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SUMMARY Program comprehension using dynamic information is
one of key tasks of software maintenance. Software visualization with se-
quence diagrams is a promising technique to help developer comprehend
the behavior of object-oriented systems effectively. There are many tools
that can support automatic generation of a sequence diagram from execu-
tion traces. However it is still difficult to understand the behavior because
the size of automatically generated sequence diagrams from the massive
amounts of execution traces tends to be beyond developer’s capacity. In this
paper, we propose an execution trace slicing and visualization method. Our
proposed method is capable of slice calculation based on a behavior model
which can treat dependencies based on static and dynamic analysis and sup-
ports for various programs including exceptions and multi-threading. We
also introduce our tool that perform our proposed slice calculation on the
Eclipse platform. We show the applicability of our proposed method by
applying the tool to two Java programs as case studies. As a result, we con-
firm effectiveness of our proposed method for understanding the behavior
of object-oriented systems.
key words: program slicing, program comprehension, program mainte-
nance, sequence diagram, reverse engineering, debugging

1. Introduction

Understanding the behavior of a large-scale object-oriented
system is one of the more difficult tasks of program com-
prehension. Object-oriented programs tend to contain many
elements that are determined at the time of execution, be-
cause design patterns, polymorphism and delegation are of-
ten used to improve changeability and reusability of their
source codes.

Visualization of interactions between objects is a
promising technique to help developers comprehend the be-
havior of object-oriented systems effectively [1] . A se-
quence diagram is a diagram that represents the sequence
of messages passing of programs along a time line and is
suitable for representing the behavior of object-oriented pro-
grams [2]. There are many tools [3]–[5] that support au-
tomatic generation of a sequence diagram from execution
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traces.
However, it is still difficult to understand this behavior

because the size of automatically generated sequence dia-
grams from the massive amounts of execution traces tends
to be beyond the developer’s capacity.

The purpose of this research is to help the developer
comprehend the focused behavior of programs by providing
a sequence diagram of a size that is reduced but sufficient
for easy understanding.

Several methods and tools [6]–[9] have been proposed
to provide sequence diagrams with easy-to-understand fo-
cused behavior by reducing the amount of execution infor-
mation to be visualized. These methods visualize abstracted
execution information by compressing control structure, or
grouping and filtering visual elements.

To visualize focused behavior more properly, we focus
on the program slicing technique [10]–[12] which enables us
to extract a partial program related to the designated point in
a program. By applying program slicing concept to the se-
quence diagram, we provide “slice” of a sequence diagram
whose size is small enough to be easy to understand focused
behavior of a program.

In this paper we propose a sequence diagram slicing
approach [13], [14] based on a execution trace slicing and
visualization method. Our proposed method is capable of
slice calculation based on a behavior model which can treat
dependencies based on static and dynamic analysis and sup-
ports for various programs including exceptions and multi-
threading. We also introduce our object-oriented program
behavior visualization tool “Reticella” supporting sequence
diagram slicing implemented as an Eclipse plug-in. In addi-
tion, we discuss applicability of proposed method with two
case studies.

This paper makes the following major contributions.

• We clearly define data dependency calculations for ex-
ecution traces with static control structure information.
• We propose B-model which is a model to represent the

behavior of a multi-thread program that includes ex-
ception handling.
• We show the feasibility of the proposed method with an

implemented tool as an Eclipse plug-in that supports all
major features of Java programs.

The remainder of this paper is organized as follows.
Section 2 discusses related works. We explain our proposed
method in Sect. 3 and our implemented tool in Sect. 4. Sec-
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tion 5 shows case studies and Section 6 concludes this paper.

2. Related Work

A reverse-engineered sequence diagram is a very useful
tool for software development such as comprehension of
a program’s behavior, software maintenance and debug-
ging. There are many works and tools related to reverse-
engineered sequence diagrams [5]. As mentioned in Sect. 1,
to simply generate a reverse-engineered sequence diagram
from the execution trace may lead developers into difficul-
ties, because of the large amount of information included in
the execution trace. To solve the problem, there are many
works to handle the huge amount of information and visual-
ize the software behavior effectively.

Jinsight [3] is a tool that visualizes the run-time behav-
ior of a program. Jinsight collecting only the specified run-
time information, reduces the amount of size of information
to be visualized. Moreover, Jinsight can filter out the infor-
mation in which user is not interested, for example hide the
information about particular classes and visualize only call
history leading to specific method invocation.

Sharp et al. discuss the visual limitations and propose
techniques to help developers explore large-scale reverse-
engineered sequence diagrams [15]. By filtering out infor-
mation of no interest, and allowing the user to select and ex-
amine details of messages on demand, effective exploration
of the sequence diagram is achieved.

The difference point between our method and these fil-
tering approaches is the way to reduce information. Our
method, due to use of program slicing technique, reduces the
information based on data and control dependencies, while
these filter approaches reduce the information based on the
query input by user or the call stack depth. Because we
adopt program slicing technique, our method is more effec-
tive in software debugging tasks and software maintenance
tasks.

Taniguchi et al. propose a method of compressing a se-
quence diagram and improving its readability [6]. If repeti-
tions and recursive method calls exist in a program, same or
similar method invocation patterns are expected to appear
in a reverse-engineered sequence diagram. In Taniguchi’s
method, the patterns are visualized in compressed form, and
thus the readability of the sequence diagram improves.

Bohnet et al. prunes information, which is less relevant
for programmer, from massive execution sequence [9]. In
addition, they detect repetitive sections in the pruned trace
and visualize the sections as compact forms. Applying their
method to very large scale trace, they evaluated the effec-
tiveness of the method.

Bennett et al. discuss about the features providing cog-
nitive support for comprehending the large-scale reverse en-
gineered sequence diagrams, such as diagram’s layout, nav-
igation and abstraction like grouping. They developed the
effective sequence diagram viewer based on the discussed
features [5].

AMIDA [7] is a tool for generating sequence dia-

grams that represents the execution behavior of a program.
AMIDA can perform automatic phase detection and sepa-
rate a lot of execution information to several parts corre-
sponding to features, and provides visualized information
effectively.

In our proposed method, we use program slicing tech-
nique to reduce the irrelevant information. Program slicing
is widely researched and there exists many variation of slic-
ing technique [16], [17].

In dynamic slicing, it is often that the cost of analysis
becomes a major problem. Coping with the problem, several
cost effective and memory efficient slicing techniques are
proposed [12], [18]. JSlice [18] is a famous dynamic slicing
tool for Java programs. It collects and analyzes bytecode
traces with lossless data compression, and improves space
efficiency.

3. Proposed Method

3.1 Outline

We propose a method and a tool for “sequence diagram slic-
ing” which extracts a partial sequence diagram related to
user specified event of execution traces [13], [14]. A partial
sequence diagram is a part of a sequence diagram that rep-
resents the whole execution behavior of a program.

In this paper, we define the simplified behavior model
named “B-model” and dependencies on the B-model.
The B-model represents the execution behavior of object-
oriented programs. Our proposed tool generates a depen-
dence graph “BPDG” whose nodes are B-model elements
which represents the whole of a program’s behavior from
source codes and execution traces, and calculates a subset of
the B-model data by adapting our slicing method based on
Dependence-Cache Slicing [19]. The subset of the B-model
data is to be converted to a partial sequence diagram.

We analyze the following four kinds of dependencies
in an event sequence based on the B-model that represents
execution behavior.

• Data Dependency.
An approximate dependency between B-model data
that reflects data flow in programs.
• Control Dependency.

A dependency that reflects control flow in programs.
• Method Invocation Dependency.

A dependency that reflects a nested structure of method
invocations.
• Start–End Dependency.

A dependency that associates a start event with a cor-
responding end event in the B-model.

3.2 B-model: Simplified Behavior Model

B-model is a simplified behavior model for object oriented
programs. We focus a subset of behavior information related
to visualization with sequence diagrams. The class diagram
of the B-model is shown in Fig. 1. B-model consists of ex-
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Fig. 1 Class diagram of B-model.

ecution information, method entry/exit events, caller/callee
objects of method invocation and start/end events of con-
trol structure such as a conditional branch and a loop state-
ment, and events related to exception handling such as an
occurrence of an exception and start/end events of try-catch
clauses. Elements of the B-model can be uniquely converted
to elements of a sequence diagram.

We represent a program behavior in an event sequence
〈b1, b2, · · · , bn〉, where bi (1 ≤ i ≤ n) is a leaf element of
the tree whose root is BehaviorEvent in Fig. 1 (e.g. Method-
Entry, ConditionEnd, ExceptionOccurrence, TryStart, Vari-
ableDefinition, etc.). For any i, bi can be converted to an
element of a sequence diagram uniquely.

MethodEntry and ConstructorEntry are depicted as ‘a
synchronous message’ and ‘an object creation message’ in
a sequence diagram respectively, and both MethodExit and
ConstructorExit are depicted as ‘a reply message’ in a se-
quence diagram. Leaf elements of ConditionEvent and
ExceptionEvent such as ConditionStart, Looping, Excep-
tionOccurrence and TryEnd are depicted using a comment
(a note symbol) in a sequence diagram. Note that Loop-
ing is an event representing beginning next iteration of the
loop and ExceptionOccurrence represent that an exception
is thrown. Both VariableDefinition and VariableReference
are not depicted in a sequence diagram.

3.3 Dependencies on B-model

3.3.1 Data Dependency

As mentioned in Sect. 3.2, we introduce two elements re-
lated to the value of variables to B-model, namely Vari-
ableDefinition and VariableReference. Thus, an event se-
quence based on the B-model that represents the program’s
behavior holds information that reflects the data flow caused
by defining of or referring to values of variables. In addition,
the information is sufficient for analyzing the data depen-
dencies that arise by assignment expression.

In what follows, we assume that the execution be-
havior of a program is represented in the event sequence
〈b1, b2, · · · , bn〉, where bi (1 ≤ i ≤ n) is an element in the

B-model, and that 1 ≤ i, j ≤ n and i < j hold. We define six
kinds of data dependencies for data dependence analysis.

First, we define data dependency that exists from Vari-
ableDefinition to VariableReference, as follows.

Definition 1. If the following two conditions hold, there ex-
ists data dependency from bi to b j.

• bi is an event of VariableDefinition of the variable v.
• b j is an event of VariableReference of the variable v,

and the definition of the value of variable v at bi reaches
the event occurrence point at bj.

Second, we define data dependency that exists from
VariableReference to another event, as follows.

Definition 2. If the following condition holds, there exists
data dependency from bi to b j.

• Variable v is referred to at the VariableReference event
bi when executing event b j.
Note that one of the following conditions holds iff we
say that variable v is referred to when executing an
event bj.

– b j is an instance of MethodEntry for method
method1 and the variable v is referred to as
v.method1().

– b j is an event of the start of the control structure
and variable v is referred to as the predicate of the
event b j.

– b j is the VariableDefinition of variable t and vari-
able v is referred to when defining the value of
variable t.

– b j is the VariableReference of variable t that is re-
ferred to by using variable v like v.t.

– b j is the VariableReference of variable t and vari-
able t is referred to with variable v as the index of
the array.

– b j is ExceptionOccurrence that was occurred by
a throw statement and variable v is referred at the
throw statement.

Third, we define data dependencies that arise along



962
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

with ‘method’ and ‘constructor’ invocations. In method and
constructor invocation we should consider data flow about
arguments and return values. Note that we consider that
the constructor has a return value of reference to an object,
which is generated by the constructor invocation. There-
fore, there are two kinds of data flow regarding return value,
that occur at the ‘method exit’ and ‘constructor exit’ events.
We define three kinds of data dependencies regarding the
arguments and the return values of method and constructor
invocations, as follows.

Definition 3. When entering ‘method’, formal parameters
are defined by using values of the actual parameters. Thus,
there exists data dependency from the VariableReferences
of each actual parameter to the VariableDefinitions of each
formal parameter respectively.

Definition 4. We create a variable whose name is unique
during execution of the program per method invocation.
When exiting from ‘method’ we consider that the value of
the unique variable is defined by a return value. Thus, there
exists data dependency from the VariableReference of the
variables that affects the return value to the VariableDefini-
tion of the unique variable. Using the return value generates
the VariableReference of the unique variable.

If a cascading method invocation such as m1().m2()
exists, we virtually treat the code as the form ob j1 =
m1(); ob j1.m2(), where ob j1 is a temporarily unique vari-
able, and then calculate dependencies for the cascading
method invocation.

Definition 5. We create a variable whose name is unique
during execution of program per constructor invocation.
When exiting from the ‘constructor’, the value of the unique
variable is defined by reference to an object generated by the
constructor invocation. Thus, there exists data dependency
from the ‘constructor exit’ event (i.e. ConstructorExit) to
VariableDefinition of the unique variable. Reference to
the generated object generates the VariableReference of the
unique variable.

Finally, we define an approximate data dependency.
When analyzing the behavior of library methods, it’s highly
likely that its source codes do not exist. In the case, com-
plete analysis of the behavior occurred in library methods is
very difficult. To deal with the case, we define the approxi-
mate data dependency as follows.

Definition 6. If the following conditions hold, there exists
approximated data dependency from bi to b j.

• The relation between object’s identification ob j id1,
ob j id2 and event bi is one of the following.

– bi is an instance of MethodEntry whose callee
object’s id is ob j id1, and the arguments of the
MethodEntry bi contain the object whose identifi-
cation is ob j id2.

– bi is an instance of MethodExit whose caller

Table 1 The relation of an event and referred objects.

Event name Referred objects

MethodEntry, ConstructorEntry callee object, objects as arguments
MethodExit object as the return value
ConditionStart, LoopStart, Looping objects referred

object’s identification is ob j id1, and the return
value for an instance of MethodExit bi is the ob-
ject whose identification is ob j id2.

– bi is an event of constructor entry whose caller
object’s identification is ob j id1, and the identi-
fication of the object created by the constructor is
ob j id2.

• b j is an event occurred in a method whose callee ob-
ject’s identification is ob j id1, and the object whose
identification is ob j id2 is referred at the event b j.
Note that the relation of an event and referred objects
is shown in Table 1.

By this definition, data dependencies existing between
methods defined by user and library methods are analyzed
approximately at a method invocation level.

3.3.2 Other Dependencies

Control Dependency. In our proposed method, we define
three kinds of control dependencies concerning B-model el-
ements related to exception, as follows.

• If the following two conditions hold, there exists con-
trol dependency from bi to b j.

– bi is ConditionStart/LoopStart/Looping.
– Decision on whether b j is executed or not depends

on the result of evaluation of the predicate of bi.

• If the following two conditions hold, there exists con-
trol dependency from bi to b j.

– bi is TryStart/CatchStart/FinallyStart.
– Decision on whether b j is executed or not depends

on whether bi is generated.

• If the following two conditions hold, there exists con-
trol dependency from bi to b j.

– bi is the ExceptionOccurrence.
– b j is the CatchStart which catches the exception

that occurred at bi.

Method Invocation Dependency. Concerning thread’s in-
formation, we define ‘method invocation dependency’ as
follows.

• If the following three conditions hold, there exists
method invocation dependency from bi to b j.

– bi is MethodEntry/ConstructorEntry.
– b j occurred before the exit event that cor-

responds to bi occurring, or b j is Method-
Exit/ConstructorExit that corresponds to bi.
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– Both bi and b j are events that occurred on the
same thread.

Start–End Dependency. Concerning information related to
exception, we define Start–End Dependency as follows.

• If the following two conditions hold, there exists start–
end dependency from bi to b j.

– bi is entry/start event.
– b j is exit/end event that corresponds to bi.

3.4 Calculating a Slice of Sequence Diagram

The slice of a sequence diagram is calculated on BPDG
which consists of B-model data and dependencies defined
in Sects. 3.3 and 3.3.2. We assume that the execution be-
havior of a program is represented by an event sequence
〈b1, b2, · · · , bn〉 and the slicing criterion is (bc,V), where bc

is an arbitrary event in the event sequence and V is a set of
variables that are capable of being referred to at the point at
which bc is executed. A slice calculation proceeds as fol-
lows.

1. For each v ∈ V , we traverse the sequence
〈b1, b2, · · · , bn〉 backwards, that is towards the event
that occurred first in the execution of the program to
find VariableDefinitions bv

i (1 ≤ i < c), where bv
i repre-

sents the VariableDefinition of v and occurs ith during
the program execution. Here, v and bv

i need to satisfy
either of the following two conditions.

• v is a local variable, and the bv
i and bc occurred on

the same thread.
• v is a field.

2. We assume that Bdef is a set of bv
i for each v ∈ V . For

each bv
i ∈ Bdef , we start slice calculation from the node

bv
i by traversing the edges backward on the BPDG.

3. The set of nodes which are reached by our traversal on
the BPDG are the slice. Hence, the slice is an event
sequence and can be converted to a sequence diagram.

4. Finally, by converting the slice of event sequence to a
sequence diagram, we get a slice of a sequence dia-
gram.

3.5 Relationship with Dynamic Program Slicing

Since we calculate a slice of an execution trace based on
dependencies between events which are results of dynamic
and static program analysis, we can theoretically obtain the
same event sequence if we perform the following process
with all source codes of target software including standard
API libraries:

1. Apply a dynamic program slicing technique to target
software and obtain a slice which is an executable sub-
set of target software such as the set of statements.

2. Execute the slice with a tracer and record events.

In the case that we cannot access all source codes, the ap-
proach that needs information of source codes might not be
applicable. Our proposed method can calculate a slice even
if a part of source codes is missing by using the approxi-
mate data dependency. Bytecode base approaches such as
JSlice [18] allow us to calculate an executable slice with-
out source codes. However approaches based on bytecode
strongly depend on a language.

The first advantage of our approach is the execution
cost. Our proposed method focused on the visualization of a
behavior with a sequence diagram and records the behavior
information which is represented with a sequence diagram
only. Once the behavior information is record as BPDG by
using proposed B-model, we can re-calculate and re-render
a slice of a sequence diagram without any execution of target
software.

The second advantage is portability of our ap-
proach. Our slicing and visualization method are language-
independent because it is based on B-model just only. We
can easily apply our approach to other object-oriented lan-
guages by implementing only a tracer which records a be-
havior as B-model.

4. Implemented Tool: Reticella

In this study, we developed a tool for effective visualization
of a Java program with sequence diagram, which is called
Reticella. The developed tool is capable of calculating a
slice of a sequence diagram based on the proposed method
as an Eclipse plug-in. The tool consists of four parts; static
analyzer, tracer, slicer and drawer. An overview of the tool
is shown in Fig. 2. The developed tool calculates and gen-
erates a slice of sequence diagram automatically. However,
for static analysis, before applying our tool to target pro-
grams, the source codes need to be formatted by the Eclipse
built-in formatter. This operation is needed only once, at the
first time. After this the operation needs to be repeated only
if the source codes are modified. Our tool’s slice calculation
proceeds as follows.

1. The static analyzer analyzes source codes and acquires
static information.

2. The tracer receives the static information and class files
of the target program as an input and executes the pro-
grams with a specific program’s input. The tracer con-
structs the BPDG based on the static information re-
ceived from the static analyzer and the dynamic infor-
mation acquired during program execution.

Fig. 2 Overview of the tool.
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3. Our tool extracts an event sequence based on the B-
model, which represents the whole behavior of pro-
grams and converts the event sequence to a sequence
diagram, from the BPDG. This is then provided to the
user by the tool, using drawer.

4. The user looks at the sequence diagram, chooses a slic-
ing criterion and inputs it into the slicer.

5. The slicer extracts a slice from the BPDG based on the
slicing criterion. Then, the drawer provides it to the
user as a slice of a sequence diagram.

In what follows, we explain the details of the compo-
nents of our developed tool.

4.1 Tracer & Slicer

The tracer executes the program based on a specified pro-
gram’s input and collects information about how the pro-
gram is being executed.

We implemented a tracer by using a JDI to examine
how the program is being executed on Java VM. JDI is a
frontend of JPDA. JDI can access a VM that is being exe-
cuted and examine and control the inner states of the VM,
such as receiving the notification of method entry/exit and
setting the breakpoint to a specific bytecode. JDI also en-
ables the acquisition of various pieces of information such
as information on the state of a stack frame per method in-
vocation.

The tracer captures the following events related to the
B-model by using APIs of JDI and generates B-model data
along with the time line.

• Entry and exit events of method and constructor.
• Events of exception occurrence.
• Events of definition and reference of the field’s value.

Other events which are not listed above, for example
start/end events of the control structure and VariableDefi-
nition/VariableReference of local variables, cannot be cap-
tured only by JDI. To capture these events, we use the func-
tions of setting the breakpoint at specific bytecodes in class
files and notifying the event of the program counter reach-
ing the breakpoint location, which are provided by JDI. In
our tool, we set breakpoints at every statement and parts of
a statement in a program to know which locations in a pro-
gram are executed. By doing this, we generate the B-model
events that cannot be captured by JDI.

The tracer collects only information related to user
codes; the tracer does not collect information about com-
putations with libraries. Our tracer automatically recognize
whether a class is belonging to user codes or not by check-
ing the existence of source codes for the class in input files.
Classes with no source codes are recognized as libraries
which are not target to visualize the behavior.

The slicer calculates a slice by backward traversal on
the BPDG using a slicing criterion inputted by the user,
based on algorithm shown at Sect. 3.4.

4.2 Static Analyzer

To obtain information that cannot be acquired by JDI and
generate model data based on the B-model, we developed
the static analyzer using the information of the Abstract
Syntax Tree (AST) in Eclipse JDT. The static analyzer con-
verts source codes to AST representation and analyzes the
latter.

The static analyzer analyzes mainly the Statement and
Expression nodes in AST, which correspond to statement
and expression in Java language respectively. The static
analyzer analyzes what an event sequence based on the B-
model should be generated when statement and expression
are executed for all statements and expressions in a program
beforehand. That is, the static analyzer makes skeletons of
B-model event sequences before a program is executed. The
analyzed information is passed to the tracer, which then gen-
erates an event sequence based on the B-model.

4.3 Drawer

The drawer draws a sequence diagram and provides it to
the user. We used the Quick Sequence Diagram Editor [20]
to draw a sequence diagram in a drawer. The Quick Se-
quence Diagram Editor receives text data, which is format-
ted based on a specific syntax as an input, then converts it to
a sequence diagram and displays it. The drawer converts an
event sequence based on the B-model to input form of Quick
Sequence Diagram Editor and displays a sequence diagram
by inputting the converted data into the Quick Sequence Di-
agram Editor. Then, the drawer provides the sequence dia-
gram to the user.

4.4 Limitation

Our tool still has some limitations. Our tool covers any Java
6 program which does not contain the following elements.

• enhanced for statement
• reflection
• native method call
• conditional operator (&&, | |, and ? :)
• statement that have no bytecode (e.g. empty while

loop)

In addition, because our tool does not analyze the value of
an index of an array variable, the size of a slice is relatively
greater than that of conventional dynamic slicing.

5. Case Studies

To evaluate the effectiveness of our proposed method, we
applied the tool to two Java programs as case studies. In this
section, we describe the case studies in detail.
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5.1 Case Study 1

In this section, we show an application of our pro-
posed method to a multi-thread program. The program
of Consumer/Producer problem, that we use in this case
study, has three key classes, Consumer, Producer, and
SharedBuffer. SharedBuffer class has a private field
named value, which is a common buffer used between an
object of Consumer class and an object of Producer class.
The object of Consumer class gets a value from the common
buffer by the method getValue and the object of Producer
class stores a value to the common buffer by the method
putValue. The objects of Consumer and Producer work in
different threads and try to get/put a value from/to the com-
mon buffer.

A generated sequence diagram that represents the
whole execution behavior of the Consumer/Producer pro-
gram is shown in Fig. A· 1. In Fig. A· 1, the number be-
tween ‘[’ and ‘]’ indicates that the event occurred i th in
the execution of the program. For the slicing criterion
(bc, v), the number c is chosen from numbers between ‘[’
and ‘]’. In Fig. A· 1, we used a special lifeline whose name
is “static#:FullyQualifiedClassName”, where # is an arbi-
trary unique number per class, because a static method does
not have a callee object.

In the diagram, two sets of accesses to the common
buffer are depicted. In the first set, the Producer stored a

Fig. 3 Slice of a sequence diagram shown at Fig. A· 1 by slicing criterion (b158, num).

value to the common buffer first and the Consumer got the
value from the common buffer first. In the second set, there
are second accesses to the common buffer by the Producer
and Consumer.

We chosed (b158, num) as the slicing criterion to exam-
ine what behavior affects the value of the common buffer,
where num is a local variable of an object of Consumer class
and the variable num holds the return value of the getValue
method. Because the value of num reflects the value of the
common buffer, extracting a slice affecting the value of num
enables us to examine what behavior affects the value of the
common buffer. Note that the event b158 is a MethodEntry
event for printing the value of num, after a second access of
Producer/Consumer to the common buffer.

The result of slicing by slicing criterion (b158, num) is
shown in Fig. 3. The resulting diagram contains information
about a Producer storing a value to the common buffer sec-
ondly and a Consumer getting the value from the common
buffer secondly, and it does not contain information about
the first set of accesses to the common buffer by the Con-
sumer and Producer. Therefore, only the information related
to the slicing criterion is correctly extracted into the slice.

There are many concurrent applications in recent year
and because of the complexity of the behavior, comprehend-
ing the behavior of these applications is a tough task. Our
proposed method has the capability to extract appropriately
only information of interest that exists in several threads.
Hence, our proposed method could become a valuable aid to
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support program comprehension and software maintenance.
Our approach only partly supports to comprehend the

complexity of concurrent application because B-model does
not have information related to mutual exclusion and execu-
tion time. We can support to comprehend more aspects of
concurrent application with extensions of B-model to treat
the information related to mutual exclusion which can be
obtained from Java VM using JDI.

5.2 Case Study 2

In this section, we apply our proposed method to a more big-
ger program: a simple editor program that is implemented
by using Java Swing classes and has basic functions, such
as changing font style, font color, font size and font family.
By using Reticella, we analyzed the editor’s behavior with
following operations:

1. Type some words.
2. Change font family and font style.
3. Type some words.

A generated sequence diagram shown in Fig. 4 represents
the whole execution behavior of the editor program. The
sequence diagram shown in Fig. 4 contains 1490 messages
(4217 B-model events). This information is too huge to
understand the behavior. Even though we did few opera-
tions, too many messages are contained in the sequence di-
agram because methods for obtaining and updating current
attributes of font’s style are frequently invoked every time
we update the caret position and type a character.

To examine the behavior of changing font family,
we chose (b4087, currentFontFamily) as a slicing criterion,
where b4087 is an event after second operation mentioned
above and the variable currentFontFamily is a variable that
contains the information about current font family. The re-
sult of slicing is shown in Fig. 5. The sequence diagram
shown in Fig. 5 contains only 24 messages (58 B-model
events), and the diagram only has information about method
invocations that affect the value of the slicing criterion, such
as getAttribute method and getFontFamily method invoca-
tion.

Fig. 4 Sequence diagram which represents the whole execution behavior
of the editor program.

The reduction rate of messages is 1.61%† (The reduc-
tion rate of B-model events is 1.37%††) and the size of the
sliced sequence diagram is enough small to understand the
focused behavior. Thus, it is confirmed that our proposed
method can handle large volumes of information, and ex-
tract desired information related to focused behavior from it
appropriately.

5.3 Discussion

From two case studies, we confirm that our proposed
method has the capability of reducing the huge amount of in-
formation in execution trace to the size that is sufficient for
easy understandings. In our proposed method, we use the
approximate data dependency mentioned in Sect. 3.3 when
analyzing data dependencies between library codes and user
codes. Because of approximation of the data dependency,
several elements that should be contained in the resulted
slice may be missed. However, from the perspective of a se-
quence diagram, we can obtain a good result by only analyz-
ing data dependencies at method invocation level because a
sequence diagram mainly consist of message sequences; de-
tailed events, such as variable definition or reference events,
do not be depicted in a sequence diagram. In addition, due
to the approximation of the data dependency, the cost of
analyzing dependencies in library codes is reduced in our
method while it is highly expensive to analyze all of infor-
mation in library source codes. Thus, our proposed method
is efficient and effective way to support comprehension of
the focused behavior and software maintenance tasks.

6. Conclusion and Future Work

In this study, we proposed an execution trace slicing and
visualization method based on a behavior model. Our pro-
posed sequence diagram slicing method provides partial se-
quence diagrams related to points of developer’s interests
from a sequence diagram that represents the whole behavior
of programs. Our proposed method is capable of slice calcu-
lation based on a proposed behavior model which can treat
dependencies based on static and dynamic analysis and sup-
ports major features of Java languages including exceptions
and multi-threading.

We developed a tool that calculates a slice based on
our proposed method. Using the tool, we applied the pro-
posed method to two kinds of Java programs. The result
confirmed that our proposed method (1) can reduce the size
of information in a sequence diagram appropriately, and (2)
is effective to support developers’ tasks, such as comprehen-
sion of a program’s behavior and debugging.

Our plans for future work and challenges are as fol-

†A reduction rate of messages is calculated by the formula:
(the number of messages in a slice) / (the number of messages in
an execution trace) × 100.
††A reduction rate of B-model events is calculated by the for-

mula: (the number of B-model events in a slice) / (the number of
B-model events in an execution trace) × 100.
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Fig. 5 The slice of the sequence diagram shown in Fig. 4 by the slicing criterion
(b4087, currentFontFamily).

lows.

• More reduction in the information included in a slice
of a sequence diagram.
Some approaches are expected to be effective in this
challenge, for example using the method for compress-
ing a sequence diagram [6] together, introducing inter-
active representation of a sequence diagram like [15],
and improving and refining our slicing algorithm by in-
troducing new dependencies. Moreover, filtering out
useless and unwanted information before tracing like
[21] is also expected to be effective in improving the
readability of the diagram and time-efficient analysis.
• Effective representation of multithread programs on a

sequence diagram.
Depicting several threads’ behavior in a program into
a single sequence diagram tends to lead to more com-
plexities and reduce the readability of the sequence dia-
gram. Therefore, we need to introduce some new meth-
ods that cope with such problems, for example, group-
ing threads that are related to each other and three-
dimensional representation of a sequence diagram.
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Appendix

Fig. A· 1 Sequence diagram which represents the whole execution behavior of a Consumer/Producer
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