
102
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.1 JANUARY 2013

PAPER

A Greedy Genetic Algorithm for the TDMA Broadcast Scheduling
Problem∗

Chih-Chiang LIN†, Nonmember and Pi-Chung WANG††a), Member

SUMMARY The broadcast scheduling problem (BSP) in wireless ad-
hoc networks is a well-known NP-complete combinatorial optimization
problem. The BSP aims at finding a transmission schedule whose time slots
are collision free in a wireless ad-hoc network with time-division multiple
access (TDMA). The transmission schedule is optimized for minimizing
the frame length of the node transmissions and maximizing the utilization
of the shared channel. Recently, many metaheuristics can optimally solve
smaller problem instances of the BSP. However, for complex problem in-
stances, the computation of metaheuristics can be quite time and memory
consuming. In this work, we propose a greedy genetic algorithm for solving
the BSP with a large number of nodes. We present three heuristic genetic
operators, including a greedy crossover and two greedy mutation operators,
to optimize both objectives of the BSP. These heuristic genetic operators
can generate good solutions. Our experiments use both benchmark data
sets and randomly generated problem instances. The experimental results
show that our genetic algorithm is effective in solving the BSP problem
instances of large-scale networks with 2,500 nodes.
key words: broadcast packet radio networks, broadcast scheduling prob-
lem, optimum transmission schedule, time division multiple access, genetic
algorithm

1. Introduction

A broadcast packet radio network is a group of geographi-
cally distributed nodes, which are connected through a com-
mon radio channel. The radio channel is shared by time-
division multiple access (TDMA). To avoid packet colli-
sions, broadcast scheduling allows only one node transmis-
sion in each collision domain [1], and each node must be
assigned at least one time slot in each time frame. In ad-
dition, the utilization of the shared channel can be further
improved by assigning more than one transmitting node in
a time slot. The aim of the broadcast scheduling problem
(BSP) is to schedule the node transmissions in the shared
channel with a time frame whose length is minimum and
utilization is maximum.

The BSP can be treated as a combinatorial optimization
problem known to be NP-complete [2]. Several scheduling
algorithms have been proposed. These algorithms include

Manuscript received August 30, 2011.
Manuscript revised June 23, 2012.
†The author is with the Department of Computer Science and

Engineering, National Chung Hsing University, Taichung 402, Tai-
wan, R.O.C.
††The author is with the Institute of Networking and Multime-

dia and the Department of Computer Science and Engineering, Na-
tional Chung Hsing University, Taichung 402, Taiwan, R.O.C.

∗This work is supported in part by the National Science Coun-
cil under Grant No.NSC 99-2218-E-241-001.

a) E-mail: pcwang@cs.nchu.edu.tw (Corresponding author)
DOI: 10.1587/transinf.E96.D.102

exact methods [3], heuristic methods [4]–[11], and meta-
heuristic methods [12]–[15]. The exact methods for the BSP
(e.g., brand−and−bound) can optimally solve smaller prob-
lem instances. However, for large problem instances, the
computation of the exact methods is quite time and memory
consuming. Although the existing heuristic and metaheuris-
tic methods have better scalability than the exact methods,
the existing literature only solves problem instances with
up to several hundred nodes. Currently, many applications
of large-scale wireless sensor networks have been devel-
oped, e.g. battlefield surveillance and environment moni-
toring [16], where the number of nodes can be as large as
several thousand nodes. An efficient solution for large BSP
instances is thus getting important.

In this paper, we propose a greedy genetic algorithm
for the BSP. In our algorithm, we propose three greedy
genetic operators, including a crossover and two mutation
operators. The proposed crossover operator uses a greedy
method to generate offsprings. Both mutation operators use
greedy approaches, one to minimize timeframe length and
the other to maximize channel utilization With these ge-
netic operators, the proposed genetic algorithm can generate
good results of TDMA broadcast schedule. Our experiments
show that the new scheme can solve large problem instances
with 2,500 nodes. The numerical results also demonstrate
that our algorithm is not only effective and efficient regard-
less of the network sizes but also significantly reduces com-
putation time.

The organization of this paper is as follows. The next
section describes the TDMA broadcast scheduling problem.
Section 3 addresses related work. In Sect. 4, we describe
the framework of our genetic algorithm and the proposed
heuristic genetic operators for the BSP. Section 5 presents
our performance analysis. Finally, we conclude our work in
Sect. 6.

2. The Broadcast Scheduling Problem

The broadcast scheduling problem is based on a network
graph, G = (V, E), where V = {v1, v2, . . . , vN} denotes the set
of N network nodes, and E = {e1, e2, . . . , eM} denotes the set
of M transmission links. If there exists an edge between two
nodes i and j in V , then the nodes i and j are one-hop apart
and can receive the transmitted packet from each other. If
they transmit packets at the same time slot, a direct collision
occurs. In another case, nodes i and j are two-hop apart.
If both nodes transmit packets to their intermediate node at

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

LIN and WANG: A GREEDY GA FOR THE TDMA BSP
103

the same time slot, a hidden terminal collision occurs. In
other words, each node cannot transmit and receive pack-
ets simultaneously to avoid the direct collision. Each node
also cannot receive more than one packet simultaneously to
avoid the hidden terminal collision.

The BSP is defined as follows.

1. Input Data

• G : G = (V, E), where V = v1, v2, . . . , vn and E =
e1, e2, . . . , em.

• ci j: indicates whether node j can receive packets
from node i, i.e., there exists an edge with one end
node i and the other end node j.

2. Decision Variables

• xsi: the binary variable indicates whether node i
transmits packets at the sth time slot.

• F: The time frame of a TDMA schedule.
• |F|: The number of time slots in a time frame F.

A time frame F is a set of time slots in which at least
one node i exists that satisfies xsi = 1, 1 ≤ i ≤ n, for each
time slot s in F. The channel utilization for the whole net-
work, U, is provided by

U =
1
|F|n

|F|∑

s=1

n∑

i=1

xsi (1)

The BSP aims at minimizing the TDMA frame F and
maximizing the channel utilization U, which is subjected to

|F|∑

s=1

xsi ≤ 1,where 1 ≤ i ≤ n (2)

ci j + xsi + xs j ≤ 2,where i and j denote two

different nodes in V (i.e.,i � j),∀s ∈ F (3)

cik xsi + ck jxs j ≤ 1,where i, j and k denote

three different nodes in V,∀s ∈ F (4)

The first constraint in Eq. (2) means that each node
should transmit at least once in each frame. Equation (3)
and (4) guarantee a collision-free transmission. Equation (3)
implies that every pair of two stations that are one hop apart
must be scheduled to transmit in different time slots. Equa-
tion (4) implies that every pair of two stations that are two
hops apart cannot transmit in the same time slot.

Let us consider an example of a network consisted of
seven consecutive nodes in Fig. 1. If two adjacent nodes
(e.g. nodes 2 and 3) transmit a packet to each other at the
same time slot, then the packets from both nodes will col-
lide. Yet, for a node which is sandwiched between two other
nodes, the packets sent by the two outer nodes simultane-
ously will also collide with each other (e.g. the packets sent

Fig. 1 Seven-node network.

to node 5 from nodes 4 and 6).
The BSP aims at finding a TDMA time frame which

satisfies that there is no direct and hidden terminal colli-
sions. In addition, each node should be scheduled to trans-
mit at least once in a time frame. To avoid both direct and
hidden terminal collisions, an intuitive solution for the BSP
is to assign one time slot to each node sequentially; how-
ever, such solution may not be suitable for a large-scale net-
work due to the low performance of a long time frame. To
improve the transmission efficiency, a broadcast scheduling
should maximize the number of transmitting nodes at the
same slot. For each node, we define the node utilization
as the ratio of the number of transmission slots to the frame
length. The overall channel utilization is defined as the aver-
age node utilization (i.e. average number of per-node trans-
mission slots to the frame length). Intuitively, a time frame
with a shorter frame length and higher channel utilization
always has better transmission efficiency.

We can estimate the minimum required frame length
according to the maximum degree of a node in a wireless
ad-hoc network. Assume that the maximum degree is de-
noted as D for the nodes in V . The tight lower bound for a
frame length is equal to D + 1 [4] since these nearby nodes
must transmit in different time slots. Therefore, there are
more than 2N(D+1) schedule configurations, where N denotes
the number of nodes in the network. An exhaustive search
for the optimal schedules is prohibitive when D and N get
larger. We need an efficient approach to finding a subopti-
mal solution for the BSP.

3. Related Work

The BSP has been proved to be a NP-complete combinato-
rial optimization problem [2]. Several heuristics and meta-
heuristic algorithms are proposed to solve the BSP in litera-
tures [6], [7], [13], [14].

Cidon and Sidi [8] developed a new distributed dy-
namic channel assignment algorithm for a multihop packet
radio network by ensuring conflict-free transmissions. The
algorithm splits the shared channel into a control segment
and a transmission segment and uses the control segment
to avoid conflicts among nodes and increase the utilization
of the transmission segment. Ephremides and Truong [9]
presented a centralized algorithm that runs in polynomial
time. They suggested a simple heuristic for achieving effi-
cient schedules. Funabiki and Takefuji [10] used a parallel
algorithm based on an artificial neural network model. It
consists of a large number of simple processing elements
which can be executed in parallel. In [6], the author pre-
sented a two-phase algorithm to find a collision-free time
frame. In the first phase, they used the sequential vertex
coloring algorithm, a well known method in graph theory,
to determine a basic time frame. After completing the first
phase, they use the frame length achieved to maximize the
channel utilization in the second phase. The method can
find near-optimal solutions in a short time period. Ahmad
et al. [11] used a heuristic approach based on concepts of fi-

104
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.1 JANUARY 2013

nite state machine by employing a tight lower bound derived
from the maximal incompatibles and generating a search
space from the set of maximal compatibles. The algorithm
is very efficient and effective in conquering the intractable
nature of BSP by exploring complex solution space within
shorter CPU time. Ergen and Varaiya [7] presented two cen-
tralized heuristic algorithms. The first one is based on direct
node-based scheduling, which is widely adapted in classical
multi-hop scheduling algorithms. The second algorithm is
level-based scheduling for many-to-one communication in
sensor networks, which generates the levels in a routing tree
before scheduling.

The metaheuristic algorithms are apply both inten-
sification and diversification operators to solve the BSP
problem [17]. They can be classified into two cate-
gories: trajectory-based methods and population-based
methods. The trajectory methods include iterated local
search (ILS) and greedy randomized adaptive search pro-
cedure (GRASP). In [15], the authors presented an ILS al-
gorithm for BSP transmission schedule that consists of two
special perturbation and local search operators. The per-
turbation operator can improve the search diversification by
generating new solutions and the local search operator fur-
ther reduces the length of a time frame to improve the search
intensification. This algorithm is simple and has excellent
performance. Chakraborty et al. [14] presented a GRASP
algorithm for optimum transmission schedule. The algo-
rithm generates a pool of valid solutions without considering
the optimization criterion of minimizing the TDMA frame
length. The time complexity of the algorithm is O(N2).

Most population-based algorithms of BSP is based on
the genetic algorithm. It provides a natural, intrinsic way
for exploring the search space. Chakraborty showed that
a standard genetic algorithm is only suitable for solving
small problem instances and performs poorly for large net-
works [13]. This is because that classical crossover and mu-
tation operations could create invalid members. These mem-
bers flood the whole population and hinder the progress of
searching for valid solutions. Therefore, the author defined
specialized crossover and mutation operators, which can as-
sure that the members of the population are always valid
solutions. With the new operators, good solutions can ob-
tained in a few generations.

4. The Proposed Greedy Genetic Algorithm

4.1 Framework

Genetic algorithms provide a powerful stochastic search in
optimization problems. In a genetic algorithm, a chromo-
some is an encoding of the solution to an optimization prob-
lem. Its performance is evaluated by using a fitness func-
tion. The genetic algorithm uses a population of chromo-
somes for applying the genetic operators, such as Crossover
and Mutation, to explore search space (or solution space).
The genetic algorithm also uses evolution operators, such
as Selection, to choose good solutions from the population

PROCEDURE GeneticAlgorithm()
t ← 0
InitialPopulation(Pt)
Evaluation(Pt)
WHILE termination conditions not met DO

P′ ← ∅
Crossover(Pt , P′)
Mutation(Pt, P′)
Pt+1 ← Selection(Pt , P′)
t ← t + 1

ENDWHILE

Fig. 2 Pseudocode of the genetic algorithm.

of each generation. A genetic algorithm usually involves
the following procedures. First, an initial population of the
chromosomes is randomly generated. Second, the fitness
values of the chromosomes are evaluated by using a fitness
function. Third, the chromosomes are applied with the ge-
netic and evolution operators to create new chromosomes,
and the population of the next generation are selected. Fi-
nally, the second and third steps are repeated until one or
more termination conditions are satisfied. We list the pseu-
docode of the genetic algorithm in Fig. 2, where P denotes
the population of the chromosomes. There are |P| chromo-
somes in a population. Each generation of the population
is denoted as Pt, where t is the generation number. P′ is a
temporary population for selection.

One advantage of a genetic algorithm is its capability of
evaluating a solution without any a prior knowledge. How-
ever, the flexibility would also degrade the efficiency of pro-
ducing good solutions. It is intuitive to use a greedy method
for improving the performance of generating good solutions.

In the following sections, we describe the encoding
scheme, initial solution generation and the genetic operators
used in our genetic algorithm. First, we introduce the en-
coding scheme, which uses an integer string coding for the
solutions of BSP. Next, the initial operator, which generates
an initial chromosome by using random permutation and a
simple next-fit algorithm, is presented. In the third part, we
show the proposed crossover operator for guiding the search
space and producing new solutions. Our crossover operator
adopts a greedy method to select the time slots with more
transmitting nodes. With this operator, good parts of a chro-
mosome can be kept to generate better offsprings. For the
genetic algorithm, the greedy method also achieves better
exploitation. Finally, we design two different mutation op-
erators in order to simultaneously consider two optimization
objectives, the minimum TDMA time frame length and the
maximum channel utilization.

4.2 Encoding

In the proposed genetic algorithm, the chromosome encod-
ing is carried out by using an integer string coding, which
is similar to those used in most combinatorial optimization
problems [18]. We number each node and use a string ar-
ray representation for TDMA time frame. Each string rep-
resents a time slot. For example, recall to the seven-nodes

LIN and WANG: A GREEDY GA FOR THE TDMA BSP
105

PROCEDURE NewChromosome()
C ← φ
i = 1
V← RandomPermutation(V)
FOR j← 1 TO N

IF Collision(C[i],V[j]) = true THEN
i = i + 1
AddNode(C[i],V[j])

ENDIF
NEXT j
RETURN C

Fig. 3 Pseudocode of the proposed procedure of generating a new chro-
mosome.

network in Fig. 1. Assume that a chromosome C is listed as
{1,4,7}{2,5}{3,6}. The chromosome implicates that there are
three time slots. The first time slot includes three transmit-
ting nodes, 1, 4 and 7. The second time slot includes two
transmitting nodes, 2 and 5, and the last two nodes, 3 and
6, transmit in the third time slot. |C|, the frame length of
chromosome C, is thus equal to three.

4.3 Initiation

Our initial operator generates a new chromosome by using
random permutation and a simple next-fit approach. We first
create a node list, V, by using the random permutation of
N nodes. Next, the first node of V, denoted as V[1], is in-
serted into the first time slot, C[1], of a new time frame, C.
Since there is only one node in C[1] initially, no collision
occurs. Next, we insert the second node, V[2], into C[1].
Before the node insertion, we check whether node V[2] will
cause a collision with the nodes in C[1]. If no, node V[2]
is inserted into C[1]. Otherwise, V[2] is inserted into a new
time slot, C[2]. After inserting V[2], we repeat the above
procedure to insert the third node, V[3], and so on. A new
chromosome is created until every node has been inserted
into one of the time slots of C. The pseudocode of the pro-
posed initial operator is listed in Fig. 3, where i indicates the
number of the time slots in C. The function, RandomPer-
mutation(V), generates a random permutation of the nodes
in V . Another function, AddNode(C[i],V[j]), inserts node
V[j] to time slot C[i]. The function, Collision(C[i],V[j]), is
a boolean function for checking whether node V[j] collides
with the nodes in C[i].

Let us consider the example of seven consecutive nodes
in Fig. 1 again. First, we create a new time frame C and ran-
domly generate a node permutation, V = {4, 7, 3, 2, 5, 1, 6}.
Next, we insert node 4 into the first time slot, C[1], of C.
Node 7 is then inserted into C[1] since the signals from node
4 and node 7 do not collide with each other. However, the
third node, node 3, will cause a direct collision with node 4
and must be inserted into a new time slot, C[2]. Node 2 is
also inserted into a new time slot since it also causes a direct
collision with node 3. We repeat the operation for all nodes
and get a new time frame, C = {4, 7}{3}{2, 5}{1, 6}. The
InitialPopulation() function in Fig. 2 will repeatedly call the
NewChromosome() procedure |P| times to generate the first

PROCEDURE Crossover(P, P′)
FOR j← 1 TO (|P| ×CrossoverRatio)

Parent1← RandomSelection(P)
Parent2← RandomSelection(P)
WHILE (Parent1= Parent2)

Parent2← RandomSelection(P)
C ← φ
C← Parent1 ∪ Parent2
WHILE C is not empty DO

S max ← C[1]
FOR i← 2 TO |C|

IF |C[i]| > |S max | THEN S max ← C[i]
NEXT i
C← C − S max

C ← C ∪ S max

FOR i← 1 TO |C|
IF C[i] ∩ S max � φ THEN

C[i]← C[i] − (C[i] ∩ S max)
IF C[i] = φ THEN C← C − C[i]

ENDIF
NEXT i

ENDWHILE
INSERT C to P′

NEXT j

Fig. 4 Pseudocode of the proposed crossover operator.

generation of chromosomes (initial solutions).

4.4 Crossover Operator

The crossover operator attempts to generate a better solu-
tion from the existing solutions. In our genetic algorithm,
we use a greedy method to serve the purpose by selecting
the time slot with the most transmitting nodes. The selec-
tion can minimize the number of nodes that must transmit
in the other time slots. Although the greedy method can-
not guarantee to yield the shortest time frame, it shortens
the calculation time and also produces a near-optimal time
frame, which is shown in our experimental results.

The steps of the crossover operator are described as fol-
lows. First, we randomly select two chromosomes, denoted
as Parent1 and Parent2, from the current population P. We
combine the chromosomes of Parent1 and Parent2 to a tem-
porary chromosome, C. Next, the time slot S max with the
most transmission nodes in C is chosen and moved from C
to a new chromosome, C. In the fourth step, we remove the
nodes in S max from C. If a time slot in C becomes empty,
the time slot is removed. The above steps are repeated un-
til C is empty. The pseudocode of our crossover procedure
is listed in Fig. 4. The function, RandomSelection(P), ran-
domly selects two chromosomes from the population P. The
number of iterations of executing the crossover operator is
determined by crossover ratio, which indicates the ratio of
new chromosomes generated by the crossover operator. The
new chromosomes are stored in P′.

For the example of seven consecutive nodes in Fig. 1,
assume that we randomly select two parent chromosomes,
Parent1 = {1, 5}{2, 5}{3, 6}{4, 7} and Parent2 = {1, 4, 7}
{3, 7}{2, 6}{5}. We merge Parent1 and Parent2 to produce
a new chromosome C = {1, 5}{2, 5}{3, 6}{4, 7}{1, 4, 7}{3, 7}

106
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.1 JANUARY 2013

PROCEDURE LengthMutation(P, P′)
C ← RandomSelection(P)
S ← RandomRemoveTimeSlot(C)
FOR i← 1 TO |C|

C[i]← C[i] − (C[i] ∩ S)
NEXT i
FOR j← 1 TO |S |

FOR i← 1 TO |C|
IF Collision(C[i], S [j]) = false THEN

AddNode(C[i], S [j])
RemoveNode(S , S [j])

ENDIF
NEXT i

NEXT j
IF S � φ THEN C ← C ∪ S
ENDIF
INSERT C to P′

Fig. 5 Pseudocode of our mutation operator for shortening time frame
C.

{2, 6}{5}. Next, we can find the time slot with the most
transmission nodes, S max = {1, 4, 7}, in C. S max is then
removed from C and inserted into a new time frame, C.
In addition, we also remove the transmitting nodes in S max

from the other time slots C[i], 1 ≤ i ≤ |C| of C. If C[i]
becomes empty, C[i] is removed from C. We execute the
above procedure until C is empty to get a new chromosome,
C = {1, 4, 7}{2, 5}{3, 6}.

4.5 Mutation Operators

A mutation operator can generate a new chromosome from
a chromosome of the current population. The number of
chromosomes generated by mutation is controlled by muta-
tion ratio. We design two greedy mutation operators, where
each operator is designed for one objective of BSP, the min-
imum TDMA time frame length or the maximum channel
utilization. When a chromosome is selected for mutation,
a probability is used to decide which mutation operator is
used.

We start by describing the mutation operator for short-
ening a time frame. First, we randomly select a chromo-
some C in the current population P. We further select a time
slot S from C. The time slot S is removed from C, and
all nodes in S are also removed from the other time slots
of C. Next, we attempt to reinsert each node of S into a
time slot of C. The nodes which have been successfully
inserted are then removed from S . If there is at least one
node of S which cannot be inserted, then S is appended to
C again. The pseudocode of our mutation operator of short-
ening a time frame is listed in Fig. 5, where S [i] denotes ith
node of S . The function, RandomRemoveTimeSlot(C), ran-
domly removes a time slot from chromosome C. Another
function, RemoveNode(S ,V[i]), removes node V[i] from S .
If V[i] does not exist in S , then the RemoveNode function
does nothing.

We use the example in Fig. 1 to explain further. First,
we randomly select a chromosome C = {2,5}{4,7}{3,6} {1,5}
from the current population. We further select a time slot

PROCEDURE UtilizationMutation(P, P′)
C ← RandomSelection(P)
S ← RandomRemoveTimeSlot(C)
FOR i← 1 TO |V|

IF V[i] � S THEN
IF Collision(S ,V[i]) = false THEN

AddNode(S ,V[i])
ENDIF

ENDIF
NEXT i
FOR i← 1 TO |C|

IF S � φ THEN
IF S = S ∪C[i] THEN

C[i]← S
S ← φ

ENDIF
ENDIF

NEXT i
IF S � φ THEN

C ← C ∪ S
ENDIF
INSERT C to P′

Fig. 6 Pseudocode of our mutation operator for improving channel uti-
lization.

S = {2, 5} and remove nodes 2 and 5 from the other time
slots of chromosome C. After updating the time slots, chro-
mosome C consists of three time slots: C = {4, 7}{3, 6}{1}.
Next, we attempt to insert nodes 2 and 5 into C. Only node
5 can be successfully inserted into the third time slot of C
without causing any collision. Since node 2 is still left in S ,
S is reinserted into the chromosome C. Finally, we have a
new chromosome C = {4, 7}{3, 6}{1, 5}{2}.

Next, we introduce the mutation operator for increas-
ing channel utilization. In the first step, we randomly select
a chromosome C from the current population P and ran-
domly select a time slot S from C. We attempt to insert any
nodes without causing any collision into S . Next, we check
C whether it has any redundant time slots whose transmit-
ting nodes also belong to S . If yes, then the time slot is
replaced by S . As a result, the time frame length is also re-
duced. The pseudocode of our second mutation operator is
listed in Fig. 6.

Let us apply the proposed mutation operator to the
seven consecutive nodes again. First, we randomly select
a chromosome, C = {2}{1, 4, 7}{3, 6}{5}, and one of its time
slot, S = {2}. We add a non-collided node 5 into time slot S
and generate a new chromosome, C = {2, 5}{1, 4, 7}{3, 6}{5}.
In the new chromosome, we notice that the first and the
fourth time slots can be merged since the fourth time slot
only contains node 5. Finally, we generate another new so-
lution, C = {2, 5}{1, 4, 7}{3, 6}.

Since there are two mutation operators, we use two
probabilities, LengthMutation and UtilizationMutation, to
control the number of chromosomes mutated by the muta-
tion operators. The new chromosomes are also stored in P′
for further selection.

4.6 Selection

The selection operator is based on a tournament procedure,

LIN and WANG: A GREEDY GA FOR THE TDMA BSP
107

which compares each chromosome in Pt with a randomly
selected chromosome in P′. The one with a shorter time
frame is stored in Pt+1. If both chromosomes have the same
time frame length, then the one with higher utilization is
selected. The time frame length has higher priority be-
cause the end-to-end transmission latency can benefit from
a shorter time frame.

4.7 Termination Condition

The termination conditions can be a maximum number of
generations, maximum runtime, or the maximum number
of generations without improvements. In our algorithm, the
termination condition is the maximum number of genera-
tions.

5. Performance Analysis

In this section, we present the experimental results of our
greedy genetic algorithm for BSP instances. Since there is
no standard benchmark problem set for BSP, we perform
the experiments by using five problem instances from [6]
and [13], where these data sets contain 15, 30, 40, and 100
nodes with different connectivity degrees. Also, we ran-
domly generate several square networks with 5 × 5, 10 ×
10, 20× 20, 30× 30, 40× 40 and 50× 50 nodes and different
degrees. These problem instances are used to measure the
performance of our algorithm for different network sizes.
The performance metrics include TDMA time frame length,
channel utilization and runtime. We also show the number
of iterations to generate the best results. For each problem
instance, we repeat our genetic algorithm 30 times for sta-
tistical evaluation. We compare our algorithm with several
algorithms based on different optimization techniques, in-
cluding heuristic [6] and metaheuristic [13], [15], where [13]
is a population-based metaheuristic and [15] is a trajectory-
based metaheuristic.

In our genetic algorithm, we use the following param-
eters throughout our experiments:

• Population Size = 10
• Crossover Ratio = 0.5
• Mutation Ratio = 0.5
• LengthMutation Probability = 30%
• UtilizationMutation Probability = 70%
• Maximum number of iterations = 10000

Both crossover and mutation ratios determines the number
of new chromosomes generated by the corresponding ge-
netic operators. Since there are two mutation operators,

Table 1 Experimental results with benchmark data sets.

Set No. of Avg. Max. Frame Length Channel Utilization Required no. Runtime
No. Nodes Degree Degree Min. Max. Avg. Std. Min. Max. Avg. Std. of Iterations (sec.)

1 15 3.8 7 8 8 8.0 0.00 0.167 0.167 0.167 0.000 380 0.062
2 30 4.6 8 10 10 10.0 0.00 0.100 0.116 0.116 0.004 2,172 0.687
3 40 3.3 7 8 8 8.0 0.00 0.193 0.200 0.199 0.003 3,850 1.000
4 100 4.0 8 9 9 9.0 0.00 0.135 0.148 0.147 0.003 8,129 5.078
5 100 6.0 8 10 11 10.4 0.48 0.100 0.111 0.108 0.002 4,968 3.562

we use LengthMutation and UtilizationMutation probabil-
ities to control their usage. In the following experiments,
we adjust these ratios and probabilities to show the effect of
different genetic operators.

In general, a small population may degrade the qual-
ity of solutions while a large population would lead to long
computation time. In our genetic algorithm, we limit the
population size to only ten chromosomes for shortening the
computation time. We further employ the greedy method in
our genetic operators to achieve comparable results as with
large population. We use the 100-node network instance
in [13] to show the affect of population size. We vary the
number of chromosomes from 10 to 100 to evaluate the op-
timization results. As shown in Fig. 7, a larger population
size does not shorten the frame length. While channel uti-
lization can be slightly improved with 40 or more chromo-
somes, the computation time is proportional to the number
of chromosomes. Therefore, we believe that a population
with ten chromosomes can leverage the tradeoff between the
optimization results and computation time.

We extend our experiments to the problem instances in
the previous work [6], [13]. Table 1 lists the data instances
along with their properties. For each data instance, the best
and the worst optimization results are listed. We also show
means and standard deviations for frame length and utiliza-
tion. As shown in Table 1, our genetic algorithm can gen-
erate a TDMA frame whose length is less than or equal to
ten time slots for all instances. Channel utilization varies
from 0.108 to 0.2 for different instances. For the smallest
problem instance, our algorithm can generate the best result
within 380 iterations. The number of iterations increases to
several thousand for large instances. The runtime for these
instances is less than 5.1 seconds. For all data instances, our

Fig. 7 A performance comparison of our genetic algorithm with different
population size.

108
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.1 JANUARY 2013

(a) Data Set No.4 (b) Data Set No.5

Fig. 8 The broadcast scheduling for the last two instances in Table 1 with our genetic algorithm.

Fig. 9 Performance comparison of different genetic operators for the
TDMA frame length.

Table 2 Experimental results with difference genetic operator combinations.

Genetic Operator Frame Length Channel Utilization
Combination Min. Max. Avg. Std. Min. Max. Avg. Std.

CX+MX1+MX2 10 11 10.4 0.48 0.100 0.108 0.107 0.002
CX+MX1 10 11 10.7 0.47 0.090 0.100 0.094 0.004
CX+MX2 27 28 27.6 0.47 0.056 0.067 0.061 0.004

MX1+MX2 11 12 11.1 0.30 0.095 0.107 0.104 0.004

algorithm generates nearly consistent optimization results.
For example, our algorithm produces the same frame length
except for the fifth data instance. Also, the difference be-
tween the best and the worst utilization is less than 0.016.
The results demonstrates the stability of our algorithm.

In Fig. 8 (a) and 8 (b), we show the results of broadcast
scheduling for the fourth and fifth data sets. Each time slot is
represented by one color. Nodes with multiple color labels
transmit packets in the time slots corresponding to the color
labels.

Next, we use different combinations of genetic op-
erators to compare the performance of the TDMA frame
length and the channel utilization. The first combination is
(CX+MX1+MX2), which include all operators. The second

Fig. 10 Performance comparison of different genetic operators for the
channel utilization.

and third combinations are (CX+MX1) and (CX+MX2),
which combines the Crossover operator with LengthMuta-
tion and UtilizationMutation, respectively. In both combina-
tions, one mutation operator is disabled by setting its prob-
ability to zero. The last combination, (MX1+MX2), only
uses the mutation operators by setting the crossover ratio to
zero.

In both Fig. 9 and 10, We can observe that the
(CX+MX1+MX2) combination could achieve the best per-
formance. The combination of (CX+MX2) is obviously
worse than the other combinations with MX1 because of the
long time frame. Although the UtilizationMutation operator
could also reduce the time frame length by detecting the re-
dundant time slots, the redundant time slots are rarely gener-

LIN and WANG: A GREEDY GA FOR THE TDMA BSP
109

ated for large problem instances. Therefore, the Utilization-
Mutation operator has relatively limited effect in shortening
time frame length. As a result, the (CX+MX2) combination
yields the worst channel utilization because of the long time
frame. Using the LengthMutation operator can effectively
obtain a shorter TDMA frame length and a higher channel
utilization. This seems unreasonable for Fig. 10 since the
LengthMutation operator aims at improving the time frame
length. The reasoning is that the channel utilization is also
affected by the time frame length. Therefore, the channel
utilization can still be improved in the combinations with-
out the UtilizationMutation operator. In Fig. 10, we can still
observe the effect of the UtilizationMutation operator on im-
proving the channel utilization. For instance, the combina-
tion of (MX1+MX2) has better channel utilization than an-
other combination of (CX+MX1). The comparison between
(MX1+MX2) and (CX+MX1) also shows that Utilization-
Mutation can improve diversification since the former can
still produce new results in later iterations. We further list
the statistical results of 30 optimization trials for all com-
binations in Table 2. The results also suggest that the three
heuristic genetic operators have different functions and must
be used to get the best results.

We compare our genetic algorithm with the previous
work in Table 3, where the first two data sets come from
[6] and the last three come from [13]. For the previous al-
gorithm in [6], its runtime for the first two instances is not

Table 3 Performance comparison between our algorithm and the previ-
ous algorithms.

Our Genetic Algorithm Previous Algorithms
No. of Max. Frame Channel Frame Channel
Nodes Degree Length Utilization Length Utilization

15 7 8 0.167 8 0.150
30 8 10 0.116 11 0.112
40 7 8 0.200 8 0.203
100 8 9 0.148 9 0.148
100 8 10 0.108 11 0.104

Table 4 Experimental results with random data sets.

Our Genetic Algorithm ILS [15]
Set No. of Avg. Max. Frame Length Channel Utilization Runtime Frame Channel Runtime
No. Nodes Degree Degree Min. Max. Avg. Std. Min. Max. Avg. Std. (sec.) Length Utilization (sec.)

1 25 4 7 8 8 8.0 0.00 0.135 0.140 0.139 0.002 0.08 8 0.140 0.01
2 25 5 8 9 9 9.0 0.00 0.124 0.124 0.124 0.000 0.09 9 0.124 0.03
3 100 4 8 9 9 9.0 0.00 0.118 0.164 0.153 0.012 1.80 9 0.154 0.61
4 100 5 8 10 10 10.0 0.00 0.105 0.132 0.126 0.007 3.24 10 0.128 1.81
5 100 6 8 10 11 10.5 0.50 0.100 0.110 0.109 0.003 4.39 10 0.107 5.43
6 400 4 8 10 10 10.0 0.00 0.106 0.146 0.136 0.012 4.39 10 0.145 8.37
7 400 5 8 11 12 11.0 0.17 0.100 0.118 0.114 0.007 16.84 11 0.117 36.17
8 400 6 8 12 13 12.1 0.29 0.086 0.106 0.100 0.004 13.25 12 0.101 15.79
9 900 4 8 10 11 10.1 0.24 0.101 0.145 0.131 0.012 91.18 10 0.145 70.76

10 900 5 8 11 12 11.6 0.49 0.091 0.112 0.108 0.010 174.10 11 0.116 70.06
11 900 6 8 12 13 12.6 0.50 0.084 0.093 0.086 0.006 162.11 13 0.098 53.71
12 1600 4 8 10 11 10.7 0.47 0.100 0.125 0.111 0.015 327.34 10 0.143 401.66
13 1600 5 8 11 12 11.9 0.33 0.091 0.116 0.111 0.007 178.44 12 0.113 394.44
14 1600 6 8 12 13 12.8 0.43 0.083 0.100 0.097 0.005 198.14 13 0.098 968.87
15 2500 4 8 10 11 10.9 0.33 0.100 0.122 0.109 0.012 960.52 10 0.145 2838.29
16 2500 5 8 12 12 12.0 0.00 0.098 0.118 0.114 0.004 953.95 12 0.115 1656.78
17 2500 6 8 13 13 13.0 0.17 0.087 0.100 0.098 0.003 460.16 13 0.095 3344.53

available. In terms of the time frame length and channel
utilization, the numerical results show that our algorithm
has superior performance as compared to the previous algo-
rithms. For the second and fifth problem instances, our al-
gorithm outperforms the previous algorithm by reducing one
time slot of the TDMA frame. For the first data set, chan-
nel utilization is increased by 0.017. Although the channel
utilization is declined by about 0.003 for the third instances
with our scheme, the average channel utilization is increased
by more than 0.004.

Table 4 presents the experimental results for the ran-
domly generated problem instances with various numbers
of nodes from 25 to 2,500. For each network size, we gen-
erate three network topologies with different node degrees.
The statistical results demonstrate that our genetic algorithm
can provide consistent results regardless the size of problem
instances. In the 30 optimization trials, the difference be-
tween the best and worst time frame lengths is always less
than two. The maximal standard deviation for channel uti-
lization is 0.15. Since channel utilization also relates to time
frame length, a short time frame usually provides a relatively
high channel utilization. We also observed that the data in-
stances with lower degrees usually have higher standard de-
viations for channel utilization. Since more nodes can trans-
mit simultaneously in a low-degree network, the variation
of channel utilization is also increased. The runtime results
also show that our genetic algorithm can effectively solve
these problem instances with variable sizes. For example,
our algorithm takes less than 2 minutes to produce the best
result for the problem instance with 900 nodes. Even for
larger problem instances, our algorithm still yields solutions
with good efficiency. For the largest problem instances with
2,500 nodes, our algorithm could generate a TDMA frame
whose length is equal to 13 time slots and the runtime is
less than 25 minutes. The performance of both our genetic
algorithm and ILS is similar for most results; however, our
algorithm outperforms ILS for the large problem instances
(1600 nodes and 2500 nodes) with higher degrees. Our algo-

110
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.1 JANUARY 2013

rithm can achieve better channel utilization with only 20%
to 75% execution time of ILS. Since ILS is a trajectory-
based method, it usually performs well for the small or low-
network-degree problem instances. However, for the com-
plex problem instances, it may not be capable of producing
feasible solutions in a reasonable runtime due to its rela-
tively weak diversification. The population-based genetic
algorithm can avoid this problem of weak diversification.
Therefore, our algorithm achieves better performance than
ILS for the complex problem instances and shows superior
scalability.

From our experimental results, we found that our
crossover operator and two mutation operators can find a
new solution within a few minutes for most problem in-
stances. Our results also show that the proposed greedy
genetic algorithm has the capability of producing new solu-
tions even after several thousands generations. Since there
is a higher chance for our genetic operators to attain an opti-
mum solution, our algorithm only needs a small population
with ten chromosomes to significantly reduce the computa-
tion cost. As a results, our greedy genetic algorithm is effi-
cient and effective in solving the BSP, even for large prob-
lem instances with several thousands nodes.

6. Conclusions

In this paper, we propose a greedy genetic algorithm for the
TDMA broadcast scheduling problem. In our genetic al-
gorithm, we use a greedy crossover operator to guide the
search space. We also design two greedy mutation operators
to change the TDMA time slot and increase the channel uti-
lization. With these genetic operators, we can leverage the
balance between exploration and exploitation for searching
solution space. Therefore, even with only a few chromo-
somes in each population, the proposed greedy genetic al-
gorithm can still yield good solutions. The experimental re-
sults show that our algorithm is both efficient and effective
in solving the BSP. As compared to previous algorithms,
our algorithm can generate better TDMA broadcast sched-
ule while keeping the computation time low.

References

[1] T.N.V. Cionca and V. Dadarlat, “TDMA protocol requirements for
wireless sensor networks,” Second International Conference on Sen-
sor Technologies and Applications, pp.30–35, Aug. 2008.

[2] S. Ramanathan, “A unified framework and algorithms for
(T/F/C)DMA channel assignment in wireless networks,” Sixteenth
Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, pp.900–907, April 1997.

[3] S. Menon, “A sequential approach for optimal broadcast schedul-
ing in packet radio networks,” IEEE Trans. Commun., vol.57, no.3,
pp.764–770, March 2009.

[4] G. Wang and N. Ansari, “Optimal broadcast scheduling in packet ra-
dio networks using mean field annealing,” IEEE J. Sel. Areas Com-
mun., vol.15, no.2, pp.250–260, Feb. 1997.

[5] A. Sen and E. Malesinska, “Approximation algorithms for radio
network scheduling,” 35th Allerton Conference on Communication,
Control and Computing, pp.573–582, Sept. 1997.

[6] S.K.J. Yeo and H. Lee, “An efficient broadcast scheduling algorithm
for TDMA ad-hoc networks,” Computers & Operations Research,
vol.29, no.13, pp.1793–1806, Nov. 2002.

[7] S.C. Ergen and P. Varaiya, “Tdma scheduling algorithms for wireless
sensor networks,” Wirel. Netw., vol.16, pp.985–997, May 2010.

[8] I. Cidon and M. Sidi, “Distributed assignment algorithms for mul-
tihop packet radio networks,” IEEE Trans. Comput., vol.39, no.10,
pp.1353–1361, Oct. 1989.

[9] A. Ephremides and T.V. Truong, “Scheduling broadcasts in multihop
radio networks,” vol.38, no.4, pp.456–460, April 1990.

[10] N. Funabiki and Y. Takefuji, “A parallel algorithm for broadcast
scheduling problems in packet radio networks,” IEEE Trans. Com-
mun., vol.41, no.6, pp.828–831, 1993.

[11] I. Ahmad, B. Al-Kazemi, and A.S. Das, “An efficient algorithm to
find broadcast schedule in ad hoc TDMA networks,” J. Comp. Sys.,
Netw., and Comm., vol.2008, pp.12:1–12:10, Jan. 2008.

[12] A. Capone and M. Trubian, “Channel assignment problem in cellular
systems: a new model and a tabu search algorithm,” IEEE Trans.
Veh. Technol., vol.48, no.4, pp.1252–1260, Aug. 1999.

[13] G. Chakraborty, “Genetic algorithm to solve optimum TDMA trans-
mission schedule in broadcast packet radio networks,” IEEE Trans.
Commun., vol.52, no.5, pp.765–777, May 2004.

[14] N.S. Goutam Chakraborty, Debasish Chakraborty, “A heuristic algo-
rithm for optimum transmission schedule in broadcast packet radio
networks,” Comput. Commun., vol.38, no.10, pp.74–85, 2005.

[15] C.C. Lin and P.C. Wang, “A new iterated local search algorithm for
solving broadcast scheduling problems in packet radio networks,”
EURASIP J. Wireless Communications and Networking, 2010.

[16] B. Liu and D. Towsley, “A study of the coverage of large-scale sensor
networks,” First IEEE International Conference on Mobile Ad-hoc
and Sensor Systems, pp.475–483, Oct. 2004.

[17] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surv., vol.35,
no.3, pp.268–308, 2003.

[18] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design,
John Wiley & Sons, 1997.

Chih-Chang Lin is currently a Ph.D. can-
didate in the Department of Computer Science
and Engineering at National Chung Hsing Uni-
versity. He is also working for Rising Star Tech-
nology. His research interests include the ap-
plication of optimization techniques to network
problems.

Pi-Chung Wang received the M.S. and
Ph.D. degrees in Computer Science and Infor-
mation Engineering from the National Chiao
Tung University in 1997 and 2001, respectively.
From 2002 to 2006, he was with Telecommu-
nication Laboratories of Chunghwa Telecom,
working on network planning in broadband ac-
cess networks and PSTN migration. During
these four years, he also worked on IP lookup
and classification algorithms. Since February
2006, he has been an assistant professor of Com-

puter Science at National Chung Hsing University. Wang’s research inter-
ests include IP lookup and classification algorithms, scheduling algorithms,
congestion control, network processors, algorithms and applications related
computational geometry.

