the
conventional ways which make HR weights equal to LR
weights and make the sum of HR weights equal to 1. The
actual photographs can be successfully reconstructed. If we
want to utilize this technology to reconstruct the actual sus-
pects’ faces, there are many researches to do yet, such as
automatic LR face detection, face alignment, blur identifi-
cation and training samples’ selection.
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