
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.5 MAY 2013
1043

PAPER Special Section on Data Engineering and Information Management

Incremental Single-Source Multi-Target A* Algorithm for LBS
Based on Road Network Distance

Htoo HTOO†, Student Member, Yutaka OHSAWA†a), Member, Noboru SONEHARA††,
and Masao SAKAUCHI††, Fellows

SUMMARY Searching for the shortest paths from a query point to sev-
eral target points on a road network is an essential operation for several
types of queries in location-based services. This search can be performed
using Dijkstra’s algorithm. Although the A* algorithm is faster than Dijk-
stra’s algorithm for finding the shortest path from a query point to a target
point, the A* algorithm is not so fast to find all paths between each point
and the query point when several target points are given. In this case, the
search areas on road network overlap for each search, and the total num-
ber of operations at each node is increased, especially when the number of
query points increases. In the present paper, we propose the single-source
multi-target A* (SSMTA*) algorithm, which is a multi-target version of
the A* algorithm. The SSMTA* algorithm guarantees at most one oper-
ation for each road network node, and the searched area on road network
is smaller than that of Dijkstra’s algorithm. Deng et al. proposed the LBC
approach with the same objective. However, several heaps are used to man-
age the search area on the road network and the contents in each heap must
always be kept the same in their method. This operation requires much pro-
cessing time. Since the proposed method uses only one heap, such content
synchronization is not necessary. The present paper demonstrates through
empirical evaluations that the proposed method outperforms other similar
methods.
key words: A* algorithm, road network, POI query, incremental Euclidean
restriction

1. Introduction

Calculation of the shortest path and the road network dis-
tance between two points is a basic operation in location-
based services (LBS). In LBS, target points of a query are
points of interest (POIs), which include, for example, restau-
rants, convenience stores, and gas stations. Usually a search
point or multiple search points are specified, and then POIs
that satisfy the search conditions, which vary depending on
the objective of the queries, are searched. k nearest neighbor
(k-NN) queries, aggregate nearest neighbor (ANN) queries,
spatial skyline queries, and trip planning queries are exam-
ples of these queries. Efficient methods for these queries in
Euclidean distance have been investigated for two decades,
and such methods for road network distance have also been
investigated extensively. Dijkstra’s algorithm [1] and the A*
algorithm [2] have been used for road network distance cal-
culation.
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Given a query point q and a set of POIs P, a k-NN query
searches a specified number of (k) POIs, which are located
closest to q. Papadias et al. [3] proposed two types of algo-
rithms for this query. One is incremental network expansion
(INE), which searches neighbor POIs by gradually enlarging
the search area centered at a query point q using Dijkstra’s
algorithm. Enlarging the search area starting from q, POIs
on a road network are searched, and the search is terminated
when a specified number k of POIs have been found.

The other type of method is incremental Euclidean re-
striction (IER). The basic idea of this approach is to first
search a set of k-NN points C in the Euclidean distance us-
ing the R-tree [4], and then to confirm that the points in C
are truly k-NN points in the road network distance. Gen-
erally, k-NN POIs in the Euclidean distance are not always
k-NNs in the road network distance. Hence, by adding the
next neighbor in the Euclidean distance to the candidate set,
the road network distances of the candidate points are calcu-
lated until no more candidates can be a member of the k-NN
result.

The road network distance between a pair of points,
namely, a query point and a candidate POI, can be calcu-
lated using the A* algorithm, which is usually more efficient
than Dijkstra’s algorithm. We hereinafter refer to this A*
algorithm as the pair-wise A* algorithm. However, in A*
algorithm, when POIs trend to one side of the query point,
the search areas overlap each other. This means that a node
is visited several times during a k-NN query. Therefore, the
processing time of the pair-wise A* algorithm sometimes
exceeds that of the INE (based on Dijkstra’s algorithm). In
particular, for a high POI density and a large k value, mul-
tiple areas overlap, and the efficiency of the pair-wise A*
algorithm deteriorates.

The basic operation in the shortest path search is node
expansion. Node expansion consists of the following steps:

(1) get the node n, which has the minimum cost from the
priority queue,

(2) get all nodes adjacent to n using the adjacency list,
(3) calculate the cost of each adjacent node,
(4) compose a record for each node then add the records to

the priority queue.

The above described Dijkstra’s algorithm and the A* algo-
rithm also perform node expansion.

Ordinarily, since the size of the adjacency list is large,
the list is divided into several small blocks. Using this ad-
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jacency list, when a record of a node in a block must be
referred, the block containing the referring node is read into
a least recently used (LRU) buffer, then adjacent nodes are
investigated. Although the processing time depends on the
hit ratio of the LRU buffer, the processing time of the short-
est path search increases almost linearly with the number of
expanded nodes.

Deng et al. [5] proposed the lower bound constraint
(LBC) approach and the LBC-KNN algorithm for kNN
queries, which runs multiple A* algorithms concurrently,
and each node is guaranteed to be visited only once. This
method was intended to alleviate the problem of pair-wise
A* algorithms that can expand a node several times for mul-
tiple target points. Although the LBC-KNN is described
in detail in Sect. 2.2, the LBC-KNN uses multiple priority
queues (PQs) in which included nodes are maintained to be
identical. This operation consumes a great deal of process-
ing time.

The present paper proposes another single-source
multiple-target A* (SSMTA*) algorithm, which uses only
one PQ to overcome the drawback of the LBC-KN. Since
the expanded node number is the same as the LBC-KNN, it
is lesser in expanded nodes than Dijkstra’s and pair-wise A*
algorithms. The basic idea of the proposed method has been
reported in [6], however, the method proposed in the pre-
vious paper has a defect in node expansion by about 30%
more than the LBC-KNN. The method proposed herein de-
creases the number of expanded nodes to be the same as the
LBC-KNN. Although, the proposed algorithm can be ap-
plied to various searches in the LBS, including k-NN query,
ANN query [6], and trip-planning queries [7], the remainder
of the present paper focuses on k-NN query in order to show
the basic characteristics of the proposed method.

The remainder of the present paper is organized as fol-
lows. Section 2 describes the basic characteristics of IER,
the A* algorithm, and the LBC-KNN algorithm. In Sect. 3,
the SSMTA* algorithm is proposed and applied to k-NN
search. Section 4 shows the experimental evaluation results.
Finally, Sect. 5 summarizes the present paper and describes
future areas for investigation.

2. Preliminary

This section first describes the A* algorithm because the
LBC-KNN and the proposed method are based on it. Next,
the k-NN search based on IER is described briefly. Finally,
the characteristic of the LBC-KNN algorithm, the closest
competitor of the proposed method, is summarized.

2.1 A* Algorithm

The targets of the search considered throughout the present
paper are points of interest (POIs). However, these POIs are
not always existed on a road network node, for simplicity,
we assume that POIs are located on a node throughout the
present paper. This restriction, however, can be removed [8].
Table 1 summarizes the notation used in the present paper.

Table 1 Notation.

Symbol Meaning
P POI set
C Candidate set for k-NN
pn Next POI candidate
q Query point
PQ Priority queue
CS Closed set
dE(x, y) Euclidean distance between x and y
dmin

E (x,C) Minimum Euclidean distance between x and p ∈ C
dN (x, y) Network distance between x and y
dk

N (q,C) Network distance between q and k-th NN in C
RLink(p, q) Pointer to the road segment for which the edge nodes are

p and q

The A* algorithm searches the shortest path from the
origin q to the destination p more efficiently than Dijkstra’s
algorithm and estimates the cost Cost from q to p via a cur-
rent node n, by means of the following equation:

Cost = d(q, n) + h(n, p)

where d(q, n) is the actual cost of moving from q to n on a
road network, h(n, p) is the estimated cost between n and p,
and the value must be lower than the actual cost. The value
returned by h(n, p) is the lower bound of the actual cost, then
for any two points a and b, the condition d(a, b) ≥ h(a, b) is
satisfied. We can assume several types of cost, such as travel
distance, travel time, and travel expense, to be minimized.
Among these costs, when we minimize the travel distance,
the Euclidean distance can be used as the estimated cost.
Moreover, when we minimize the travel time, we use the
travel time for moving by the expected fastest speed between
two points. In the remainder of the explanation, we use the
distance on the road network as the cost.

The A* algorithm controls searching by a priority
queue PQ. During processing, the following record is com-
posed and inserted into PQ.

< Cost,NC ,NP, dN(q,NC),RLink(NP,NC) > (1)

Figure 1 summarizes the symbols in this record and we
used these symbols throughout the rest of the paper with
the same meaning. Cost has been described above. NC is
the currently intended node, and NP is the previously visited
node on the path from q to NC . dN(q,NC) is the path length
from q to NC on the road network, and RLink(NP,NC) is
the pointer to the road link connecting NP and NC . Then,
Cost = dN(q,NC) + dE(NC , p), which is the sum of the road
network distance from q to NC and the Euclidean distance
between NC and p.

At the beginning of the search, the following record is
inserted into an empty PQ.

< dE(q, p), q,−, 0,− > (2)

Here, − denotes the NULL value. When the search begins,
NC is q. Then, no NP exists. Moreover, RLink(NP,NC) does
not exist. Then, the NULL value is assigned to these two
items. In order to avoid expanding nodes that have already
been examined, the once expanded node is inserted into a
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Fig. 1 A* algorithm.

closed set CS , which is initialized by an empty set at the
beginning of the search.

The A* algorithm then repeats the following steps until
the current node reaches the destination p.

(1) Remove the minimum Cost record from PQ and place
this record in CS .

(2) Obtain all nodes neighboring NC by means of the adja-
cency list.

(3) For each neighboring node, calculate Cost, compose a
record shown by Eq. (1), then insert the record with
Cost into PQ.

This sequence of steps is a node expansion of the A*
algorithm. Among these steps, step (2) needs to access the
adjacency list. When the entire adjacency list of the road
network is small enough to be stored in the main memory
and the adjacency list is read into the buffer in advance, no
disk access occurs during the shortest path search. However,
the size of the adjacency list is generally large. Therefore,
the adjacency list is divided into several small blocks, some
of which are read into the LRU buffer, and is then referred
to investigate the adjacency nodes. Hence, the number of
expanded nodes directly affects the processing time. The
A* algorithm is preferred to Dijkstra’s algorithm because
the former expands a much smaller area of nodes than the
latter when a destination is given.

2.2 k-NN Search by IER

The incremental Euclidean restriction (IER) proposed by
Papadias et al. [3] searches k-NN by the following steps.
Here, the set of POIs is supposed to be indexed by an R-
tree [4]. A k-NN search finds number of k nearest neighbor
POIs to the query point (q).

(1) Search k-NN in the Euclidean distance using the R-tree,
and then store the results in a candidate set C. Subse-
quently, search k+1 th NN pn incrementally.

(2) For each point (pi ∈ C), calculate the road network dis-
tance dN(q, pi).

(3) If dk
N(q,C) ≤ dE(q, pn), then return the top k POIs in

C and then stop. Here, dk
N(q,C) is the road network

distance between q and the k-th NN in C.
(4) Calculate dN(q, pn). Then, if dk

N(q,C) > dN(q, pn), add
pn to C. Find the next pn by an incremental search on
the R-tree.

(5) Goto Step (3).

In the above algorithm, an incremental nearest neigh-
bor search is required. This search can be performed on an
R-tree by a best-first search using a priority queue [9].

When a record is dequeued from the PQ and
dE(q, pn) ≤ Cost stands, the reserved point pn can become a
candidate of k-NN. Then, if multiple A* algorithms can run
in parallel, joining pn to the candidate set C, the searching
can be started targeting pn immediately. In contrast, a pair-
wise A* algorithm will not finish until the search reaches the
target. Then, if the target locates very far away with respect
to the road network distance, the search expends a great deal
of processing time and the resulting path may be useless.

2.3 LBC-KNN Algorithm

Deng et al. [5] proposed the LBC-KNN, which can run the
A* algorithm in parallel. This algorithm is a simple exten-
sion of A* algorithm for multi-targets. The LBC-KNN uses
multiple priority queues (heaps), each of which is assigned
to a target point. The node to be expanded is obtained from
the set of PQs that has the minimum Cost value among the
set. Then, the new records composed by the node expansion
process are inserted into all PQs. However, the Cost value
can differ depending on the target point.

For pair-wise A* algorithm, the expanded areas are
overlapped each other when multiple target points are given.
Because the same node is expanded repeatedly by the indi-
vidual pair-wise A* algorithm. On the other hand, for the
LBC-KNN, the node expansion is always performed once
for each node. Therefore, the LBC-KNN works very effi-
ciently from the viewpoint of the expanded node number.
The serious shortcoming of the LBC-KNN, however, is in
the synchronization of the nodes contained in the priority
queues. After a record that has the minimum cost is removed
from a PQ when multiple target points are given, the record
must be searched in all other PQs and is removed to keep
synchronization of the content. This operation in the set of
PQs (Deng et al. [5] uses a set of heaps) has a linear calcu-
lation cost and is repeated every time a node is expanded.
As such, the calculation cost becomes very high, especially
when the number of expanded node is large.

3. SSMTA* Algorithm

This section discusses an efficient multi-target A* algorithm
by using a single PQ, which overcomes the shortcoming of
the LBC-KNN. First, the basic SSMTA* algorithm is pro-
posed in Sect. 3.1. Next, it is expanded to the incremental
version that is capable to kNN query in Sect. 3.3.

3.1 Basic SSMTA* Algorithm

The SSMTA* finds the shortest paths in basically the same
way as the A* algorithm. The primary difference is that
the SSMTA* searches the shortest paths to multiple target
points simultaneously. We hereinafter assume that set C
contains all of the target points, and the shortest paths from
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Fig. 2 SSMTA* algorithm.

q to all targets in C are to be calculated. Here, we assume
that the target points in C are not changed during the search.
In Sect. 3.3, we improve to the case in which new points are
incrementally added to C.

Figure 2 shows an example of the node expansion in the
SSMTA* algorithm. q is the query point, and four points,
from p1 to p4, are the elements of C. We assume that a
path from q to n has already been found, and the record of
n is obtained from the PQ to be expanded. Referring to the
adjacency list of n, we obtain three nodes from na to nc as
directly neighboring n. First, among these nodes, node na
is an example. The length of the path from q to na via n
is dN(q, n) + dN(n, na). For adopting the A* algorithm, we
need a heuristic distance from na to the target points in set
C. For this, we use the minimum Euclidean distance from
na to the points in C, which is denoted as dmin

E (na,C). In
this figure, the minimum Euclidean distance from na to the
points in C is dE(na, p1), because p1 is the nearest point to
na in the Euclidean distance. Then, the minimum cost from
q to C is Cost = dN(q, n) + dN(n, na) + dmin

E (na,C). Based
on the cost, a new record,

< Cost, na, n, dN(q, n) + dN(n, na),RLink(n, na) >

is created and inserted into the PQ. In this record, the mean-
ing of each item is the same with Eq. (1). The same op-
eration is repeated over the remaining neighbor nodes, nb
and nc. This is the node expansion operation used in the
SSMTA* algorithm.

At the beginning of the SSMTA* algorithm, the Eu-
clidean distances from q to each point in C are calculated in
order to determine dmin

E (q,C). The following record is then
inserted into the PQ:

< dmin
E (q,C), q,−, 0,− >

Here, − shows the NULL value.
The remainder of the processing is the same as that of

the A* algorithm. Since the SSMTA* algorithm treats mul-
tiple target points, the algorithm terminates when the search
paths reach all of the target points. Algorithm 1 shows the
pseudo-code of the SSMTA* algorithm.

In this algorithm, R is the result set of the shortest paths
to all target POIs in C. Lines 1 to 3 are initialization code.
The result set is initialized by an empty set, the minimum
Euclidean distance from q to set C is calculated, and the
initial record is composed and inserted into PQ.

The steps beginning from line 4 are repeated until all

Algorithm 1 SSMTA*
Input: C // Candidate POI set
Output: R // Result POI set with the shortest paths
1: R← ∅
2: dmin ← min(dE(q, pi), pi ∈ C)
3: enqueue(< dmin, q,−, 0,− >)
4: loop
5: e← deleteMin()
6: if CS .Contain(e) then
7: continue;
8: else
9: CS .add(< e.NC , e.NP, e.dN , e.RLink >)

10: end if
11: if e.NC ∈ C then
12: R← R∪ < e.NC , getPath(e.NC) >
13: C ← C − e.NC

14: if |C| = 0 then
15: return R
16: end if
17: RenewQueue(e.NC)
18: end if
19: for all nn ∈ neighbor(e.NC) do
20: decide ci which gives minimum h(nn, ci)
21: dN ← dN (q, e.NC) + dN (e.NC , nn)
22: enqueue(< dN + h(nn, ci), nn, e.NC , dN ,RLink(nn, e.NC >)
23: end for
24: end loop

POIs in C are reached. In line 5, the record e having the
lowest Cost value is extracted from PQ. In line 6, whether
e already exists in CS is checked. When e is not in CS , e is
added to CS .

Line 11 checks whether the search reaches a POI in
C. When the search reaches a POI in C, lines 12 through
16 are executed. In line 12, the found POI and the shortest
path from q to the POI are registered into the result set R.
getPath(p) is the function to restore the shortest path route
using CS . In line 13, the found POI is removed from C. As
a result, if C becomes empty, all of the shortest paths have
been found. Then, the result set R is returned (line 15), and
the algorithm is terminated. RenewQueue(e.NC) in line 17
recalculates the cost in each record in PQ over renewed C.
This operation is described in detail later.

Lines 19 through 22 expand each node nn directly
neighboring e.NC . Neighboring nodes are found by refer-
ring to the adjacency list. The POI (ci) that gives dmin

E (nn,C)
is determined, and a PQ entry for nn is then composed and
enqueued in the PQ.

RenewQueue in line 17 is the main difference between
the original SSMTA* algorithm proposed in [6] and Algo-
rithm 1. This function works as follows. The wave front
of the node expansion reaches a POI (ci) in C, and ci is re-
moved from C. However, the entries in PQ may have the
distance to a POI that existed in C in the past, when the cost
was calculated, but the POI has since been removed from C.
This function then recalculates the cost in PQ based only on
the remaining target points. Although the number of records
in PQ is not changed by this operation, the order of nodes
in PQ may be changed according to the recalculated cost
value. In the previously proposed SSMTA* algorithm in [6],
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the recalculation operation did not exist. Lack of this oper-
ation increases the expanded node number, and requires the
modification of the distance of the record in the CS.

RenewQueue operation requires the cost in proportion
to the size of PQ. However, PQ contains only wave front
nodes and the number of wave front nodes is roughly pro-
portioned to the distance from q. More importantly, this op-
eration is only invoked when C is changed, and it does not
require disk access. Consequently, the total required cost in
this operation is low. In contrast, the LBC-KNN requires to
synchronize the content of PQs every time when a node is
expanded. The number of times for this operation is propor-
tional to the square of the distance from q (that means the
total number of expanded nodes). The experimental results,
which are shown in Sect. 4, exhibit a tendency to drastically
increase the processing time according to the increase in the
expanded node number.

3.2 Properties of the SSMTA* Algorithm

The following Lemma 1 is the basis for restoring the shortest
path from CS entries.

Lemma 1. For each node NC on the shortest path from q
to p, the value dN(q,NC) of a record in CS is the correct
shortest path distance from q to NC.

Proof. Each record in CS is assigned a provisional network
distance d̃N(q,NC) from q to the current node of the record
NC . This means that another shorter path to NC may exist.
However, after once a target POI p is removed from PQ, its
Cost value is fixed to dN(q, p), which is the minimum Cost
value in the PQ. In other words, no shorter path can exist.
The shortest path between q and p is then fixed.

Let pP be the previous neighboring node to p on the
shortest path. dN(q, p) was calculated by the equation
dN(q, p) = dN(q, pP)+dN(pP, p). Here, dN(q, p) is the short-
est distance on the road network. Then, dN(q, pP) is also the
shortest distance from q to pP. By repeating this until pP

meets q, dN(q,NC) in all records in CS along the shortest
path to p is the shortest path length between q and NC . �

Lemma 2. Given a destination point set C, the SSMTA* al-
gorithm finds p(∈ C) in ascending order of the road network
distance.

Proof. Let two points p and p′(∈ C) be considered and
let dN(q, p) < dN(q, p′) be satisfied. Assume that p′ is
reached in advance of p. Then, just before p′ is reached,
PQ contains the following two records as the cost value,
dN(q, na) + dE(na, p) and dN(q, nb) + dN(nb, p′) (see Fig. 3).
Here, nb is a directly neighboring node to p′. Since p′ is
visited before p, the condition

dN(q, nb) + dN(nb, p
′) < dN(q, na) + dE(na, p)

holds. However, by the premise, dN(q, p) < dN(q, p′), and
dE(na, p) ≤ dN(na, p), then

dN(q, nb) + dN(nb, p
′) < dN(q, p).

Fig. 3 Explanation of Lemma 2.

This contradicts the hypothesis. Then, p should be reached
before p′. This means that the SSMTA* algorithm finds the
POI in C in ascending order of the road network distance.

�

3.3 Incremental SSMTA* Algorithm

When the SSMTA* algorithm applies to k-NN search by
IER, a new target point can be inserted into the candidate
set C. This insertion occurs when the Cost of a record de-
queued from PQ exceeds the Euclidean distance from q to
the reserved POI (pn) (the reserved candidate is the k+1-
th POI in the initial state). At that time, the Cost value of
each record in PQ is recalculated over the new C, and the
SSMTA* algorithm continues the search until all k-NN have
been found.

Algorithm 2 shows a pseudo-code of this incremental
SSMTA* (ISSMTA*) algorithm, that finds kNN in the road
network distance. j in line 2 counts the number of POIs
found shortest paths (see also line 17). EkNN(k, p) searches
kNN of q in Euclidean distance, and NextENN(q) in line 4
searches next NN of q in Euclidean distance incrementally.
Line 23 checks whether e.Cost exceeds dE(q, pn). When
the result is true, pn is added to C, and pn is replaced by
the next NN. In line 26, each Cost value of PQ records is
recalculated over modified candidate set.

By this incremental operation, the SSMTA* algorithm
is applicable to other types of spatial queries, such as
ANN [6] and trip planning queries [7].

3.4 Summary and Contributions

LBC-KNN is a direct extension of the A* algorithm to
multi-target search. While SSMTA* algorithm achieves
faster search by the following improvements. This subsec-
tion summerizes the whole section and describes the contri-
butions of the study.

1. As described in Sect. 2.3, LBC-KNN assigns a PQ set
in which each PQ is assigned for each element of the
candidate set C. The contents of all PQs must be syn-
chronized to keep the wave front nodes identical among
the PQs for different target points. This synchroniza-
tion is time consuming because it is performed every
time a node is expanded.

2. SSMTA* algorithm achieves multi-targets search using
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Algorithm 2 ISSMTA*
Input: k,q // k: number of POIs to be found, q: query point
Output: R // Result POI set with the shortest paths
1: R← ∅
2: j← 0
3: C ←EkNN(k, q)
4: pn ← NextENN(q)
5: dmin ← min(dE(q, pi), pi ∈ C)
6: enqueue(< dmin, q,−, 0,− >)
7: loop
8: e← deleteMin()
9: if CS .Contain(e) then

10: continue;
11: else
12: CS .add(< e.NC , e.NP, e.dN , e.RLink >)
13: end if
14: if e.NC ∈ C then
15: R← R∪ < e.NC , getPath(e.NC) >
16: C ← C − e.NC

17: j← j + 1
18: if j >= k then
19: return R
20: end if
21: RenewQueue(e.NC )
22: end if
23: if e.Cost > dE(q, pn) then
24: C ← C ∪ pn

25: pn ← NextENN(q)
26: RenewQueue(e.NC )
27: end if
28: for all nn ∈ neighbor(e.NC) do
29: decide ci which gives minimum h(nn, ci)
30: dN ← dN (q, e.NC) + dN (e.NC , nn)
31: enqueue(< dN + h(nn, ci), nn, e.NC , dN ,RLink(nn, e.NC >)
32: end for
33: end loop

a single PQ. Therefore, it does not require synchroniza-
tion process that is essential in LBC-KNN. We pro-
posed the basic idea in [6].

3. The algorithm proposed in [6] has a deficit that the
original SSMTA* algorithm increases number of ex-
panded nodes in comparison with LBC-KNN. This pa-
per proposes a method to recalculate the Cost value
of all records in PQ every time when a target point is
deleted from (when the shortest path found) and a new
target point is inserted to (in ISSMTA*) the set of target
points (C).

4. The correctness of the SSMTA* algorithm controlled
by a single PQ is not obvious. Hence, we showed
proofs for (1) SSMTA* gives the shortest paths
(Lemma 1) and (2) SSMTA* finds the shortest path
to the target points in ascending order of the length
(Lemma 2). The latter attribute is necessary for kNN
search in IER framework.

5. By the above mentioned improvements, the proposed
SSMTA* algorithm achieves multi-targets shortest
path search by the same expanded node number with
LBC-KNN and faster processing time than LBC-KNN,
as shown in Sect. 4.

4. Performance Evaluation

This section evaluates the performance of the proposed al-
gorithm by comparison with several conventional methods
using a real road network and generated POIs. The road
networks used in the experiments are the area of Saitama
City, Japan, which has 25,586 road segments (hereafter de-
noted as “Road-1”), and the area of Saitama Prefecture,
which has 468,666 road segments (denoted as “Road-2”).
The positions of POIs are generated by a pseudo-random
sequence with a specified probability (Prob). For exam-
ple, Prob = 10−3 indicates a POI on one thousand road
segments. All algorithms are implemented by Java and are
evaluated on a PC with an Intel Core i7 CPU 960 (3.2 GHz),
9 GB memory.

The adjacency list used in this experiment is prepared
using Peano-Hilbert order as the same with Papadias et al’s
experiment in [3]. We prepared a 16 KB block adjacency
list. The size of the LRU buffer was set to 1 MB (64 blocks).
The adapted replacement policy was the popularly used
“clock” [10], which acts similar to the LRU. The dividing
method of the adjacency list using the Peano-Hilbert order
is a simple method. However, the performance is similar to
that of Huang’s method [11].

Figure 4 compares the k-NN search results among INE,
the pairwise A* algorithm (PWA*), the LBC-KNN, the
SSMTA* proposed in [6] (SSMTA*org), and ISSMTA* pro-
posed in this paper. Figure 4 (a) and (b) are the result ob-
tained using Road-2 under Prob = 0.005. Figure 4 (a)
shows the expanded node number. The LBC-KNN and the
ISSMTA* show almost the same values. Therefore, both
lines overlap each other. When the k value is small (less
than 5), the expanded node number in PWA* is small. How-
ever, the expanded node number increases more rapidly than
in the other methods when k increases. This is because one
node is expanded several times during a k-NN search. The
vertical axis in Fig. 4 (b) shows the processing time in sec-
onds. The tendency of the increase is almost the same with
the expanded node number, except for the LBC-KNN and
the PWA*. The processing time of the LBC-KNN increases
rapidly when the k value is large. This is because the cost
of the heap operation, which is executed every time with
each node expansion, increases according to the k value in-
crease. Contrary, the processing time of the PWA* is rela-
tively faster in spite of much expanded nodes number, be-
cause the buffer hit ratio of the PWA* is high. The other
three methods, INE, SSMTA*org, and ISSMTA*, exhibit
stable characteristics. Among them, the ISSMTA* method
is the most efficient with respect to both the expanded node
number and the processing time.

Figure 4 (c) and (d) show the processing time and the
expanded node number in the k-NN search when Prob is
0.05, which is ten times denser than that of Fig. 4 (a) and (b).
The expanded node number shows the same tendency except
for the LBC-KNN and the PWA* as same as in Fig. 4 (b). In
comparing Fig. 4 (d) with (b), the increase of LBC-KNN is
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(a) Expanded node number Prob = 0.005 (b) Processing time Prob = 0.005

(c) Expanded node number Prob = 0.05 (d) Processing time Prob = 0.05

Fig. 4 Comparison methods with k value increase.

alleviated. This is because the total expanded node number
decreases to a tenth.

Figure 5 compares the expanded node number and the
processing time with varying the density of POI (Prob). Fig-
ure 5 (a) and (b) are the result on Road-1, and (c) and (d) are
the result on Road-2. In this experiment, k value was fixed
to 20. The processing time in all methods decreases accord-
ing to the increase of the POI density because the size of
the search area also decreases. Among these methods, the
ISSMTA* algorithm is the most efficient in all POI densi-
ties. Deng et al. [5] evaluated the performance of the LBC-
KNN among the range of Prob = 0.05 to 2.0. Over these
very high POI density distributions, the search area remains
small. Then, the inefficiency of the LBC-KNN does not be-
come apparent. However, when schools, hospitals, conve-
nience stores, and gas stations are considered as POIs, their
densities are not so high [12], and such kind of POIs does
not exist beyond 0.05. Then, the ISSMTA* algorithm is ex-
pected to perform with considerably high efficiency in actual
applications in comparison with PWA* and the LBC-KNN.

In this experiment, the results on densities lower than
0.002 for Road-1 are omitted because the entire area on

the road network is searched for cases in which k = 20.
However, the result using Road-2 shows that the proposed
method considerably outperforms PWA* and the LBC-KNN
in such low-density cases.

When a set of POI is distributed with bias, the result
can be predicted as follows; (1) INE requires to search with
area on the road network, (2) the areas of expanded node
in PWA* become to overlap each other especially near the
query point, (3) the expanded node numbers in the LBC
and the ISSMTA* are the same, however, the LBC requires
much processing time than the ISSMTA* because the aver-
age road network distance becomes longer with biased dis-
tribution of POIs. Figure 6 shows the result of the experi-
ment to confirm this prediction. The biased sets of POI are
prepared by the following method; (1) determine the query
point q, (2) generate POIs on the road network nodes that
belongs on the right half-plane of q under the same POI
density with uniform distribution dealt in the above exper-
iments. Figure 6 compares the expanded node number and
the processing time by the ratio against the ISSMTA*. U-
time and U-node in this figure show the result on the uniform
distribution and B-time and B-node show the result on the
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(a) Expanded node number (Road-1) (b) Processing time (Road-1)

(c) Expanded node number (Road-2) (d) Processing time (Road-2)

Fig. 5 Evaluation varying POI density (k = 20).

Fig. 6 Comparison between uniform and biased distribution.

biased distribution, respectively. The result meets the above
mentioned prediction. As the conclusion, the ISSMTA* al-
gorithm also outperforms the other methods when the set of
POI is distributed with bias.

5. Conclusion

We herein proposed the SSMTA* algorithm, which searches
shortest paths between a query point and each point in a
given destination point set. Then, this algorithm was ap-
plied for k-NN queries based on the IER strategy. Through
the performance evaluation of the proposed method in com-
parison with the INE using Dijkstra’s algorithm, the pair-
wise A* algorithm and the LBC-KNN, we showed that the
proposed method outperforms the competitors in terms of
processing time and expanded node number.

The processing times of the pairwise A* algorithm and
the LBC-KNN increases rapidly when the density of POIs
is low or the number of k is large. The defects occur for
the following reasons. On the pairwise A* algorithm, nodes
are expanded several times when k is large, which increases
the hard-disk access times. On the LBC-KNN, although
the number of node expansions remains low, the cost of PQ
scanning increases in proportion to k and the number of node
expansions. This performance deterioration is serious when
the density of the POI is low.
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Although, like the proposed method, Dijkstra’s algo-
rithm exhibits stable performance, the expanded node num-
ber and processing time remain twice that of the proposed
method. A disadvantage of Dijkstra’s algorithm is that the
performance deteriorates substantially when the distribution
of the POIs trends toward one side. This biased distribu-
tion is apt to appear in the ANN [8] and spatial skyline
queries [5]. Therefore, the ratio of the expanded node num-
ber between the INE and SSMTA* becomes larger for these
queries [6].

The calculation cost of Dijkstra’s algorithm is O(|E| +
|V | log |V |) on the road network G = (V, E). The calculation
cost of the A* algorithm varies depending on the heuristic
function. However, the cost of searching the shortest path
between two specified points is on the same asymptotical
order as Dijkstra’s algorithm. The worst case occurs when
the heuristic function always returns 0. The expanded node
number of the LBC-KNN and SSMTA* are the same. This
means that the worst time complexity is the same for all of
the algorithms considered in the present paper. From the
viewpoint of database systems, however, the number of disk
accesses dominates the total processing time. Accordingly,
the proposed method is at least twice as efficient as the other
methods.

As an example of an application of SSMTA*, we ap-
plied to ANN queries in [6]. Aside from this, Deng et al.
applied the LBC-KNN for spatial skyline queries and ob-
tained positive results. On these types of queries, the POIs
to be searched are apt to trend toward one side of the query
point. At this situation, the proposed method becomes more
efficient than Dijkstra’s method. Application of the pro-
posed method to wide spatial queries is a subject of future
research.
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