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SUMMARY  To improve Last-Level Cache (LLC) management, nu-
merous approaches have been proposed requiring additional hardware bud-
get and increased overhead. A number of these approaches even change
the organization of the existing cache design. In this letter, we propose
Adaptive Insertion and Promotion (AIP) policies based on Least Recently
Used (LRU) replacement. AIP dynamically inserts a missed line in the
middle of the cache list and promotes a reused line several steps left, real-
izing the combination of LRU and LFU policies deliberately under a single
unified scheme. As a result, it benefits workloads with high locality as
well as with many frequently reused lines. Most importantly, AIP requires
no additional hardware other than a typical LRU list, thus it can be easily
integrated into the existing hardware with minimal changes. Other issues
around LLC such as scans, thrashing and dead lines are all explored in our
study. Experimental results on the gem5 simulator with SPEC CUP2006
benchmarks indicate that AIP outperforms LRU replacement policy by an
average of 5.8% on the misses per thousand instructions metric.
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1. Introduction

Modern computers rely on efficient cache management to
mitigate the wide speed gap between processor and mem-
ory. Traditional cache management focuses on cache re-
placement with the Least Recently Used (LRU) policy. The
LRU policy works well for workloads with high locality but
results in ineffective cache management for the Last-Level
Cache (LLC), where temporal locality is partly filtered by
preceding levels of the cache hierarchy[1]. Hence, the
Least Frequently Used (LFU) policy was introduced to iden-
tify the presence of frequently reused lines in the cache [2],
given that frequency is another feature of referenced lines
in addition to recency. Although LFU improves cache per-
formance for a number of workloads with many frequently
reused lines, it fails for others where recency is the prefer-
able choice for replacement. The two policies seem unre-
lated and independent; however, they trade off with each
other for different access patterns.

Apart from recency and frequency, a number of issues
persist around LLC management, such as scans, thrashing
and dead lines. The last decade has seen the development
of several novel cache management approaches that have
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attempted to combine the LRU and LFU policies with the
intent of solving one or more problems in this field; how-
ever, many of these approaches incur huge storage overhead
and require significant changes in the existing design, along
with limited improvement on performance.

In this letter, we propose Adaptive Insertion and Pro-
motion (AIP) policies based on LRU replacement. AIP pro-
vides dynamic insertion and changeable promotion, which
combines the LRU and LFU policies together under a single
unified scheme. As a result, AIP copes well with changed
access patterns from recency to frequency, benefiting work-
loads with high locality as well as with many frequently
reused lines. At the same time, scans, thrashing and dead
lines are all effectively addressed under AIP. Moreover, AIP
is simple in combination, flexible in adaptation and scalable
in structure.

The remainder of this letter is organized as follows: In
the next section, existing solutions are discussed. Section 3
proposes AIP policies in detail, followed by experiments in
Sect. 4. The last section presents our conclusion.

2. Existing Solutions

The LRU policy depends on the recency of referenced lines
to select the evictee for replacement. In contrast, the LFU
policy selects the evictee according to the frequency of ref-
erenced lines. The Least Recently/Frequently Used (LRFU)
policy [3] subsumes the LRU and LFU policies together to
balance between the recency and frequency of the refer-
enced lines as the basis for a replacement decision. With
complicated algorithms and several parameters, which must
be tuned on a per workload basis, the LRFU policy is too
slow to be implemented in the current cache structure [4].
The Adaptive Replacement Cache (ARC) [4] maintains
one list each for recency and frequency. The recency list
contains pages that are used only once while in residence,
whereas the frequency list contains pages that are used at
least twice. ARC dynamically tunes the number of pages
devoted to each list to detect and track temporal locality
and frequency of referenced lines so as to keep those pages
that have the greatest likelihood of being used in the near
future in the cache. Scavenger policy [11] divides the to-
tal storage budget into two parts: a conventional cache and
a novel victim file architecture. The latter employs addi-
tional components including a skewed bloom filter in con-
junction with a pipelined priority heap to identify and retain
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the blocks that most frequently missed in the conventional
part of the cache in the recent past. More adaptive cache
management approaches can be found in [6], [7]. Although
they successfully combine LRU and LFU replacement poli-
cies together via additional data structures, they significantly
increase hardware overhead and complexity. A recent study
on Shepherd Cache[12] even changes the organization of
the existing cache, leading to further verification and testing
efforts for it.

Dynamic Insertion Policy (DIP) relies on the LRU pol-
icy for workloads with high locality and the LRU Insertion
Policy (LIP) for other workloads with thrashing. The LIP
component of DIP inserts lines directly into the LRU posi-
tion to minimize the residency time of thrashing [5], result-
ing in a number of distantly reused lines in the large working
set being partly preserved in the cache. Although DIP effec-
tively protects LLC from scans and thrashing using auxiliary
tag directories and a policy selector, it’s unable to retain fre-
quently reused lines in the cache.

Various other solutions for efficient cache management
have been reported in [8]-[10], but they either require signif-
icant hardware or drastically change the organization of the
existing cache design. A single cache management scheme,
with minimal changes to the existing structure and capabil-
ity to effectively address all of the problems in this field, is
highly desirable.

3. AIP Policies

3.1 Insertion and Promotion Policies Based on LRU Re-
placement

AIP employs the same structure as that commonly used by
the LRU replacement policy. Figure 1 illustrates a typical
cache set with eight lines in a list, logically organized left-
to-right from the Most Recently Used (MRU) position to the
LRU position. The traditional LRU replacement policy in-
serts a missed line in the MRU position while the line in the
LRU position is evicted, and a reused (hit) line is promoted
to the MRU position. A number of studies have proposed
different insertion and promotion policies, such as insertion
in the LRU position [5] or the promotion of a single incre-
ment each time for the reused line in the list [13]. AIP dif-
fers from all the previous proposals in that it inserts missed
lines in the middle of the list. The insertion position in AIP
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Fig.1 Insertion and promotion based on the LRU replacement structure.
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splits the list into two parts, namely, the left and right sec-
tions. All inserted Lines with high locality have the oppor-
tunity to be reused and promoted to the left section when
they travel from the middle position to the LRU position,
but lines with poor locality such as dead-on-arrival lines
will smoothly pass by the right section and finally get out
of the cache. In particular, AIP promotes reused lines with
several positions left each time, rather than a single incre-
ment. With this interval promotion, frequently reused lines
are promoted to the left section of the cache list where they
have a relatively long lifetime in the cache. In contrast, the
occasionally reused lines will stay in the right section of the
cache list where they are pushed right by the inserted lines
step by step and finally evicted. Thus, the traditional LRU
and LFU policies are deliberately combined in AIP. To our
knowledge, ours is the first study to investigate interval pro-
motion in cache management. Earlier studies have proposed
the promotion of a reused line either to the MRU position or
to the left position beside the line. However, these propos-
als are of no benefit to the frequently reused lines because
they are incapable of distinguishing different frequencies on
the lines. Moreover, one-step promotion in the right section
will soon be offset by the list movement to the right when a
missed line arrives.

Several important parameters are depicted in Fig. 1. N
denotes the number of ways in a cache set, D denotes the
distance from the MRU position to the insertion position
(D £ N), and s denotes the promotion interval that is gen-
erally set to be 2, 4--- n2. Thus, cache efficiency can be
evaluated by a function as follows:

A= f(D,s) (D

where A stands for the cache efficiency, which can be derived
from the hit ratio, that is, the division between the number
of cache hits and the total number of cache accesses. Both
values can be tracked as the program is running.

Parameter D indicates the insertion position. Scans and
dead-on-arrival lines will be placed on the right section and
eventually be evicted from the cache without polluting the
left section, where valuable lines can be preserved. Thus,
at least a fraction of a working set which is larger than the
available cache size, can be retained in the left section to
provide cache hits, resulting in a resistance to thrashing. At
the same time, a number of high frequently reused lines can
also be preserved in the left section for more contributions
to cache hits.

Parameter s controls the promotion interval. The value
of s should be at least two so that the list movement to the
right will not offset the promotion to the left. In other words,
a line has a theoretically better chance of staying in the cache
while promoted to the left at least twice as many steps as be-
ing pushed to the right when another line is inserted before
it. This promotion is, in effect, similar to LFU replacement,
where frequently reused lines are highlighted by accumu-
lated counts.

Parameter s is the most important parameter that distin-
guishes our proposal from that of others on combined LRU
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and LFU policies. With a reasonable value for parameter s,
promotion can be performed several times until the line en-
ters the MRU position. Thus, the frequently reused lines are
highlighted by continuous movement to the left, but the in-
frequently reused lines are highlighted when a hit occurs and
are soon decayed after the emergent hits. On the other hand,
the limited advance to the left alleviates the effect of the
dead lines in the left section, which often occurs seriously
as stale lines under the LFU replacement policy because of
its accumulated counts for frequently reused lines.

3.2 Adaptation of Insertion and Promotion Policies

The AIP mechanism contains two tunable variables, namely,
D and s. D is relative to recency, and s is relative to fre-
quency. D and s should be adaptively tuned individually
in response to an evolving workload in terms of increased
cache efficiency. A decreased D benefits lines with locality
because more spaces are reserved for them in the right sec-
tion of the cache list. In contrast, an increased D results in
an expanded left section where more frequently reused lines
can be preserved. In the presence of scans or thrashing, rel-
atively fewer hits will occur in the right section compared
with the left section. Hence, the adaptation rule on cache
efficiency will tend to increase the value of D at the expense
of the shorter right section, thus decreasing the residency
time of scans and thrashing in the list. Meanwhile, lines that
are more valuable are preserved in the left section, prevent-
ing the effects of scans and thrashing on the cache. Even
though, D should be limited to a particular scope so that a
new line with temporal locality can traverse all the way from
the insertion position to the LRU position for several cy-
cles, whereas any hit on this line will promote it back to the
left. Without a proper limitation on the value of D, the new
line will be evicted soon after its insertion, such as a scan,
which damages the working set with temporal locality. On
the other hand, when the workload exhibits high locality, D
should be pushed back to the left while an increased cache
efficiency is achieved. In the extreme scenario of D being
set to zero, this scheme degenerates to the LRU replacement
policy by inserting a missed line in the MRU position. If the

Main Function: (Threshold: € ) Subroutine FuncTuneS:
1: Sample 4 1: Increment s
2: If A < € Then 2: Sample 4
i' gecre]melln D 3: If Acurr > Aprev Then
Sample T
5 If .lréurr > Aprev Then 4 It lcurr = ¢ Then
6 If Acurr > € Then 5: Exit
7 Exit 6 Else
8 Else 7 Goto 1
9 Goto 3 8: EndIf
10: EndIf 9: Else
11: Else 10: Decrement s
123 Increment D 11 Sample 1
13: Sample 4 5 - -
14: If Acurr = Aprev Then 120 If Acurr = Aprev Then
15: If Acurr > € Then 13 If Acurr > & Then
16: Exit 14: Exit
17: Else 15 Else
18: Goto 12 16: Goto 10
é‘?f EndIf 17: EndIf
0: Else 18 Else
21: Call FuncTuneS 19- R
22 EndIf : eturn
23 EndIf 20:  Endlf
24: EndIf 21: EndIf

Fig.2  Pseudocode of the adaptive tuning algorithm.
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value of D is seven, the scheme is effectively identical to the
LIP. Theoretically, the preferable value of D is half of the
set associativity; however, it should be adapted according to
different access patterns on cache efficiency.

The variable s introduces frequency of reused lines into
the scheme. An increased sresults in increased highlights on
the reused lines, thus more lines can be promoted to the left
section of the cache list. In contrast, a decreased s prevents
some frequently reused lines from entering into the left sec-
tion of the cache list.

To simplify the adaptive process, the variable s should
be initially fixed with a preferable value, so that variable
D can be tuned according to the feedback value of the hit
ratio (4), which can be obtained by tracking the cache hits
and accesses across pieces of workload. After the value of
D is determined under a relatively stable A, s is tuned in
terms of the improved A. The adaptation here is triggered
automatically by a threshold value (&) set for A and stops
when the value of A falls into a small scope. Figure 2 depicts
the pseudocode of the adaptive tuning algorithm.

4. Experiments and Analysis
4.1 Experiments

All simulations were run on the execution-driven gem5 sim-
ulator, which merges the best aspects of M5 and GEMS [14].
Gemb5 provides cycle accurate simulation of a complete out-
of-order processor with a hierarchical memory system. For
the purposes of this study, only the LLC aspects of gem5
were modified to provide LLC management under AIP poli-
cies. The baseline LLC is a 2 MB eight-way set associative
cache with the LRU replacement policy for all performance
comparisons. All caches in the simulation used a 64 B line
size. Table 1 shows the baseline configuration for the simu-
lation system.

The SPEC CPU2006 benchmarks used in our study
were compiled for the ALPHA ISA with -O2 optimizations.
The reference input set was used for each benchmark. We
ran the benchmark to completion with about one-fifth of the
instructions forwarded for system warm-up.

Initially, D was set as 4, and s was set as 2. The thresh-
old of parameter A was 0.95 while the stable scope was 0.04.
The value of A in the experiment was calculated as follows:

Table 1  Baseline configuration for the simulation system.

Parameter Value

Single-core; 8 wide decode/commit;
8 wide issue; out-oforder

Tournament; BTB:4096; RAS:16; Choice:8192

Processor

Branch predictor

L1 I-cache 64KB; Line size: 64B; two-way LRU repl.; I ns latency

L1 D-cache 64KB; Line size: 64B; two-way LRU repl.; I ns latency

L2 cache(LLC) 2MB; Line size: 64 B; eight-way LRU repl.; 10 ns latency

Memory infinite size; 300 ns latency

Simulation mode System-call Emulation
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where h denotes the number of cache hits, and n denotes
the total number of cache accesses. Both of the numbers
were tracked in the adaptation period and sampled once with
every 1 M instructions. While A was less than 0.95, D was
tuned first, and then s was determined after D.

Figure 3 details the performance comparison measured
on the Misses Per 1000 Instructions (MPKI) metric of the
baseline system with the LRU replacement policy, and the
same system with the AIP policies. With fluctuations in D
from 2 to 5 and in s from 2 to 4 for different benchmarks, the
AIP system consistently outperformed the baseline system
by an average of 5.8% on MPKI. AIP’s strong performance
results from its effective cache management, which can be
viewed as a combination of the LRU, LFU and LIP policies.

4.2 Analysis

The set associativity affects the residency time of referenced
lines. Sometimes a few lines are evicted before they are
reused because the re-reference interval is greater than the
available set associativity. While keeping the same cache
size, we repeated the experiments with different config-
urations of set associativity from 16-way to 64-way and
128-way. The performance for benchmarks with frequently
reused lines in distance interval was improved gradually.
For brevity, these results were omitted because more exper-
iments are necessary before we can confirm this judgment.

We explored the preferable value of D under the condi-
tions wherein the best performance was achieved and found
that it’s about half of the set associativity, which differs from
results reported in previous studies [1],[5]. In our view, a
middle insertion in the list is a tradeoff between localities
and thrashing. Meanwhile, this method is effective in pre-
venting scans, as well as stale lines, by evicting them as soon
as possible.

5. Conclusion

Based on LRU replacement, the AIP provides dynamic in-
sertion and changeable promotion under a single unified
scheme for workloads with temporal locality, as well as with
frequently reused lines. AIP is effective in scan-resistance,
thrash-resistance, and dead-line removal. Furthermore, it
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is simple, flexible and scalable because neither complicated
computations for trade-off between LRU and LFU nor dy-
namic arbitration between sets under different policies to
choose the best one are required. As a result, the integra-
tion of AIP into existing LRU approximations is easy, with
minimal changes to LLC.

AIP can be extended to a shared LLC too. The major
idea of AIP, such as middle insertion and interval promotion,
can be used to protect a shared LLC from scans and thrash-
ing. At the same time, valuable lines are retained in the left
section of the cache list, contributing more hits too. Simi-
lar to PIPP [13], AIP partitions a shared LLC approximately
among demanding applications targeting at maximum cache
efficiency, as well as relative fairness. As a result, it makes
full use of the cache space, overcoming the problem of de-
graded cache efficiency incurred by the strictly partitioning
approaches. On the other hand, AIP should be improved be-
cause the original feedback mechanism cannot be effectively
used in a sharing LLC. We are now exploring new ways for
AIP to learn each application’s characteristic in a multi-core
system.
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