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SUMMARY Recently, probabilistic topic models have been applied
to various types of data, including text, and their effectiveness has been
demonstrated. Latent Dirichlet allocation (LDA) is a well known topic
model. Variational Bayesian inference or collapsed Gibbs sampling is of-
ten used to estimate parameters in LDA; however, these inference meth-
ods incur high computational cost for large-scale data. Therefore, highly
efficient technology is needed for this purpose. We use parallel computa-
tion technology for efficient collapsed Gibbs sampling inference for LDA.
We assume a symmetric multiprocessing (SMP) cluster, which has been
widely used in recent years. In prior work on parallel inference for LDA,
either MPI or OpenMP has often been used alone. For an SMP cluster,
however, it is more suitable to adopt hybrid parallelization that uses mes-
sage passing for communication between SMP nodes and loop directives
for parallelization within each SMP node. We developed an MPI/OpenMP
hybrid parallel inference method for LDA, and evaluated the performance
of the inference under various settings of an SMP cluster. We further in-
vestigated the approximation that controls the inter-node communications,
and found out that it achieved noticeable increase in inference speed while
maintaining inference accuracy.
key words: probabilistic topic models, Latent Dirichlet allocation, Gibbs
sampling, MPI/OpenMP hybrid parallelization

1. Introduction

Topic modeling is one of the most successful approaches
to analyzing large document collections. Topic models are
based on the idea that each document is generated from
a mixture of word distributions, each of which is called
a “topic”. Latent Dirichlet allocation (LDA) [1] is a well
known topic model. We can use the LDA model or its vari-
ants for not only text data but also image data [2], [3], net-
work data [4], [5], and others. However, inference of un-
known parameters of the LDA model on large-scale data
brings significant challenges in terms of computation time
and memory requirements. For this purpose, some methods
for increasing the inference speed have been proposed via
parallelization such as approximate distributed inference for
LDA (AD-LDA) [6] and asynchronous distributed learning
algorithm for LDA (Async-LDA) [7].

Parallel computing architectures can be divided into
three classes, distributed memory, symmetric multiprocess-
ing (SMP), and SMP cluster. To optimize the performance
and resources of these architectures, a promising approach
is hybrid parallel computing, which uses message passing
for the communication between SMP nodes in a cluster and
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parallel computing based on shared memories in each node.
We use Message Passing Interface (MPI) for the message
passing between SMP nodes and Open Multi-Processing
(OpenMP) for parallelization within each SMP node for the
inference of the LDA model.

In parallel computing using only MPI, processor cores
communicate with each other by message passing, even
though they belong to the same node, just like on dis-
tributed memory systems. In the MPI/OpenMP hybrid par-
allel method, each processor core in an SMP node refers
to data on a shared memory, and only one processor core
on each node communicates with the others. In general, it
is more efficient for processor cores to communicate via a
shared memory than by message passing. When data are
transferred by the MPI function, such as ‘MPI Allreduce’,
the fewer processors that take part in communication, the
less time it takes. Therefore, using MPI/OpenMP hybrid
parallelization on an SMP cluster is expected to improve the
speed of learning the LDA model. However, there have been
no published reports, to our knowledge, on detailed perfor-
mance evaluation using MPI/OpenMP hybrid parallelization
with an SMP cluster, for the inference of the LDA model.

We develop an MPI/OpenMP hybrid parallel inference
method for the LDA model, and evaluate the performance
of the inference under various settings of an SMP cluster,
compared with using only an MPI or a single processor. We
further investigate the approximation that controls the inter-
node communications, and demonstrate that it achieves sig-
nificant increase in inference speed while maintaining infer-
ence accuracy.

2. Related Work

2.1 LDA

LDA is a widely accepted topic model and is based on
the idea that each document is generated from a mixture
of multinomial distributions over words, each of which is
called a ‘topic’ and represents a cluster of words that co-
occur across different documents. In this model, Dirichlet
priors are assumed to correspond to each document’s topic
multinomial and each topic’s word multinomial. Figure 1
shows a graphical model representation of LDA, and the fol-
lowing is the process of generating documents. Here, the
notations are given Table 1.

1. For document d, multinomial parameters θd are drawn
from Dirichlet prior distribution Dir(α).

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Graphical model representation of LDA.

Table 1 Description of variables for LDA.

Variable Description
D Number of documents in collection
K Number of topics
V Number of word types (vocabulary size) in collection
Nd Number of words in document d
wd,i ith observed word in document d
zd,i Topic assigned to wd, j

φk Multinomial parameters associated with topic k
θd Multinomial parameters associated with document d
α Hyperparameter of Dirichlet prior for θ·
β Hyperparameter of Dirichlet prior for φ·

2. For topic k, multinomial parameters φk are drawn from
Dirichlet prior distribution Dir(β).

3. For the i-th word wd,i in document d:

• topic zd,i is drawn from multinomial distribution
Mult(θd)

• word wd,i is drawn from multinomial distribution
Mult(φzd,i )

The posterior distributions can be estimated such as us-
ing the collapsed Gibbs sampling method, which updates
each topic assignment zd,i by sampling with the following
full conditional posterior probability in each iteration [8],
[9]:

p(zd,i = k|wd,i = v,W−(d,i),Z−(d,i), α, β)

∝ (Cdoc
d,k − 1 + δt�t′ + α) · Cword

k,v − 1 + δt�t′ + β∑
v′ C

word
k,v′ − 1 + δt�t′ + Vβ

(1)

Here, we assume that the Dirichlet priors α and β are
symmetric. Cword

k,v and Cdoc
d,k stand for the (k, v)-element of

word-topic count matrix Cword and the (d, k)-element of
document-topic count matrix Cdoc, respectively. W−(d,i) de-
notes the document-word matrix in the document collection
excluding word wd,i, and Z−(d,i) represents the correspond-
ing topic assignments of W−(d,i). The indicator function δ
takes the value 1 when the designated event occurs; other-
wise, 0. The sampling procedure starts with random topic
assignments. Then the posterior distributions given by the

procedure above with a sufficient number of iterations will
converge according to the dependencies between random
variables.

2.2 Fast Inference Methods for LDA

The computational complexity of collapsed Gibbs sampling
is given by the number of topics multiplied by the vocabu-
lary size in the document collection. There have been prior
studies that attempted to improve the inference speed for the
LDA model at various strategic points.

• Newman et al. [6] proposed approximate distributed
inference methods for LDA: AD-LDA and HD-LDA,
using collapsed Gibbs sampling for distributed mem-
ory systems. AD-LDA increases inference speed with-
out losing accuracy, even though it is an approximate
method. HD-LDA is theoretically equivalent to esti-
mating a mixture of LDA models; however, it incurs
high computational cost. Our inference method de-
scribed in Sect. 3 can be positioned as an extension of
AD-LDA.

• Yi Wang et al. [10] implemented Parallel LDA (PLDA)
on multiple processors by MPI and by MapReduce.
PLDA’s algorithm is equivalent to AD-LDA’s. They
reported that MPI-PLDA was faster than MapReduce-
PLDA because the latter involves machine scheduling
and disk I/O between iterations. PLDA can consider-
ably reduce the total running time; however, it is as-
sumed that all processors are independent within and
across nodes; thus, requiring global synchronization
between them at each iteration. Therefore, the com-
munication cost increases as the number of processors
increases. We address this problem by MPI/OpenMP
hybrid parallelization and assuming the use of an SMP
cluster comprising multi-core processors.

• Asuncion et al. [7] investigated Async-LDA. The data
are distributed to processors, each of which indepen-
dently performs collapsed Gibbs sampling, but the pro-
cessors communicate with each other asynchronously.
The global synchronization phase of AD-LDA in each
Gibbs sweep (each iteration in Gibbs sampling) may
force fast processors to wait for the slowest proces-
sor. In contrast, Async-LDA requires no global syn-
chronization; therefore, each processor can start its
next Gibbs sweep without having to wait for slower
processors. Async-LDA can perform effectively in a
distributed environment with heterogeneous machines
having different specifications. However, this is not
the case for machines having the same specifications;
therefore, we focus on conditions with a homogeneous
environment.

• Smola et al. [16] developed a parallel inference method
for LDA on a cluster system. It introduces a
blackboard-style architecture to facilitate simultaneous
communication and sampling between different com-
puters in a cluster environment. They experimented
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with a Hadoop cluster, which was being used for pro-
duction work during their experiments. The parallel
computing architecture that they used is different from
that in this paper. Moreover, they did not show how the
performance is changed when varying the number of
CPU cores and/or the number of computers used for
computation, while we focus on this kind of perfor-
mance evaluation in this paper.

• Yi Wang also implemented MPI/OpenMP based par-
allel implementation of LDA†, similarly to our work.
However, to our knowledge, there are no published
reports in which the performance evaluation is car-
ried out using this implementation, while this paper
includes some original findings through detailed per-
formance evaluation. Furthermore, this paper includes
some more original findings as the result of the addi-
tional experiments on the approximation that controls
the inter-node communications.

• Masada et al. [11] and Yan et al. [13] used GPGPU for
the parallel inference of LDA. Their focus was on the
limit of memory size of GPGPU, which is different
from our motivation for this research.

3. MPI/OpenMP Hybrid Parallel Inference for LDA

Newman et al.’s approximate distributed inference for LDA
(AD-LDA) [6] and its implementations [10] can save con-
siderable memory and time. However, it requires global
synchronization at each iteration; therefore, the entire pro-
cessing time is dominated by the communication overhead
with the increase in the number of processors, which limits
the increase in inference speed.

We attempt to improve the speed of LDA inference
while maintaining inference accuracy. In this section, we
briefly review general computing models in parallel and dis-
tributed environments and describe our hybrid parallel in-
ference method for LDA, including the approximation that
controls the inter-node communications.

3.1 Parallel and Distributed Computing Models

We describe MPI, OpenMP, and MPI/OpenMP hybrid par-
allelization, which supply low-level services necessary for
parallel computing.

3.1.1 MPI

MPI is a popular protocol for programming parallel comput-
ing. It uses message passing for communication between
processors. MPI is typically suitable for distributed mem-
ory architecture, where each processor does not share the
memory spaces. MPI can also be used for an SMP clus-
ter; however, MPI implementation usually does not share
memory between processors. We use MPI for inter-node
message-passing communications in an SMP cluster, but not
for intra-node parallelization.

MPI supports an API function “MPI::COMM WORLD.
Allreduce(sendbuf, recvbuf, count, datatype,

op)”, where sendbuf is the starting address of the send-
ing buffer, recvbuf is the starting address of the re-
ceiving buffer, count is the number of elements of the
sending buffer, datatype is the data type of elements
of the sending buffer (e.g., MPI INT for the 32-bit inte-
ger type), op is an operation (e.g., MPI SUM for the sum-
mation operation), and COMM WORLD is a default group
consisting of all the processors participating in parallel
computation. For example, we can use this function as
“MPI::COMM WORLD.Allreduce(Cword

|n , V × K, Cword,
MPI INT, MPI SUM)” for computing Eq. (2) that we will in-
troduce in Sect. 3.2.1. Instead of “COMM WORLD”, we can
also specify a group of processors that are selected to be
used for communication.

3.1.2 OpenMP

OpenMP supports shared-memory parallel programming,
especially on symmetric multi-processors, where multiple
processors share a single memory space. Using OpenMP,
loop iterations can be split up into multiple threads. We use
it for shared-memory parallelization within each node of an
SMP cluster.

OpemMP supports various directives. We used OMP’s
parallel directive to parallelize each Gibbs sweep using
multiple threads. We also used shared(data) to make all
the threads share the data. In this case, the multiple threads
can read the data simultaneously; however, they should not
simultaneously write to a specific memory location. We
used atomic directive to prevent a specific memory loca-
tion being updated by multiple threads simultaneously.

3.1.3 MPI/OpenMP Hybrid Parallelization

In terms of data communication, shared-memory paral-
lelization is faster than message passing. The fewer pro-
cessors that take part in message passing communication,
the less time it takes. Therefore, the MPI/OpenMP hy-
brid programming model sometimes substantially increases
inference speed on SMP clusters [14]. We discuss how
to increase the inference speed of LDA using the hybrid
MPI/OpenMP method while maintaining inference accu-
racy.

3.2 Inter-Node Parallelization

3.2.1 Distributing and Synchronization of Topic-Word
Distributions

The inter-node parallel procedure can be used in the man-
ner similar to AD-LDA [6], [10]. The AD-LDA method
first divides and distributes D documents over N nodes, as-
signing Dn = D/N documents to each node n. In other

†http://code.google.com/p/ompi-lda/
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words, the method partitions word counts W = {wd}Dd=1
into {W|1, · · · ,W|N} in units of documents, and correspond-
ing topic assignments Z = {zd}Dd=1 into {Z|1, · · · ,Z|N}, where
W|n and Z|n are allocated only on node n. Here, wd and
zd consist of wd,i and zd,i, respectively. Document-specific
counts Cdoc are likewise divided and distributed over nodes.
However, every node maintains its own copies of the overall
word-topic counts Cword. We denote node-specific counts as
Cdoc
|n . Moreover, Cword

|n is used to temporarily store word-
topic counts accumulated from topic assignments to local
documents on each node.

In each Gibbs sweep (each iteration in Gibbs sam-
pling), Z|n is updated on each node n by sampling every
zd,i|n ∈ Z|n from the approximate posterior distribution, and
each node updates Cdoc

|n and Cword according to the new topic
assignments. After each Gibbs sweep, each node samples
and updates word-topic counts of its local documents Cword

|n
and uses the Allreduce operation to reduce and broadcast the
new Cword to all nodes.

Cword
|n denotes the result of word-topic count matrices

estimated from the data assigned to a node n. In particular,∑
n
∑

v,k Cword
k,v|n = W, where W is the total number of words

across all nodes. After node n samples and updates topic
assignments Z|n, we modify both Cdoc

|n and Cword
|n . To merge

the per-node counts, we perform a global update using a
Reduce-Scatter operation:

Cword ← Cword +
∑

n

(Cword
|n − Cword),

Cword
|n ← Cword (2)

3.2.2 Synchronization of Document-Topic Distributions

Following [6], document data are distributed over multiple
nodes for increasing the speed of LDA inference. When
document data are divided in units of documents, as in [6],
we need to perform inter-node communication and synchro-
nization only for Cword

|n in each Gibbs sweep using Eq. (2),

and Cdoc
|n is not necessary for the transfer across nodes or

processors. Therefore, we can reduce the cost of communi-
cation.

On the other hand, when document data are divided
into units of words, the number of words on each node is
roughly equal; therefore, we can reduce the cost of synchro-
nization of count matrices. However, we need to transfer
Cdoc
|n (or a part of it) across nodes. In this case, we have to

perform inter-node communication and synchronization for
both Cword

|n and Cdoc
|n using Eqs. (2) and (3), respectively.

Cdoc ← Cdoc +
∑

p

(Cdoc
|n − Cdoc),

Cdoc
|n ← Cdoc (3)

However, the cost for transferring document data Cdoc may
cancel out the cost reduction of the synchronization of count
matrices; therefore, we use the method of distributing docu-
ment data in units of documents.

3.3 Intra-Node Parallelization

Dn documents allocated to node n are distributed over P
processors inside the node, and Dnp = Dn/P documents
are handled by each processor. We partition W|n into
{W|n,1, · · · ,W|n,P} over each processor p within each node n;
however, Z|n is shared among all the processors within the
node. Moreover, each processor handles the original Cword

|n ,
not its copy. Each processor p samples topic assignment
zd,i|n ∈ Z|n to update Z|n and updates Cdoc

|n and Cword
|n accord-

ing to the new topic assignment.
As mentioned above, the intra-node parallel method

using multiple processors is not an approximate inference
method in the sense that we do not use copies of word-topic
counts. However, the inference result is not the same as
that of serial inference using a single processor since the
intra-node parallel method divides the document data into
Dnp = Dn/P; thus, the sampling order is different from that
of the serial method.

Using OpenMP, multiple threads can simultaneously
write to and read from a memory location. However, if two
(or more) threads write to a memory location to update Cdoc

|n
and Cword

|n at the same time, the result may be indeterminate.
We used OpenMP’s atomic directive to prevent a specific
memory location being updated by multiple threads simul-
taneously, similar to “Exact Parallelization over N words”
of [12].

Figure 2 (a) illustrates the communication pattern of
AD-LDA, where the label of each vertical arrow indicates
the number of each communication channel. When the AD-
LDA method is conducted independently using all proces-
sors within and across nodes, the sequence number of pro-
cessors that take part in inter-node communications is NP,
where N and P denote the number of nodes and the num-
ber of processors of each node, respectively. To increase the
inference speed, we parallelize the inference procedure in-
side each node using OpenMP. As shown in Fig. 2 (b), the
number of processors that take part in inter-node communi-
cations is N in the MPI/OpenMP hybrid inference method
for LDA, even if all the processors of all nodes are used.
Algorithm 1 shows the procedure of n-th node in the hybrid
inference method described above. The sixth line indicates
that the block in curly brackets is computed by P proces-
sors. The eighth line means that all the processors share zd,i,
Cword
|n , and Cdoc

|n . The expression “atomic” in the 10th, 12th,
and 14th lines prohibit the processors from simultaneous ac-
cess to the shared data, such as zd,i.

This hybrid inference method uses copies of word-
topic counts on each node, while AD-LDA independently
using all processors across nodes requires copies of word-
topic counts for each processor. The hybrid inference
method can save considerable memory when applied to a
large collection of documents, as shown in Figs. 2 (c) and
2 (d).
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(a) Communications between all processors with AD-LDA (b) Communications between nodes with hybrid inference method.

(c) Data allocation inside each node with AD-LDA. (d) Data allocation inside each node with hybrid inference method.

Fig. 2 Inter-processor/node communications and intra-node data allocation in the cases of AD-LDA
and hybrid inference method.

3.4 Selective Communication and Synchronization

To achieve further speed-up, we discuss an approximate
synchronization in the MPI/OpenMP hybrid inference ap-
proach that we described in the previous subsections. In the
hybrid inference, each node communicate with each other,
via the Allreduce operation, at every sweep of Gibbs sam-
pling in order to synchronize global word-topic counts. As
an approximation, we performed the communications be-
tween the nodes where a large fraction of updates occur in
Z|n (n = 1, · · · ,N) at each Gibbs sweep.

To select the nodes to communicate, we use a binary
vector s = {sn} (n = 1, · · · ,N), where N indicates the num-
ber of nodes. Before every Gibbs sweep, all the compo-
ments of s are set to be zero. After every Gibbs sweep, n-th
componet is set to be sn = 1 if the update rate of Z|n is larger
than a threshold, or sn = 0 otherwise. Here, the update rate
of Z|n is given by # of updated elements in Z|n

# of elements in Z|n . Then, all nodes
communicate using the Allreduce operation to synchronize
s via the Allreduce operation and make a group of the nodes
where sn = 1. At the inter-node synchronization step, the
communication to synchronize Cword is performed between
only the nodes within this group. Algorithm 2 shows the
flow of the hybrid inference with the approximate synchro-
nization, where s send[N] and s recv[N] indicate the binary

vector s = {sn} (n = 1, · · · ,N) for sending and receiving, re-
spectively, in MPI communications.

This approximation can be applied to the MPI-based
AD-LDA, by performing the communications between the
individual processors where a large fraction of updates occur
in Z|m (m = 1, · · · ,NP) at each Gibbs sweep.

4. Experiments

To evaluate our MPI/OpenMP hybrid parallel inference
method for LDA, we measured inference speed and test-set
perplexity. We randomly divided the words that appear in
each document into 10% for testing and 90% for training,
such as in [18]. We estimated each document’s topic multi-
nomial parameters θd,k and each topic’s word multinomial
parameters φk,w using the training set, and computed test-set
perplexity with the estimated θd,k and φk,w. In Sect. 4.1, we
discuss performance evaluation of the simple MPI/OpenMP
hybrid inference method for the LDA model, which we de-
scribed in Sects. 3.2 and 3.3. In Sect. 4.2, we further investi-
gate the approximation that controls the inter-node commu-
nications, which we described in Sect. 3.4.
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Algorithm 1 MPI/OpenMP hybrid parallel inference (with
the full synchronization)
1: for each word wd,i ∈ W|n do
2: assign k to zd,i according to the uniform distribution

Uni f orm(1, · · · ,K)
3: end for
4: MPI::COMM WORLD.Allreduce(Cword

|n ,Cword ,V × K, MPI INT,
MPI SUM)

5: for each iteration do
6: # pragma omp parallel num threads(P)

7: {
8: # pragma omp for shared (zd,i, Cword

|n , Cdoc
|n )

9: for each word wd,i ∈ W|n do
10: # pragma omp atomic

11: Cword
|n −−, Cdoc

|n −−
12: # pragma omp atomic

13: sampling zd,i given Cword
|n , Cdoc

|n
14: # pragma omp atomic

15: Cword
|n ++, Cdoc

|n ++
16: end for
17: }
18: MPI::COMM WORLD.Allreduce(Cword

|n ,Cword ,V × K, MPI INT,
MPI SUM)

19: end for

4.1 Evaluation for Hybrid Inference

4.1.1 Settings

We used the hybrid inference method described in Sects. 3.2
and 3.3 with increasing degrees of parallelization, and com-
pared it with two conventional inference methods: MPI-
based AD-LDA [6] and the serial inference via the collapsed
Gibbs sampling for LDA [8]. We used a 20-node SMP clus-
ter comprising 8 processor cores for each node, although 2
nodes were unable to use in a part of experiments as men-
tioned below. We evaluated the hybrid inference method (1)
increasing the number of nodes N ∈ {2, 5, 10, 15, 20} and
using 8 processor cores on each node (2) using 18 nodes
and increasing the number of processor cores for inference
P ∈ {1, 2, 4, 6} for each node — we used 18 nodes in the
experiment (2), due to powering down of two nodes. When
P = 1 and N = 18, AD-LDA parallelizes over 18 nodes
comprising one processor core for each node; therefore,
AD-LDA is equivalent to the hybrid inference method in
this case. For MPI implementation, we used MPICH2 in
both implementations of AD-LDA and the hybrid inference
method.

We set the Dirichlet hyperparameters to α = 50/K,
where K denotes the number of topics, and β = 0.01 [8],
[9]. We ran the collapsed Gibbs sampling (both serial and
parallel versions) for 500 iterations in all the experiments in
this paper.

4.1.2 Data Sets and Evaluation Metrics

We used The New York Times (NYTimes) news article data
and PubMed data†. These data sets are summarized in Ta-
ble 2, where D is the number of documents, V is the vocab-

Algorithm 2 MPI/OpenMP hybrid parallel inference with
the approximate synchronization
1: for each word wd,i ∈ W|n do
2: assign k to zd,i according to the uniform distribution

Uni f orm(1, · · · ,K)
3: end for
4: MPI::COMM WORLD.Allreduce(Cword

|n ,Cword ,V × K, MPI INT,
MPI SUM)

5: for each iteration do
6: update count = 0
7: s send[N] = {0, · · · , 0}
8: s recv[N] = {0, · · · , 0}
9: # pragma omp parallel num threads(P)

10: {
11: # pragma omp for shared (zd,i, Cword

|n , Cdoc
|n )

12: for each word wd,i ∈ W|n do
13: # pragma omp atomic

14: Cword
|n −−, Cdoc

|n −−
15: # pragma omp atomic

16: sampling zd,i given Cword
|n , Cdoc

|n
17: if zd,i � zold

d,i then
18: update count++
19: end if
20: # pragma omp atomic

21: Cword
|n ++, Cdoc

|n ++
22: end for
23: }
24: if update count/(number o f elements in W|n) > threshold then
25: s send[m] = 1
26: else
27: s send[m] = 0
28: end if
29: MPI::COMM WORLD.Allreduce(s send, s recv, N, MPI INT,

MPI SUM)
30: make a new group new group consisting of n-th node where

s send[n] = 1
31: MPI::new group.Allreduce(Cword

|n ,Cword ,V × K, MPI INT,
MPI SUM)

32: end for

Table 2 Summary of datasets.

dataset D V W (approx.)
NYTimes 300,000 102,660 100,000,000
PubMed 8,200,000 141,043 730,000,000

ulary size, and W is the approximate total number of words.
We measured inference speed and test-set perplexity.

The test-set perplexity is given by:

perplexity(Wtest) = exp

(
−
∑

d log P(wtest
d )∑

d |wtest
d |

)
, (4)

where

P(wtest
d ) =

∏
i

∑
k

θd,kφk,wtest
d,i
, (5)

θd,k =
Cdoc

d,k + α∑
k′ C

doc
d,k′ + Kα

, (6)

†http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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φk,v =
Cword

k,v + β∑
v′ C

word
k,v′ + Vβ

. (7)

Here, |wtest
d | in Eq. (4) indicates the number of test-set words

in document d.

4.1.3 Results

Figure 3 (a) compares the increase in inference speed of AD-
LDA and the MPI/OpenMP hybrid inference method. To
evaluate this increase in speed, we used the conventional
serial inference method of LDA as the baseline. the hybrid
inference method increased inference speed as the degree
of parallelization increased, even when the parallelization
degree was 160.

For reference, Fig. 3 (b) compares the two inference
methods when we fixed the number of CPU cores on each
node used for inference. The hybrid inference method still
performed better than AD-LDA. The more parallelization
within each node, the faster the hybrid inference method
performed. Not surprisingly, the overall performance of the
hybrid method in this case was not as good as when we fixed

(a) Increase in inference speed on NYTimes dataset for number of pro-
cessor cores (when we used eight CPU cores on each node and increased
number of nodes).

(b) Increase in inference speed on NYTimes dataset for number of pro-
cessor cores (when we used 18 nodes and increased number of CPU cores
we used on each node).

Fig. 3 Increase in inference speed on NYTimes dataset for number of
processor cores.

the number of CPU cores on each node used for inference,
as shown in Fig. 3 (a). This is because the number of pro-
cessor cores that are involved in inter-node communications
with the hybrid inference method is not very different from
that of AD-LDA, particularly in low level parallelization.

We present further experimental results in the follow-
ing paragraphs. Tables 3 (a) and 3 (b) list the detailed re-
sults when we fixed the number of CPU cores on each node
used for inference. We can see in the tables that the hybrid
inference method reduced communication cost, compared
with AD-LDA. The hybrid inference method increased the
inference speed as the degree of parallelization increased;
however, AD-LDA slowed the inference speed in high par-
allelization. This performance gap is caused by the fact that
the hybrid inference method can minimize the communica-
tion cost by combining inter-node communications via mes-
sage passing and intra-node communications via loop direc-
tives, compared to AD-LDA where all inter-processor com-
munications are implemented via message passing.

For reference, Tables 3 (c) and 3 (d) list the detailed re-
sults when we changed the number of CPU cores on each
node with a fixed number of nodes. The hybrid inference
method maintained constant communication time, as shown
in Table 3 (d).

Figures 4 (a) and 4 (b) show the running time for the
number of topics when we used 18 nodes and eight CPU

(a) Running time for number of topics (NYTimes).

(b) Running time for number of topics (PubMed).

Fig. 4 Running time for number of topics.
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Table 3 Increases in inference speed.

(a) Increase in inference speed of AD-LDA on NYTimes dataset (when we used eight CPU
cores on each node and increased number of nodes).

number
of cores

computation
time (sec)

communication
time (sec)

synchronization
time (sec)

total
time (sec)

speedup
ratio

1 217798 0.00 0.00 217798 1.00
16 26571 856 240 27667 7.872
40 9910 2247 354 12511 17.41
80 6126 2681 265 9072 24.01

120 4917 3178 249 8344 26.10
160 4287 3298 227 7812 27.87

(b) Increase in inference speed of hybrid inference on NYTimes dataset (when we used eight
CPU cores on each node and increased number of nodes).

number
of cores

computation
time (sec)

communication
time (sec)

synchronization
time (sec)

total
time (sec)

speedup
ratio

1 217798 0.00 0.00 217798 1.00
16 27662 301 168 28131 7.742
40 10304 607 181 11092 19.63
80 6441 1007 113 7561 28.80

120 4751 1620 135 6506 33.48
160 3419 2333 90 5842 37.28

(c) Increase in inference speed of AD-LDA on NYTimes dataset (when we used 18 nodes and
increased number of CPU cores used on each node).

number
of cores

computation
time (sec)

communication
time (sec)

synchronization
time (sec)

total
time (sec)

speedup
ratio

1 217798 0.00 0.00 217798 1.00
18 17265 2322 597 20184 10.79
36 11376 2644 439 14459 15.06
72 6391 2892 389 9672 22.52

108 5354 3221 166 8741 24.92
160 4287 3298 227 7812 27.88

(d) Increase in inference speed of hybrid inference on NYTimes dataset (when we used 18
nodes and increased number of CPU cores used on each node).

number
of cores

computation
time (sec)

communication
time (sec)

synchronization
time (sec)

total
time (sec)

speedup
ratio

1 217798 0.00 0.00 217798 1.00
18 17265 2322 597 20184 10.79
36 11615 2408 433 14456 19.63
72 6775 2480 349 9604 28.80

108 4224 2495 194 6913 33.48
160 3419 2333 90 5842 37.28

cores on each node. When the number of topics was small,
the hybrid inference method was slower than AD-LDA be-
cause the communication cost is a small percentage of the
total running time and the collision of topic assignments is
frequent. However, the more topics, the better the hybrid
method performs. By comparing the results in Figs. 4 (a)
and 4 (b), the difference in the two methods is smaller with
the PubMed dataset. This is because the number of words
in the PubMed dataset is much larger than that of NYTimes,
whereas the vocabulary size of these two datasets is not very
different.

Figures 5 (a) and 5 (b) show test-set perplexity for the
serial inference, AD-LDA, and the hybrid inference method,
where Fig. 5 (a) shows test-set perplexity over 500 itera-
tions, while Fig. 5 (b) shows test-set perplexity at the 500th
iteration point for number of processor cores. The test-set
perplexities were comparable; however, the perplexity of

AD-LDA and the hybrid inference method was slightly bet-
ter than that of the serial inference. Figure 5 (b) shows the
test-set perplexity at the 500th iteration, varying the num-
ber of processor cores used. The test-set perplexity changed
only slightly even when the number of processor cores was
increased. The test-set perplexity with the hybrid inference
method was even better than that of the standard LDA in all
cases.

4.2 Evaluation for Approximate Synchronizaton

To demonstrate the effect of the approximate synchroniza-
tion described in Sect. 3.4, we ran the collapsed Gibbs sam-
pling with the MPI/OpenMP hybrid approach, changing the
update-rate threshold of topic assignments in all the docu-
ments allocated to each node. We also applied the approxi-
mate synchronization to MPI-based AD-LDA, for compari-
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(a) Test-set perplexity over 500 iterations on NYTimes dataset (when we
fixed number of CPU cores on each node used for inference).

(b) Test-set perplexity at the 500th iteration for number of processor cores
on NYTimes dataset.

Fig. 5 Test-set perplexity on NYTimes dataset.

son.
For the experiments, we used 18 nodes comprising 8

processor cores for each node, in the SMP cluster used in the
experiments described in the previous subsection. We ran
the collapsed Gibbs sampling for 500 iterations, assuming
the Dirichlet hyperparameters to be α = 50/K and β = 0.01,
as in Sect. 4.1.1.

Figure 6 (a) shows the total running time for the col-
lapsed Gibbs sampling at the 500th iteration point. Here, the
horizontal axis indicates the update-rate threshold of topic
assignments. As shown in this figure, the larger the thresh-
old is, the less nodes or processors communicate with each
other. Therefore, the total running time can be reduced as
the threshold gets larger. Figure 6 (b) demonstrates test-set
perplexity for different update-rate threshold of topic assign-
ments. When the threshold is too large, the global word-
topic counts Cword are rarely synchronized, resulting in a
larger test-set perplexity that indicates a lower inference ac-
curacy. Considering these results, when we set the thresh-
old to be 60% in the experiments, we observed that the ap-
proximate synchronization increased inference speed while
maintaining inference accuracy, compared with either of the
hybrid inference method without the approximate synchro-
nization or MPI-based AD-LDA.

(a) Running time at the 500th iteration point for different update-rate
threshold of word-topic counts on NYTimes dataset. Two horizontal lines
indicate the cases when all nodes (or processors) communicate at each it-
eration.

(b) Test-set perplexity at the 500th iteration point for different update-
rate threshold of word-topic counts on NYTimes dataset. Two horizontal
lines indicate the cases when all nodes (or processors) communicate at
each iteration.

Fig. 6 Running time and test-set perplexity for different update-rate
threshold of word-topic counts on NYTimes dataset.

5. Conclusions

We investigated parallel distributed methods for the sake
of efficient collapsed Gibbs sampling inference for LDA,
a well-accepted probabilistic topic model that incurs high
computational cost for the inference with large-scale data.
We developed an MPI/OpenMP hybrid parallel inference
method for LDA, assuming an SMP cluster, which is widely
used. We demonstrated through experiments with various
settings that the MPI/OpenMP hybrid parallel method can
substantially improve the inference speed by reducing the
communication cost while maintaining inference accuracy,
compared with using only an MPI or a single processor. We
then carried out experiments on the hybrid parallel method
with approximate synchronization, and demonstrated that it
can further increase inference speed while keeping inference
accuracy, compared with using the hybrid parallel method
without the approximate synchronization.

Experiments with more complex topic models are in
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progress. Algorithmic improvements [15] and pipeline pro-
cessing or other scheduling techniques [16], [17] are for fu-
ture work.
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