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Partitioned-Tree Nested Loop Join: An Efficient Join for
Spatio-Temporal Interval Join
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SUMMARY A predictive spatio-temporal interval join finds all pairs of
moving objects satisfying a join condition on future time interval and space.
In this paper, we propose a method called PTJoin. PTJoin partitions the
inner index into small sub-trees and performs the join process for each sub-
tree to reduce the number of disk page accesses for each window search.
Furthermore, to reduce the number of pages accessed by consecutive win-
dow searches, we partition the index so that overlapping index pages do not
belong to the same partition. Our experiments show that PTJoin reduces the
number of page accesses by up to an order of magnitude compared to Inter-
val STJoin [9], which is the state-of-the-art solution, when the buffer size
is small.
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1. Introduction

Predictive queries are an important query type prevalently
used in moving object database systems for supporting ap-
plications such as telematics, location-based services, and
air traffic control systems. As a predictive query, a predic-
tive spatio-temporal join finds all pairs of moving objects
satisfying query conditions on future time and space [2]. In
this paper, we handle a predictive spatio-temporal interval
join, which is one type of predictive spatial-temporal join
query that uses a time interval as one of the join conditions.
In earlier research, Sun et al. [5] investigated selectivity es-
timation of predictive spatio-temporal joins without consid-
ering join processing. Tao et al. [6], [7] dealt with predictive
window queries. Han et al. [2] dealt with predictive spatio-
temporal timestamp join only. As an example of a predictive
spatial-temporal interval join, it is useful to imagine a query
that finds all pairs of cars that could come closer than 10
feet apart between 05:30 and 06:00. The formal definitions
for the predictive spatio-temporal interval join are given as
follows:

Definition 1 [5]. Given two sets R and S of spatio tem-
poral objects, a future time interval [ts, te], and a distance
threshold d, a predictive spatio-temporal interval join finds
all pairs of objects <o1, o2> such that o1 in R, o2 is in S ,
and the distance between the objects o1 and o2 on the time
interval [ts, te] is shorter than d.
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As the state-of-the-art solution for the spatio-temporal
interval join problem, Han et al. [9] have proposed
Interval S T Join. In order to reduce the frequency of disk
page access, the method sorts the leaf entries of the outer in-
dex based on a space filling curve (SFC), which is the same
sorting technique used in the inner index. Then it performs
join processing as the sorting sequence. The method may
efficiently perform the join processing if the buffer size is
large enough to store all the index pages to be accessed in
the near future. However, the method suffers from perfor-
mance degradation if the buffer size is small. We briefly
explain Interval S T Join to point out this problem.

Interval S T Join is a variation of the ordered index-
based nested loop joins. Assume that the indexes accessed
in the outer and inner loops are R and S , respectively.
Interval S T Join first sorts the leaf entries of R based on
an SFC. Then, it builds tightened bounding boxes, called
windows, containing the sorted leaf entries, based on their
spatial locations at the join time interval, and performs a
window search on S for each window. Performing ordered
window searches improves the buffer utilization by increas-
ing the possibility of accessing the node of S , which was ac-
cessed by the previous window in the consecutive window
searches.

Figure 1 illustrates an example of Interval S T Join.
Here, we have two trees R and S . Interval S T Join first or-
ganizes four windows, WS 1, WS 2, . . ., WS 4, by sorting the
eight leaf entries, e1, e2, . . ., e8, of tree R. Window WS 1 con-
tains leaf entries e1 and e3, and WS 2 contains e4 and e5, and
so on. Then, for each window WS i, it performs windows
search on S to find join results.

However, if the buffer size is small, Interval S T Join
cannot gain the benefit of the page buffering effect because
the buffers may not store all of the pages to be accessed
in the near future. It causes frequent replacement of buffer
pages, and thus incurs performance degradation.

Fig. 1 An illustration of Interval S T Join [10].
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Fig. 2 Page access sequences and a buffer space for window search WS 1

and WS 2.

Figure 2 shows page access sequences of window
searches WS 1 and WS 2 and buffer pages after performing
each window search. We assume that WS 1 accesses five
pages, n1, n2, n3, n4, and n5, and WS 2 accesses four pages,
n1, n2, n4, and n5. Note that the five pages for WS 1 in-
clude all pages for WS 2. If we traverse tree S using depth
first search, the page access sequences for WS 1 and WS 2

are <n1, n2, n4, n2, n5, n1, n3> and <n1, n2, n5, n1, n3> re-
spectively. Assume that the buffer size is three, and we use
the LRU buffer page replacement policy. After performing
the window search for WS 1, index pages n5, n3, and n1 are
retained in the buffer. Then, the method performs a window
search for WS 2. Even if all the index pages for WS 2 are
accessed by the window search for WS 1, the pages except
n1 should be read from disk again because they have been
replaced due to lack of space in the buffer.

In order to overcome this performance problem with
the earlier approach [9], we propose a method, called
PT Join, based on a tree partitioning technique. PT Join di-
vides tree S into small sub-trees. Then, it performs window
searches for each small sub-tree. If we perform the series
of window searches on a small sub-tree, most of the index
pages of the sub-tree will be retained in the buffer during the
series performance for each sub-tree.

Furthermore, we adopt a partition technique to reduce
the number of index pages that are commonly retrieved by
consecutive window searches. If the number of the pages
is large, we require a large buffer to retain the pages. Here,
we partition the index so that overlapping index pages do
not belong to the same partition. This allows our method to
retain only the smallest number of index pages to perform
the series on each sub-tree.

The rest of this paper is organized as follows. In Sect. 2
we present our spatio-temporal interval join method. Sec-
tion 3 presents the performance evaluations. Finally, we
conclude the paper in Sect. 4.

2. Partitioned-Tree Nested Loop Join

In this section, we introduce our partitioned-tree nested loop
join method. In Sect. 2.1, we introduce the overall algorithm
of the partitioned-tree nested loop join, and in Sect. 2.2, the
tree partition method is introduced. Hereafter, we use win-
dow together with window query. For detailed explanation
of an algorithm, we refer readers to the earlier work [2], [10].

2.1 Main Algorithm

Algorithm 1 shows the main algorithm of our new spatio-
temporal interval join method, called PT Join. PT Join is
based on the partitioned-tree nested loop join, which is sim-
ilar to the block nested loop join [9]. PT Join takes eight
parameters. The first two parameters, denoted rootR and
rootS , are the root nodes of trees R and S . The next two
parameters, ts and te are the starting and ending timestamps
of a future time interval. The fifth parameter, S FC, is a
space-filling curve to order the leaf entries in R. Parame-
ters Dthr and b f are user defined thresholds for bounding
the size of query windows. The last parameter, sp, is the
size of the partition to be made from S. Note that all param-
eters except sp are the same as those of Algorithm 1 in the
earlier work [9]. PT Join first constructs windows from leaf
entries in R by calling the function MakeWindows (line 2),
which works similar to Interval Join algorithm in the earlier
work [9] except that the function does not perform window
search whenever a window is constructed. Then, PT Join
partitions all leaf nodes of S into sp groups by calling the
function MakePartition (line 3). Specifics of the function
MakePartition are described in Sect. 2.2. For each element
of the partition pi, PT Join then finds the results between
all objects in each window WS j and all objects in pi by
calling the function WindowS earch in the earlier work [9]
(lines 4–9). The function Tree at line 6 builds a tree contain-
ing all leaf nodes in pi and returns the root node of that tree.
PT Join returns all partial results, from the WindowS earch
function calls, as final results (line 10).

Algorithm 1 PT Join(rootR, rootS , ts, te, S FC, Dthr, b f ,
sp)
Input: rootR: root node of tree R, rootS : root node of tree S

ts, te: join time interval
S FC: space filling curve
Dthr: density threshold
b f : blocking factor
sp: the size of partition

Output: WS : a list of windows
1: initialize results to an empty set.
2: WS = MakeWindows(rootR, rootS , ts, te, S FC, S FC, b f )
3: P = MakePartition(rootS , ts, te, sp, �)
4: for each element pi in P do
5: for each element WS j in WS do
6: partial results = WindowS earch(WS j, Tree(pi), ts, te)
7: results = results ∪ partial results
8: end for
9: end for

10: return results

2.2 Tree Partitioning

To process the spatio-temporal interval join query effi-
ciently, it is important to choose a “good” partition. In this
section, we describe the method of tree partitioning.

In the earlier work [9], to process the spatio-temporal
interval join, the method builds a list of window queries WQ
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using objects in the tree R. Then, for each window query
wqi, it performs the window search using wqi. For each win-
dow query wqi, the method needs to access the disk pages
of tree S . Since we use the LRU buffer page replacement
policy, if the number of window queries needs to access a
larger number of disk pages than the allowed buffer size, the
buffering effect will be reduced, and the query performance
will also be degraded.

For each group of the partition, the goal of tree parti-
tioning is to minimize the number of window queries, whose
numbers of page accesses are larger than the buffer size.
Formally, for each group pk of the partition, our goal is min-
imizing the following Eq. (1).

|WS |∑
i=1

⎛⎜⎜⎜⎜⎜⎝I

(
PA

(
WindowS earch(wqi,Tree(pk))

))

> bu f f erS ize

⎞⎟⎟⎟⎟⎟⎠ (1)

,where I(p) is an indicator function that returns one, if the
predicate p is true, otherwise the function returns zero. And
wqi and pk are the i-th window query from the tree R and k-th
group of the partition respectively. PA(WindowS earch(wqi,
Tree(pk))) refers to the number of page accesses to process
the window query wqi over the tree of the elements of pk.
Thus, Eq. (1) shows the number of window queries whose
page accesses are larger than the buffer size.

Unfortunately, finding the optimal partition is a difficult
problem, since the number of all possible partitions is large
and increases exponentially as the number of leaf nodes of
the tree S increases. To reduce the partition finding time, we
use a heuristic approach.

Algorithm 2 shows MakePartition for tree partition.
MakePartition takes five parameters: rootS , ts, te, sp, and
entryS et, and partitions the leaf nodes of the tree S into
sp groups. The first parameter, rootS , is the root node of
tree S , which will be partitioned. The next two parame-
ters, ts and te, are the starting and ending timestamps for
the time interval query, and sp is the size of the partition.
entryS et is a set of entries to be partitioned. The param-
eter, entryS et, is initially an empty set. Then it is filled
with the entries from the tree S at the first call of the func-
tion MakePartition(line 2). Then algorithm proceeds with
the partitioning(line 3). Then, MakePartition partitions
entryS et into two groups, tmpS et1 and tmpS et2, by call-
ing the function S plitEntries(line 9). The detailed descrip-
tion of the function S plitEntries follows. Then, partitioning
proceeds by calling the function MakePartition recursively
with the reduced size of partitions(lines 10–11). The func-
tion terminates when the size of the partition becomes one or
when there are no more entries to be partitioned(lines 5–7).

Now, we explain the function S plitEntries, shown in
detail in Function 1. S plitEntries first finds two entries,
e1 and e2, that have the biggest overlap among all possible
pairs of entries in the entryS et(line 1), and it puts e1 and
e2 into tmpS et1 and tmpS et2 respectively(line 2). Then,
for each entry e except e1 and e2 in entryS et, it selects a set
between tmpS et1 and tmpS et2, which have the least overlap
size with e, and then puts e into the selected set(lines 4–8).

If the size of either tmpS et1 or tmpS et2 exceeds the size of
entryS et by half, S plitEntries puts the remaining entries of
entryS et into the other set to make the two sets even, and
then the function terminates.

Algorithm 2 MakePartition(rootS , te, ts, sp, entryS et)
Input: rootS : root node of tree S

ts, te: join time interval
sp: the size of partition
entityS et: a set of entries to be partitioned

Output: a partition of all leaf nodes of S
1: if the function MakePartition is never called before then
2: tmpS et = ChildrenNodes(rootS )
3: MakePartition(rootS ,te,ts,sp,tmpS et)
4: end if
5: if sp=1 or |entryS et|==1 then
6: report entryS et as an entry of the partition
7: end if
8: tmpS et1=�, tmpS et2=�
9: S plitEntries(entryS et, ts, te,�sp�, tmpS et1)

10: S plitEntries(entryS et, ts, te,�sp�, tmpS et2)

Function 1 S plitEntries(entryS et,te,ts,tmpS et1,tmpS et2,)
Input: rootS : root node of tree S

ts, te: join time interval
entityS et: a set of entries to be split

Output: tmpS et1,tmpS et2: two disjoint subsets of entryS et
1: find two entries, e1 and e2, in entryS et, that the size of the

overlap between e1 and e2 is the biggest among those of all
possible pairs of entries.

2: tmpS et1={e1}, tmpS et2={e2}
3: for each entry e in entryS et except e1 and e2 do
4: if Overlap(tmpS et1, e) < Overlap(tmpS et2, e) then
5: tmpS et1 = tmpS et1 ∪ {e}
6: else
7: tmpS et2 = tmpS et2 ∪ {e}
8: end if
9: if |tmpS et1| > |entryS et|/2 then

10: put all remaining entries of entryS et to tmpS et2
11: Break
12: end if
13: if |tmpS et2| > |entryS et|/2 then
14: put all remaining entries of entryS et to tmpS et1
15: Break
16: end if
17: end for

3. Experiments

3.1 Experimental Setups

We generate experimental data sets using the Generate Spa-
tiotemporal Data (GSTD) tool [8]. The GSTD tool is a data
generator used broadly in the performance evaluations on
moving objects and is able to generate moving objects with
various distributions [3]. In our experiments, we use GSTD
to generate data sets with the uniform, Gaussian, and skewed
distributions. The maximum speed of an object is set to 2 km
per minute.

We also use the same data set as the one generated
by Saltenis et al. [4]. This data set simulates a road net-
work; it contains imaginary objects moving on a road. Each
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Fig. 3 Experiment Results for four different Datasets by varying the buffer size(ts = 20, te = 30).

object randomly chooses its source and destination points
from 200 fixed points randomly distributed in a 1,000 km
by 1,000 km space. Once the object arrives at its destina-
tion, it randomly chooses the next destination and moves
on to there. The maximum speed of each object is 0.75
km/minute, 1.5 km/minute, or 3 km per minute. While mov-
ing from a source to a destination, an object accelerates in
the first 1/6 of the distance, moves at the maximum speed
in the next 2/3, and decelerates in the last 1/6. During this
move, each object reports its speed and location every 20
minutes on average.

The data sets indexed by R and S are point objects, and
a join using R and S produces all pairs of point objects that
are within less than a certain distance (0.2 km) from each
other. For simplicity, both data sets have the same number
of objects (i.e., | Robject | = | Sobject |); this makes analysis
of the experimental results easy. For the road network data
set, we use the same data set for building both R and S ; this
simulates a self-join.

All experiments are done on a Windows Server 2003
PC with 512 KBytes unified (data and instruction) L2 cache,
512 Mbytes RAM, and a Pentium IV 2.8 GHz CPU. We set
the page size as 4 KBytes. We use LRU as the buffer page
re-placement algorithm.

3.2 Experimental Results

Figure 3 shows the experimental results for four different
datasets (Gaussian, Uniform, Skew, and Road Network).
The proposed method, PT Join, is compared with S T Join
(i.e., Interval S T Join) and with the depth first search based
join method DFSJ in the earlier work [9]. Note that the num-
bers following PT Join, in the legends of the figures, repre-

sent the sizes of the partitions. In all the experiments, we
evaluate the number of disk page accesses as the buffer size
is varied.

Figure 3 (a) shows the result for a dataset whose distri-
bution follows Gaussian distribution. From the figure, we
see that, as the buffer size increases, the number of disk
page accesses of all the methods decreases. We also see
that S T Join (i.e., PT Join-1) and PT Join-2 show worse per-
formance with the small buffer size compared to the other
methods. This is because, with a small buffer size, the num-
ber of page misses increases if the number of partitions is
small. We see that PT Join-8 outperforms or is comparable
to the other methods within all ranges of buffer size.

Figure 3 (b) shows the result for a dataset whose data
are uniformly distributed. Here, we see that S T Join and
PT Joins outperform or are comparable to DFSJ within all
the ranges of buffer size. We also see that PT Join-8 shows
a performance worse than PT Join-2 or PT Join-4 when the
buffer size is smaller than 800 KBytes. This is because the
number of disk page accesses in the outer index increases as
the number of partitions increases.

Figures 3 (c) and 3 (d) show the results for the datasets,
Skew and Road Network, respectively. We see that Fig. 3 (c)
has a similar tendency to Fig. 3 (a), and Fig. 3 (d) has a
similar tendency to Fig. 3 (b). However, there are cases
where PT Join is slightly worse than S T Join. This is be-
cause PT Join repeatedly accesses R for each group of S ,
while PT Join gains the benefit of the page buffering. Thus,
PT Join sometimes can be slightly worse than S T Join. Nev-
ertheless, we prefer to use PT Join due to its robust perfor-
mance.

As explained in Sect. 2.2, we can determine the proper
size k of the partition, which minimizes Eq. (1) among all
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possible partitions for S . Furthermore, if the cost of S T Join
by using the cost model in the earlier work [2] is cheaper
than the cost of PT Join with the selected k, we choose
S T Join instead.

In all the experiments, we see that the number of page
accesses for PT Joins are the same as that for S T Join if the
buffer size is larger than 850 KBytes (approximately, 10%
of the size of the inner index). This is because we do not
partition the inner index if the buffer size is sufficiently large
to stores the index pages to be accessed in the near future.
Thus, within the range of the buffer size, PT Join performs
join processing in the same manner as S T Join.

4. Conclusions

In this paper, we propose a spatio-temporal interval join
algorithm, called PT Join, to find all pairs of moving ob-
jects satisfying a join condition on future time interval
and space. In the earlier work [9], the authors have pro-
posed Interval S T Join to solve this problem. However,
Interval S T Join shows bad performance results when the
buffer size is small. To tackle this problem, PT Join uses
a tree-partitioning technique to reduce the size of the in-
dex tree to be searched in the window searches. Moreover,
we partition the index so that index pages, which are over-
lapping index pages do not belong to the same partition.
Through extensive experiments, we show that PT Join out-
performs Interval S T Join by up to an order of magnitude
when the buffer size is small.
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