
1286
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

PAPER

A Simple and Faster Branch-and-Bound Algorithm for Finding
a Maximum Clique with Computational Experiments∗

Etsuji TOMITA†,††,†††a), Fellow, Yoichi SUTANI†,††††, Takanori HIGASHI†,†††††, Nonmembers,
and Mitsuo WAKATSUKI†,††††††, Member

SUMMARY Many problems can be formulated as maximum clique
problems. Hence, it is highly important to develop algorithms that can find
a maximum clique very fast in practice. We propose new approximate col-
oring and other related techniques which markedly improve the run time of
the branch-and-bound algorithm MCR (J. Global Optim., 37, pp.95–111,
2007), previously shown to be the fastest maximum-clique-finding algo-
rithm for a large number of graphs. The algorithm obtained by introducing
these new techniques in MCR is named MCS. It is shown that MCS is
successful in reducing the search space quite efficiently with low overhead.
Extensive computational experiments confirm the superiority of MCS over
MCR and other existing algorithms. It is faster than the other algorithms
by orders of magnitude for several graphs. In particular, it is faster than
MCR for difficult graphs of very high density and for very large and sparse
graphs, even though MCS is not designed for any particular type of graph.
MCS can be faster than MCR by a factor of more than 100,000 for some
extremely dense random graphs. This paper demonstrates in detail the ef-
fectiveness of each new techniques in MCS, as well as the overall contri-
bution.
key words: maximum clique, branch-and-bound, approximate coloring,
computational experiments

1. Introduction

In an undirected graph G, a clique is a subgraph of G, in
which all pairs of vertices are adjacent to each other. Find-
ing a maximum clique in a graph is an NP-hard problem,

Manuscript received July 26, 2012.
Manuscript revised January 23, 2013.
†The authors are with the Advanced Algorithms Research Lab-

oratory, The University of Electro-Communications, Chofu-shi,
182–8585 Japan.
††The author is with JST ERATO Minato Discrete Structure

Manipulation System Project, Sapporo-shi, 060–0814 Japan.
†††The author is also with Tokyo Institute of Technology, Tokyo,

152–8550 Japan.
††††The author is with Sony Corporation, Atsugi-shi, 243–0014

Japan.
†††††The author is with Japan Systems Co., Ltd., Tokyo, 151–8404

Japan.
††††††The author is with the Graduate School of Informatics and
Engineering, The University of Electro-Communications, Chofu-
shi, 182–8585 Japan.

∗A preliminary version of this paper was presented at WAL-
COM 2010. This work was supported in part by Grants-in-
Aid for Scientific Research Nos. 16300001, 19500010, 21300047,
22500009 and 25330009 from the Ministry of Education, Culture,
Sports, Science and Technology, Japan, and by a Special Grant
for the Strategic Information and Communications R&D Promo-
tion Programme (SCOPE) Project from the Ministry of Internal
Affairs and Communications, Japan. It was also supported by the
Kayamori Foundation of Informational Science Advancement.

a) E-mail: tomita@ice.uec.ac.jp
DOI: 10.1587/transinf.E96.D.1286

and it is difficult to obtain the exact solution efficiently [6].
It is also difficult to obtain even a satisfactory approximate
solution [13]. Nevertheless, we have many practical prob-
lems that can be formulated as maximum clique problems.
Such examples abound in bioinformatics [1]–[4], [8], [24],
[49], drug design [8], pattern recognition and image pro-
cessing [27], [2], [16], clustering [52], data mining [23], de-
sign of quantum circuits [26], design of DNA and RNA
sequences for biomolecular computation [19], coding the-
ory [35], design of wireless networks [22], and many oth-
ers [6].

To date, considerable theoretical progress has been
made in the development and analysis of exact algorithms
for finding a maximum clique or a maximum independent
set (which is a maximum clique of the complementary
graph), see e.g., [41], [11], and [31]. However, we should
note that an algorithm with theoretically better order does
not necessarily run faster in practice, see e.g., [34]. There-
fore, it is required to develop exact maximum-clique-finding
algorithms that run very fast in practice. DIMACS work-
shop on Implementation Challenge for Cliques together
with Coloring and Satisfiability was held to address this is-
sue [17].

One standard approach to developing fast algorithms is
based on the branch-and-bound method, where the most im-
portant point is how to reduce the search space efficiently
with low overhead. In fact, a significant reduction of the
search space is rather easily achieved with high overhead,
but it would result in an increase of the overall running time.
We developed a branch-and-bound algorithm that is referred
to as MCR [47]; in this algorithm, very simple approximate
coloring and ordering of vertices are employed to reduce the
search space. Here, it is very important to choose an appro-
priate trade-off between the time required for approximate
coloring along with ordering of vertices on the one hand
and the reduction in the search space thereby achieved on
the other. Hence, simplicity is very important to make the
overhead as low as possible. It was shown in computational
experiments that MCR clearly outperformed other existing
algorithms in finding a maximum clique for a large number
of graphs. However, it is not sufficiently fast to solve large
practical problems. Hence, much faster algorithms are still
in great demand.

In this paper, we propose a new approximate coloring
that can play a crucial role in the branch-and-bound algo-
rithm. Subsequently, we introduce a new adjunct ordered

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

TOMITA et al.: A SIMPLE AND FASTER BRANCH-AND-BOUND ALGORITHM FOR FINDING A MAXIMUM CLIQUE WITH COMPUTATIONAL EXPERIMENTS
1287

set of vertices for approximate coloring. Next, we present
a new technique for reconstructing the adjacency matrix of
a graph. This technique is clearly effective when the graph
is very large. The algorithm that is obtained by introduc-
ing these new techniques into MCR is named MCS. While
MCS inherits the simplicity of MCR to a large extent, MCS
is much more efficient in reducing the search space. The
large reduction in size of search spaces for MCS compared
to MCR is attributed to the new approximate coloring to-
gether with the adjunct ordered set of vertices for approxi-
mate coloring introduced in MCS. The resulting overhead
in MCS is still low due to the simplicity of the newly in-
troduced techniques. Extensive computational experiments
have shown that MCS is remarkably faster than MCR and
other algorithms. MCS is faster than other algorithms by
orders of magnitude for several graphs. In particular, it is
faster than MCR for difficult graphs with very high density
and for very large and sparse graphs, even though MCS is
not designed for any particular type of graph. MCS can be
faster than MCR by a factor of more than 100,000 for some
extremely dense random graphs.

We describe MCR briefly in Sect. 3, but the reader is
advised to refer to [47] for further details. The preliminary
versions of this paper appeared in [39] and [48]. This pa-
per demonstrates the details of the effectiveness of the indi-
vidual and overall contributions of the newly applied tech-
niques in MCS.

2. Definitions and Notation

(1) We consider a simple undirected graph G = (V, E) with
a finite set V of vertices and a finite set E of edges that com-
prises unordered pairs (v,w) (= (w, v)) of distinct vertices.
The set V of vertices is considered to be ordered, and the
i-th element in it is denoted by V[i]. A pair of vertices v and
w are said to be adjacent if (v,w) ∈ E.
(2) For a vertex v ∈ V , let Γ(v) be the set of all vertices that
are adjacent to v in G = (V, E), i.e., Γ(v) = {w ∈ V | (v,w) ∈
E}. We call |Γ(v)| the degree of v. Here, the number of
elements in a set S is denoted by |S |.
(3) For a subset R ⊆ V of vertices, G(R) = (R, E ∩ (R × R))
is a subgraph induced by R. An induced subgraph G(Q) is
said to be a clique if (v,w) ∈ E for all v,w ∈ Q ⊆ V , with
v � w. In this case, we may simply say that Q is a clique.
The largest clique in a graph is called a maximum clique, and
the number of vertices in a maximum clique in an induced
subgraph G(R) is denoted by ω(R).

3. Maximum Clique Algorithm MCR

3.1 Branch-and-Bound Algorithm

The basic branch-and-bound algorithm MCR [47] begins
with a small clique and continues finding larger and larger
cliques until one is found that can be verified to have the
maximum size. To be more precise, we maintain global
variables Q and Qmax, where Q consists of the vertices of

the current clique and Qmax consists of the vertices of the
largest clique found so far. Let R ⊆ V consist of vertices
(candidates) that may be added to Q. We begin the algo-
rithm by letting Q := ∅, Qmax := ∅, and R := V (the set
of all vertices). We select a certain vertex p from R, add it
to Q (Q := Q ∪ {p}), and then compute Rp := R ∩ Γ(p) as
the new set of candidate vertices. This procedure is applied
recursively while Rp � ∅.

When Rp = ∅ is reached, Q constitutes a maximal
clique. If Q is maximal and |Q| > |Qmax| holds, we replace
Qmax by Q. We then backtrack by removing p from Q and R.
We select a new vertex p from the resulting R and continue
the same procedure until R = ∅.

3.2 Greedy Approximate Coloring

In order to prune unnecessary searching, we used greedy
approximate coloring [42], [12], [43] of the vertices in
MCR. That is, each p ∈ R is sequentially assigned a mini-
mum possible positive integer value No[p], called the Num-
ber or Color of p, such that No[p] � No[r] if (p, r) ∈ E.
Consequently, we have the following property.

Proposition Let χ(R) be the minimum possible number of
colors to color a subgraph induced by R. Then,

ω(R) ≤ χ(R) ≤Max{ No[p] | p ∈ R}. �

Hence, if |Q|+Max{ No[p] | p ∈ R} ≤ |Qmax| holds, we need
not continue the search for R. This is the principal bounding
condition.

After Numbers (Colors) are assigned to all vertices in
R, we sort the vertices in ascending order with respect to
their Numbers. We refer to the numbering and sorting pro-
cedure as NUMBER-SORT [47]. In each step, select a ver-
tex p in R, beginning from the last (rightmost) vertex and
ending at the first (leftmost) vertex. As the result, a vertex
with the maximum Number is selected in a constant time in
each step. This is the reason why we sort the vertices in R
with respect to their Numbers.

Let maxno := Max{ No[r] | r ∈ R} and Ci := {r ∈
R | No[r] = i}, where i = 1, 2, . . . ,maxno. In other words,
Ci is a set of vertices whose Number (Color) is i. Thus,
when the NUMBER-SORT has been applied to R, we have
that R = C1 ∪C2 ∪ . . . ∪Cmaxno, where the vertices in R are
ordered in a manner such that first appear the vertices in C1,
and then the vertices in C2 follow, and so on.

3.3 Initial Sorting and Initial Numbering

In the first stage of algorithm MCQ [45], which is a pre-
decessor of MCR, vertices are sorted in descending order
with respect to their degrees and are assigned simple initial
Numbers. At the beginning of MCR, vertices are sorted and
assigned initial Numbers in a similar but more sophisticated
manner. To be more precise, the steps from {SORT} to just
above EXPAND(V,No) in Fig. 4 (Algorithm MCR) in [47]
is named EXTENDED INITIAL SORT-NUMBER to V .

See Sect. 3.3 (pp.628–630) of [49] for an example run

1288
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

of MCR.

4. New Algorithm

4.1 New Approximate Coloring

Approximate coloring is generally quite effectively used
in branch-and-bound algorithms for finding a maximum
clique [12], [43], [45], [47]. Here, we should note that the
minimization of the number of colors is not necessarily most
important. It is more important to reduce the number of
vertices from which searching is necessary. In this paper,
we propose a new approximate coloring following greedy
approximate coloring in Sect. 3.2 along this line [14]. Be-
cause of the bounding condition mentioned in Sect. 3.2, if
No[r] ≤ |Qmax| − |Q|, then it is not necessary to search
from vertex r. The number of vertices to be searched can
be reduced if the Number No[p] of vertex p for which
No[p] > |Qmax| − |Q| can be changed to a value that is less
than or equal to |Qmax| − |Q|. When we encounter such ver-
tex p with No[p] > |Qmax| − |Q|, we attempt to change its
Number in the following manner. Let Nop denote the origi-
nal value of No[p].

[Re-NUMBER p]
0) Let Noth := |Qmax| − |Q|. (Noth stands for Nothreshold.)
1) Attempt to find a vertex q in Γ(p) such that No[q] = k1 ≤
Noth, with |Γ(p) ∩Ck1 | = 1. (That is, Γ(p) ∩Ck1 = {q}.)
2) If such q is found, then attempt to find Number k2 (> k1)
such that no vertex in Γ(q) has Number k2. (This is possible
if Γ(q)∩Ck2 = ∅ but each vertex r ∈ Ck2 is adjacent to some
vertex in Ck1 − {q}. Here, it should be that k2 > k1 because
if k2 < k1 then q should have been Numbered by k2 (< k1).)
3) If such number k2 is found, then change the Number of
q and p so that No[q] = k2 and No[p] = k1.
(If no vertex q with such Number k2 is found, nothing is
done.)

When the Number of vertex q is changed from k1 to k2,
No[p] is changed from Nop to k1 (< Noth), see Fig. 1; thus,
it is no longer necessary to search from p.

The exact procedure Re-NUMBER is shown in Fig. 2.
To save time, we apply it only when No[p] = maxno. The
new approximate coloring is described in the first part of
Fig. 3 under the heading {NUMBER}; it can be seen that

Fig. 1 ReNumbering.

Fig. 2 Procedure Re-NUMBER.

Fig. 3 Procedure Re-NUMBER-SORT.

TOMITA et al.: A SIMPLE AND FASTER BRANCH-AND-BOUND ALGORITHM FOR FINDING A MAXIMUM CLIQUE WITH COMPUTATIONAL EXPERIMENTS
1289

Re-NUMBER follows the conventional greedy approximate
coloring. The second part of Fig. 3, under the heading
{SORT}, describes the sorting of the vertices in R in as-
cending order with respect to their Numbers (Refer to the
end of Sect. 3.2). Note that as shown in Fig. 3, vertex r
with No[r] ≤ Noth need not be sorted since the searching
operation need not begin from r according to the bounding
condition.

In Fig. 3, assume that Va is identical to R for a while
(until Va is introduced in Sect. 4.2).

We employ the new procedure Re-NUMBER-SORT
(in Fig. 3) instead of the procedure NUMBER-SORT used in
MCR [47] in order to make more effective use of the bound-
ing condition.

The time complexity of Re-NUMBER-SORT is
O(|R|3), while that of NUMBER-SORT [47] is O(|R|2).

4.2 Adjunct Ordered Set of Vertices for Approximate Col-
oring

As noted in [12], [43], [9], [45], and [47], the ordering of
vertices is crucial in algorithms for finding a maximum
clique. The result of approximate coloring greatly depends
on the order of vertices because sequential coloring is the
main component in the procedure. In MCR, the vertices are
sorted in descending order mainly with respect to their de-
grees. When Numbering procedures are applied, the ver-
tices are sorted in ascending order with respect to their
Numbers, and the initial order of the vertices with the same
Number is inherited in the subsequent subproblems [45],
[47]. However, the application of Re-NUMBER, which is
described in Sect. 4.1, changes the Numbers of the vertices,
thereby making the vertices disordered with respect to their
degrees. We can reduce the search space by sorting ver-
tices in R in descending order with respect to their degrees
before every application of approximate coloring. That is,
the reduction of the search space is most effective if the
minimum possible Number is assigned to a vertex with the
maximum degree in each step of greedy approximate color-
ing [33]. However, the sorting of vertices is a computational
burden and reduces the overall running time only for dense
graphs [33]. The aim of the present study is to develop a
simple and faster algorithm whose use is not confined to any
particular type of graph. So, in addition to the ordered set
R of vertices, we simply introduce a new particular adjunct
ordered set Va of vertices that preserves the order of the ver-
tices sorted in descending order with respect to their degrees
in the first stage. The adjunct ordered set Va of vertices was
first applied in [37]. We apply the procedure Re-NUMBER-
SORT shown in Fig. 3 to the vertices in Va, beginning from
the first (leftmost) vertex and ending at the last (rightmost)
vertex. Thus, we can avoid the undesirable effect of Re-
NUMBER.

As mentioned in Sect. 3.1, we select a vertex in the or-
dered set R for searching, beginning from the last (right-
most) vertex and continuing up to the first (leftmost) vertex.

Fig. 4 Adjunct ordered set Va of vertices for approximate coloring.

Fig. 5 Reconstruction of the adjacency matrix.

For an example graph consisting of vertices A, B, . . . ,G in
the center of Fig. 4, the ordered sets of vertices Va and R are
as shown in MCS part.

Based on the analysis of our previous work [33],
we succeeded in improving our earlier maximum-clique-
finding algorithms [12], [43] by adaptively applying sort-
ing and/or numbering (coloring) of vertices [20], where [12]
and [43] are the predecessors of MCQ [45], MCR [47], and
MCS. In a similar way in [20], but independently, Konc
and Janežič succeeded in improving MCQ [45] to have Max-
CliqueDyn (MCDyn for short) [21] that was published after
MCR [47].

4.3 Reconstruction of the Adjacency Matrix

Each graph is stored as an adjacency matrix in the computer
memory. Sequential numbering in Re-NUMBER-SORT is
carried out according to the initial order of vertices in the
adjunct ordered set Va, as described in Sect. 4.2. Taking
this into account, we rename the vertices of the graph and
reconstruct the adjacency matrix so that the vertices are
consecutively ordered in a manner identical to the initial or-
der of vertices obtained at the beginning of MCR. See Fig. 5
for an example. The graph in the center of Fig. 4 is the result
of this reconstruction of the adjacency matrix.

The above-mentioned reconstruction of the adjacency
matrix results in a more effective use of the cache memory
since it facilitates the use of localized memory.

1290
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

4.4 Algorithm MCS

The new algorithm obtained by introducing the techniques
described in Sects. 4.1–4.3 into MCR is named MCS and is
shown in Fig. 6.

Note here it could happen, in {SORT} part of Fig. 3,
that maxno < Noth + 1, hence maxno < |Qmax| − |Q|+ 1, i.e.,
|Q|+maxno ≤ |Qmax|, thus, for-loop (sorting) is not executed.
In this case, in EXPAND() in Fig. 6, |Q| + No[p] > |Qmax|
is false, then 8 lines following if |Q| + No[p] > |Qmax| then
is skipped, and the above for-loop (sorting) has no signifi-
cance.

4.5 Effectiveness of the Reduction of the Search Space and
the Running Time

We confirm the effectiveness of the algorithm MCS in re-
ducing the search space. Some characteristic results of com-
putational experiments conducted under the conditions de-
scribed in Sect. 5 (Computational experiments) for MCR
and MCS are listed in Table 1.

Table 1 lists the number of branches, that is, the to-
tal number of EXPAND() calls excluding the first call, of
MCR and MCS for random graphs r200.9 – r500.994 and
several DIMACS benchmark graphs in the leftmost column.
The random graphs r200.9, r200.95, and r200.98 are graphs

Table 1 Comparison of branches.

Graph Branches × 10−3 CPU time

Name ω MCR MCS (MCR/MCS)b (MCR/MCS)t

r200.9 40-44 97,627 6,310 15 9
r200.95 58-66 104,801 2,735 38 22
r200.98 90-103 2,357 4 589 155
r300.8 28-29 253,185 48,685 5.2 3.2
r300.98 120 4.03 × 106 31,619 127 108
r500.7 22-23 675,344 227,922 3.0 2.1
r500.994 263 > 4.29 × 106 70 > 61, 286 > 256, 410
brock200 1 21 482 144 3.3 2.0
brock400 1 27 329,599 89,389 3.7 2.6
brock400 4 33 114,925 28,644 4.0 2.6
brock800 1 23 2,715,369 1,091,680 2.5 1.9
MANN a27 126 38 9 13 4.2
MANN a45 345 2,952 225 13 11
p hat300-3 36 1,546 235 6.6 4.3
p hat500-2 36 408 64 6.4 4.4
p hat500-3 50 138,300 7,923 18 12
p hat700-2 44 4,115 324 12.7 7.9
p hat700-3 62 3,733,665 88,168 42 29
p hat1000-2 46 197,147 12,618 16 11
san200 0.7 1 30 2.94 0.70 4.2 2.6
san200 0.9 1 70 195 17 11.5 5.5
san200 0.9 2 60 595 37 16 11
san400 0.7 3 22 410 124 3.3 2.8
san400 0.9 1 100 74 2 37 28
san1000 15 230 82 2.8 2.3
sanr200 0.9 42 40,470 3,471 11.7 7.0
sanr400 0.7 21 89,124 28,513 3.1 2.1
gen200 p0.9 44 44 583 35 17 12
gen200 p0.9 55 55 2,335 112 21 13
gen400 p0.9 55 55 > 4.29 × 106 2,894,935 > 1.5 100
gen400 p0.9 65 55 > 4.29 × 106 3,332,982 > 1.3 > 131

Fig. 6 Algorithm MCS.

TOMITA et al.: A SIMPLE AND FASTER BRANCH-AND-BOUND ALGORITHM FOR FINDING A MAXIMUM CLIQUE WITH COMPUTATIONAL EXPERIMENTS
1291

Table 2 Comparison of algorithms (Branches).

Graph Branches × 10−3

Name ω MCR MCR-R MCR* MCR*-R MCS
r200.9 40-44 97,627 18,401 20,660 6,310 6,310
r300.8 28-29 253,185 89,147 116,636 48,685 48,685
r500.7 22-23 675,344 346,365 422,930 227,922 227,922
brock200 1 21 482 218 296 144 144
brock400 1 27 329,599 139,299 182,920 89,389 89,389
brock400 4 33 114,925 47,783 62,859 28,644 28,644
brock800 1 23 2,715,369 1,471,741 1,905,718 1,091,680 1,091,680
MANN a27 126 38 > 4.29 × 106 38 9 9
MANN a45 345 2,952 > 4.29 × 106 2,952 225 225
p hat300-3 36 1,546 559 497 235 235
p hat500-3 50 138,300 34,098 18,185 7,923 7,923
p hat700-2 44 4,115 1,130 701 324 324
p hat700-3 62 3,733,665 692,368 201,949 88,168 88,168
p hat1000-2 46 197,147 55,848 25,648 12,618 12,618
san200 0.9 1 70 195 48 95 17 17
san200 0.9 2 60 595 76 200 37 37
san400 0.7 3 22 410 211 244 124 124
san400 0.9 1 100 74.0 2.4 20.0 2.1 2.1
san1000 15 230 162 193 82 82
sanr200 0.9 42 40,470 7,496 11,775 3,471 3,471
sanr400 0.7 21 89,124 43,206 54,622 28,513 28,513

Table 3 Comparison of algorithms (CPU time).

Graph CPU time [sec]

Name ω MCR MCR-R MCR* MCR*-R MCS
r200.9 40-44 647 197 158 82 74
r300.8 28-29 1,264 712 637 422 394
r500.7 22-23 3,268 2,552 2,173 1,741 1,539
brock200 1 21 1.72 1.26 1.16 0.90 0.86
brock400 1 27 1,771 1,157 1,057 748 693
brock400 4 33 639 410 378 262 248
brock800 1 23 17,789 13,991 12,900 10,204 9,347
MANN a27 126 2.54 > 105 2.56 0.82 0.78
MANN a45 345 3,090 > 105 3,089 314 281
p hat300-3 36 10.82 6.08 4.07 2.65 2.54
p hat500-3 50 1,788 649 270 165 150
p hat700-2 44 44.42 18.27 9.28 6.34 5.60
p hat700-3 62 68,187 18,401 4,374 2,504 2,392
p hat1000-2 46 2,434 1,002 376 239 221
san200 0.9 1 70 1.20 0.44 0.70 0.23 0.22
san200 0.9 2 60 4.17 0.70 1.35 0.41 0.41
san400 0.7 3 22 3.60 2.17 2.55 1.46 1.44
san400 0.9 1 100 3.43 0.14 1.00 0.12 0.12
san1000 15 4.82 3.45 4.75 2.20 2.14
sanr200 0.9 42 289 86 94 45 41
sanr400 0.7 21 379 284 248 197 181

Table 4 Effect of reconstruction of the adjacency matrix.

Graph CPU time [sec]

n p ω dfmax MCR MCR*-R MCS MCR*-R/MCS
3,000 0.1 6-7 0.80 0.73 0.73 0.60 1.22
3,000 0.2 9 16.9 13.0 12.3 9.5 1.30
3,000 0.3 11-12 631 360 324 288 1.13
3,000 0.4 14 44,592 18,894 15,902 14,442 1.10
5,000 0.1 7 6.3 5.3 5.4 3.3 1.64
5,000 0.2 9 259 197 193 138 1.40
5,000 0.3 12 14,008 8,668 7,921 5,818 1.36

10,000 0.1 7-8 137 100 100 60 1.67
10,000 0.2 10 9,417 8,055 7,876 4,389 1.79
15,000 0.1 8 793 511 496 327 1.52
20,000 0.1 8 2,665 1,737 1,705 1,179 1.45

1292
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

Table 5 CPU time [sec] for random graphs. (To be continued.)

Graph dfmax MCR MCS New MCDyn
n p ω [17] [47] [28] [21]

0.5 9-10 0.00140 0.00078 0.00077
0.6 11-13 0.0041 0.0017 0.0016 0.0022 0.0025
0.7 14-16 0.0180 0.0047 0.0036 0.0067 0.0066

100 0.8 19-21 0.140 0.014 · 0.008 0.065 0.018
0.9 29-32 3.67 0.038 ◦ 0.013 0.663 0.034
0.95 39-48 23.736 0.011 · 0.003 0.196 0.005
0.98 56-68 26.5401 0.0012 0.0009

0.7 16-18 0.359 0.074 · 0.048 0.084
0.8 23 6.88 0.55 ◦ 0.23 0.54

150 0.9 36-39 1058.96 5.26 ◦ 1.00 3.09
0.95 50-59 37,436.79 3.94 0.35 0.36
0.98 73-85 > 105 0.243 �◦ 0.006

0.4 9-10 0.0082 0.0049 0.0045 0.0067 0.0070
0.5 11-12 0.038 0.017 0.015 0.020 0.028
0.6 14 0.29 0.09 0.07 0.17 0.12

200 0.7 18-19 3.85 0.68 · 0.41 3.02 0.77
0.8 24-27 192.7 12.3 ◦ 4.5 147.3 9.9
0.9 40-44 > 105 647 ◦ 74 250
0.95 58-66 > 105 1,272 59 54
0.98 90-103 > 105 30.9 �� 0.2

0.4 9-10 0.360 0.028 0.026 0.047 0.048
0.5 12-13 4.88 0.15 0.13 0.20 0.24
0.6 15-16 144.1 1.4 1.0 3.5 1.9

300 0.7 19-21 26,236 23 · 12 121 26
0.8 28-29 > 105 1,264 ◦ 394 1,288
0.9 49 1,475,387 �◦ 62,607
0.98 120 > 105 282,917 �� 2,623
0.99 154 > 105 732.49 ��� 0.23

400 0.99 188 > 9.5 × 106 ��� 1,030

0.3 8-9 0.079 0.052 0.050 0.083 0.097
0.4 11 0.65 0.35 0.31 0.60 0.52

500 0.5 13-14 9.0 3.6 2.8 7.3 5.2
0.6 17 242 63 · 40 183 82
0.7 22-23 24,998 3,268 ◦ 1,539

0.994 263 > 1.5 × 107 > 107 ����� 39
Entries marked�����,���,��,�◦,�, ◦, and · are respectively
at least 100,000, 1,000, 100, 20, 10, 2, and 1.5 times faster than any of the others in the same row.

with 200 vertices and with edge probabilities 0.9, 0.95, and
0.98, respectively. The number of branches specified for
r200.9 is the average over 10 graphs, and the number of
branches given for r200.95 and r200.98 is the average over
100 graphs. The second column (ω) lists the ranges of
the maximum clique sizes obtained. In Table 1, the val-
ues for graphs with names of the form rn.p (n = 300, 500
and p = 0.98, 0.994) are obtained from one random graph
with n vertices and with edge probability p. The number of
branches given for r300.8 and r500.7 is the average over 10
graphs. The number of branches is related to the size of the
search space. (Note that 4.29×109 = 232.) The fifth column
(MCR/MCS)b lists the ratio of the number of branches of
MCR to that of MCS. The ratio of the CPU time required
by MCR to that of MCS for each graph is given in the last
column (MCR/MCS)t for reference and has been obtained
from Tables 5 and 6 in Sect. 5. Table 1 confirms that MCS
is quite successful in reducing the search space. In addition,

we can see that the reduction of the search space by MCS
effectively contributes to the reduction of the running time.
We have confirmed that the search space of MCS is consid-
erably smaller than that of MCR for all graphs in Sect. 5.

4.6 Details of the Effectiveness of MCS

We examine the individual contributions given in Sects. 4.1–
4.3 for the effectiveness of MCS.

We give names for intermediate algorithms between
MCR and MCS as follows.
MCR-R: improved MCR obtained by introducing only the
technique in Sect. 4.1 [14].
MCR*: improved MCR obtained by introducing only the
technique in Sect. 4.2 [37].
MCR*-R: improved MCR obtained by introducing the com-
bination of the techniques in Sects. 4.1 and 4.2 [38].

TOMITA et al.: A SIMPLE AND FASTER BRANCH-AND-BOUND ALGORITHM FOR FINDING A MAXIMUM CLIQUE WITH COMPUTATIONAL EXPERIMENTS
1293

Table 5 (Continued.)

Graph dfmax MCR MCS New MCDyn
n p ω [17] [47] [28] [21]

0.2 7-8 0.170 0.134 0.129 0.208 0.344
0.3 9-10 1.98 1.28 1.15 1.64 2.08

1,000 0.4 12 33.3 16.1 13.2 23.2 30.1
0.5 15 1,107 395 290 585
0.6 19-20 106,776 24,986 · 15,317

0.66 23 555,089 ◦ 275,964
0.998 618 > 107 ����� 46

1,500 0.998 997 > 107 ����� 13

2,000 0.9995 1,453 > 107 ����� 61

0.1 6-7 0.8 0.7 0.6
3,000 0.2 9 16.9 13.0 9.5

0.3 11-12 631 360 288
0.4 14 44,592 18,894 14,442

0.1 7 6.3 5.3 · 3.3
5,000 0.2 9 259 197 138

0.3 12 14,008 8,668 5,818

10,000 0.1 7-8 137 100 · 60
0.2 10 9,417 8,055 · 4,389

15,000 0.1 8 793 511 · 327

20,000 0.1 8 2,665 1,737 1,179
Entries marked�����, ◦, and · are respectively
at least 100,000, 2, and 1.5 times faster than any of the others in the same row.

The results of the comparison of these algorithms for
some of the graphs in Table 1 are shown in Tables 2 and 3.
(The numbers of branches of MCR*-R and MCS are exactly
the same.)

Table 2 shows that MCR-R and MCR* are suc-
cessful in reducing the search space of MCR for most
of the graphs, but with some exception (MANN a27,
MANN a45). Note that, for some graphs (r200.9, . . . ,
brock800 1, sanr400 0.7)), MCR* is faster than MCR-R
while the number of branches of MCR* is larger than that of
MCR-R. This is because of the overhead of time-consuming
Re-NUMBER procedure. As a result of combination of
techniques in Sects. 4.1–4.2, MCR*-R is successful to re-
duce the search space of MCR efficiently for all the graphs
in Table 2, and hence MCR*-R is faster than MCR for all of
these graphs.

The effect of the reconstruction of the adjacency ma-
trix in Sect. 4.3 (MCR*-R versus MCS) is not significant in
these Tables since these graphs are not large in the number
of vertices, so we compared MCR*-R and MCS for large
graphs. The result is shown in Table 4, where n stands for
the number of vertices and p stands for the edge probabil-
ity. They are the same as the corresponding ones in Table 5
(Sect. 5.1). The column MCR*-R/MCS shows the ratio of
each CPU time required by MCR*-R to that by MCS for
each graph.

The table demonstrates the clear effectiveness of this
technique for large graphs that have more than or equal to

5,000 vertices. Such effect is larger than that obtained by
MCR*-R over MCR for these graphs. Note that the effec-
tiveness of the reconstruction of the adjacency matrix de-
pends not only on the tested graphs but also on the comput-
ers used.

In summary, the effectiveness of MCS over MCR is ob-
tained as the combination of all the techniques in Sects. 4.1–
4.3.

5. Computational Experiments

We carried out computational experiments in order to
demonstrate the overall superiority of MCS over MCR.
Both MCR and MCS were implemented in exactly the same
manner in the programming language C. The computer
used, which had a Linux operating system, is described in
Appendix. We also executed the DIMACS benchmark pro-
gram dfmax [17], [18] as a standard. The computation times
for other algorithms are calibrated using the ratios shown in
Appendix.

5.1 Results for Random Graphs

Random graphs are generated for each pair of n (number of
vertices) and p (edge probability) listed in Table 5. These
graphs are generated such that there exists an edge with
probability p for each pair of vertices. The average CPU
times [sec] required to solve these graphs when using df-
max, MCR, and MCS are listed in Table 5. The CPU times

1294
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

Table 6 CPU time [sec] for DIMACS benchmark graphs. (To be continued.)

Graph dfmax MCR MCS New ILOG MCDyn
Name n density ω [17] [47] [28] [30] [21]
brock200 1 200 0.754 21 14.53 1.72 · 0.86 12.12 7.94 1.39
brock200 2 200 0.496 12 0.028 0.011 0.010 0.011 0.215 0.016
brock200 3 200 0.605 15 0.210 0.055 0.042 0.098 0.637 0.066
brock200 4 400 0.658 17 0.90 0.22 · 0.14 0.22 1.58 0.22
brock400 1 400 0.75 27 22,051 1,771 · 693 8,401 1,050
brock400 2 400 0.75 29 13,519 726 · 297 5,860 465
brock400 3 400 0.75 31 14,795 1,200 · 468 3,316 851
brock400 4 400 0.75 33 10,633 639 · 248 4,483 476
brock800 1 800 0.65 23 > 105 17,789 9,347 > 10, 667 12,807
brock800 2 800 0.65 24 > 105 16,048 8,368 > 10, 668 12,060
brock800 3 800 0.65 25 91,031 10,853 5,755 > 10, 669 8,271
brock800 4 800 0.65 26 78,737 7,539 · 3,997 > 10, 670 6,411

c-fat200-1 200 0.077 12 0.0005 0.0006 0.0007 0.0022 0.0004
c-fat200-2 200 0.163 24 0.0006 0.0011 0.0012 0.0022 0.0004
c-fat200-5 200 0.426 58 268 0.0017 0.0020 1.7433 0.0027
c-fat500-1 500 0.036 14 0.0031 0.0028 0.0033 0.0156 · 0.0018
c-fat500-2 500 0.073 26 0.0032 0.0046 0.0054 0.0179 0.0027
c-fat500-5 500 0.186 64 1.713 0.013 0.013 2,331 · 0.008
c-fat500-10 500 0.374 126 > 105 0.024 0.026 0.016 0.023 0.031

hamming6-2 64 0.905 32 0.01064 0.000074 0.000088 0.002232 0.000446
hamming6-4 64 0.349 4 0.00015 0.000076 0.000097 0.002232 0
hamming8-2 256 0.969 128 > 105 0.0022 0.0025 0.0089 0.0161
hamming8-4 256 0.639 16 1.85 0.22 0.20 0.19 3.10 0.13
hamming10-2 1,024 0.990 512 > 105 0.17 0.19 0.56 0.77 5.92

johnson8-2-4 28 0.556 4 0.00004 0.00002 0.00002 0.00223 0
johnson8-4-4 70 0.768 14 0.0045 ◦ 0.0004 ◦ 0.0004 0.0022 0.0009
johnson16-2-4 120 0.765 8 0.75 0.14 0.13 ◦ 0.062 2.81 0.608

keller4 171 0.649 11 0.374 0.028 0.025 0.112 0.370 0.036
MANN a9 45 0.927 16 0.0413 ◦ 0.0001 ◦ 0.0001 0.0022 0.0004
MANN a27 378 0.990 126 > 105 2.5 ◦ 0.8 > 2, 232 13.7 6.8
MANN a45 1,035 0.996 345 > 105 3,090 � 281 > 10, 670 8,069

p hat300-1 300 0.244 8 0.0067 0.0048 0.0050 0.0089 0.0814 0.0049
p hat300-2 300 0.489 25 0.63 0.03 0.02 0.22 0.44 0.06
p hat300-3 300 0.744 36 779.7 10.8 ◦ 2.5 30.2 8.1
p hat500-1 500 0.253 9 0.051 0.031 0.030 0.065 1.704 0.037
p hat500-2 500 0.505 36 132.9 3.1 ◦ 0.7 95.7 24.2 2.5
p hat500-3 500 0.752 50 > 105 1,788 ◦ 150 9,441 660
p hat700-1 700 0.249 11 0.20 0.11 0.10 0.15 4.45 0.17
p hat700-2 700 0.498 44 5,299.9 44.4 ◦ 5.6 189.5 22.7
p hat700-3 700 0.748 62 > 105 68,187 ◦ 2,392 > 10, 670 12,128
p hat1000-1 1,000 0.245 10 1.05 0.60 0.49 1.30 20.59 0.88
p hat1000-2 1,000 0.489 46 > 105 2,434 ◦ 221 12,478 767
p hat1500-1 1,500 0.253 12 10.1 5.1 3.9 356.2 6.9
p hat1500-2 1,500 0.506 65 > 105 722,733 �◦ 16,512 > 10, 670 > 19, 286

Entries marked�◦,�, ◦, and · are respectively
at least 20, 10, 2, and 1.5 times faster than any of the others in the same row.

are averaged over 10 random graphs for each pair of n and
p. However, when the CPU time [sec] is greater than 105,
the individual value of the graph, instead of the average, is
listed. The CPU times required to solve the graphs with
n ≤ 200 and p ≥ 0.95 are averaged over 100 graphs be-
cause of the large variations in these graphs and the short
running time of MCR and MCS. For graphs with n ≥ 300
and p ≥ 0.9, the CPU time for only one graph is considered
for each pair of n and p (105 seconds � 1.16 days, and 107

seconds � 116 days). The third column (ω) lists the ranges

of the sizes of the maximum cliques obtained.
The calibrated CPU times for New [28] and MC-

Dyn [21] are also listed for reference. The boldface entries
indicate the fastest time in the row. In Table 5, it is ob-
served that MCS is faster than MCR for all graphs. MCS
is particularly faster than MCR for dense graphs. MCS is
the fastest for all the random graphs listed in Table 5, except
for that with [n = 200, p = 0.9]. For this graph, MCDyn
is slightly faster than MCS. The calibrated CPU time by
COCR [32] for [n = 200, p = 0.9] is 37 seconds that is the

TOMITA et al.: A SIMPLE AND FASTER BRANCH-AND-BOUND ALGORITHM FOR FINDING A MAXIMUM CLIQUE WITH COMPUTATIONAL EXPERIMENTS
1295

Table 6 (Continued.)

Graph dfmax MCR MCS New ILOG MCDyn
Name n density ω [17] [47] [28] [30] [21]
san200 07 1 200 0.700 30 2,578 0.021 0.008 0.125 0.267 0.011
san200 07 2 200 0.700 18 16,110 0.007 0.005 0.009 0.274 0.013
san200 0.9 1 200 0.900 70 > 105 1.20 0.22 ◦ 0.06 0.77 0.43
san200 0.9 2 200 0.900 60 > 105 4.2 ◦ 0.4 1.0 1.9 1.3
san200 0.9 3 200 0.900 44 42,643 0.16 ◦ 0.06 135.3 5.95
san400 0.5 1 400 0.500 13 433 0.022 0.020 ◦ 0.007 0.881 0.023
san400 0.7 1 400 0.700 40 > 105 1.76 0.54 > 2, 232 17.24 0.73
san400 0.7 2 400 0.700 30 > 105 0.33 · 0.13 112.97 50.02 0.26
san400 0.7 3 400 0.700 22 > 105 3.6 ◦ 1.4 202.4 2.9
san400 0.9 1 400 0.900 100 > 105 3.4 �◦ 0.1 1,259.3 59.3
san1000 1,000 0.502 15 > 105 4.8 2.1 � 0.1 76.1 1.4

sanr200 0.7 200 0.702 18 3.06 0.569 · 0.338 3.150 3.185 0.523
sanr200 0.9 200 0.898 42 86,954 289 ◦ 41 111 92
sanr400 0.5 400 0.501 13 2.12 0.89 0.72 1.48 12.68 1.02
sanr400 0.7 400 0.700 21 2,426 379 181 2,325 257

DSJC500.5 500 0.502 13 9.9 4.2 3.1
DSJC1000.5 1,000 0.500 15 1,132 405 293

gen200 p0.9 44 200 0.900 44 48,262 5.39 � 0.47
gen200 p0.9 55 200 0.900 55 9,281.0 15.0 � 1.2
gen400 p0.9 55 400 0.900 55 5,846,951 �� 58,431
gen400 p0.9 65 400 0.900 65 > 2 × 107 �� 151,597
gen400 p0.9 75 400 0.900 75 > 107 �◦ 294,175

C125.9 125 0.898 34 50.05 0.24 ◦ 0.06
C250.9 250 0.899 44 > 106 44,214 � 3,257
C2000.5 2,000 0.500 16 292,291 102,571 71,862

Entries marked��,�•,�◦,�, ◦, and · are respectively
at least 100, 50, 20, 10, 2, and 1.5 times faster than any of the others in the same row.

half of that of MCS. The calibrated CPU times by COCR for
[n = 150, p = 0.9] and [n = 200, p = 0.8] are 1.16 and 8.7
seconds, respectively, which are larger than those of MCS
and smaller than those of MCR [47]. COCR is specially de-
signed for solving the maximum clique problem for dense
graphs.

For the graphs with p ≥ 0.99 in Table 5, MCS is faster
than MCR by a factor of greater than 100,000. Note here
that tested random graphs for New and MCDyn are not ex-
actly the same ones for MCS. Therefore, the difference of
the calibrated CPU times could be meaningful if the differ-
ence is more than 2 times or so.

Regarding dfmax, it was stated in [18] that “It . . . may
be hard to beat on sparser graphs, especially random ones.”
Prior to the development of MCQ [45], dfmax was widely
recognized as the fastest maximum clique algorithm for
sparse graphs, as stated in [10] and [28]. MCQ and its suc-
cessors are faster than dfmax, even for sparse graphs. MCS
is the only algorithm that is more than twice as fast as dfmax
for sparse graphs with 10,000 or more vertices (Table 5).

5.2 Results for DIMACS Benchmark Graphs

Table 6 lists the CPU times required by MCS and other
algorithms to solve the DIMACS benchmark graphs [17],
where the calibrated CPU times for New [28], ILOG [30],
and MCDyn [21] are included for reference. In this table,

density represents the edge density of the graph. The bold-
face entries indicate the fastest time among the times ob-
tained within the time limits in the row. From this table,
it is confirmed that MCS is faster than MCR and the other
algorithms in Table 6, excluding easy graphs which can be
solved by MCS in less than 0.3 seconds. The only one ex-
ceptional graph is san1000 for which New is the fastest and
MCDyn is the second fastest.

MCS is almost always considerably faster than
χ+DF [10], COCR [32], MIPO [5], SQUEEZE [7], and Tar-
get [36] (see Table 4 in [47]). Although COCR is spe-
cially designed to efficiently find a maximum clique in
dense graphs, the calibrated CPU time of COCR to solve
MANN a27 with high density (density = 0.990) is 2.8 sec-
onds, that is 3.5 times larger than that of MCS. Further,
MCS is confirmed to be much faster than MC of Wood [51]
and CP+SDP of Hoeve [15], as is evident in [30].

In addition, as one of the practical applications in cod-
ing theory [35], MCS solved 2dc.1024 (in Graphs From
Two-Deletion-Correcting Codes) in 104.7 seconds (n =
1, 024, density = 0.68, ω = 16). MCS is also successfully
applied to solve a problem in bioinformatics [24] where
preliminary experiments confirmed the superiority of MCS
over MCR and MCQ for this problem.

1296
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

6. Concluding Remarks

Our new algorithm, MCS, retains the simplicity of our ear-
lier algorithms while further reducing the search space quite
efficiently with low overhead. This paper has made the ef-
fectiveness of the individual and overall contributions of the
newly applied techniques in MCS clearer. Note that the ef-
fectiveness of MCS depends not only on the tested graphs
but also on the computers used, as mentioned in Sect. 4.6.

Our proposed techniques will be useful for gener-
ating large maximal cliques [25], [46]. Combining some
near-maximum-clique-finding algorithm as a preprocessor
of MCS can make MCS more efficient [38]. In [38], an im-
proved very simple near-maximum-clique-finding algorithm
in [44] was employed. Improving MCS by adaptively apply-
ing sorting and/or numbering (coloring) of vertices along the
lines of [20] is our next work. Parallel processing of MCS
is also promising [40], [50].

Acknowledgements

We would like to express our sincere gratitude to S. Taka-
hashi for his contribution in an early stage of this work. We
thank E. Harley, T. Akutsu, M. Haraguchi, S. Minato, T.
Nishino, the reviewers and the editor of this Transactions,
and many others for useful comments, kind help, and en-
couragement. We wish to thank P.M. Pardalos and his col-
leagues for reviewing our earlier works including [43] and
[44] in their surveys [6], [29]. Our earlier works received
considerable attention by their reviews. Thanks are also
to D.S. Johnson and M.A. Trick for their efforts in orga-
nizing the Second DIMACS Implementation Challenge for
Cliques, Coloring, and Satisfiability [17]. They made it eas-
ier for us to compare the results of different algorithms car-
ried out on various computers.

References

[1] T. Akutsu, M. Hayashida, D.K.C. Bahadur, E. Tomita, J. Suzuki, and
K. Horimoto, “Dynamic programming and clique based approaches
for protein threading with profiles and constraints,” IEICE Trans.
Fundamentals, vol.E89-A, no.5, pp.1215–1222, May 2006.

[2] D.K.C. Bahadur, T. Akutsu, E. Tomita, T. Seki, and A. Fujiyama,
“Point matching under non-uniform distortions and protein side
chain packing based on efficient maximum clique algorithms,”
Genome Inform., vol.13, pp.143–152, 2002.

[3] D.K.C. Bahadur, E. Tomita, J. Suzuki, K. Horimoto, and T. Akutsu,
“Protein side-chain packing problem: A maximum edge-weight
clique algorithmic approach.” J. Bioinform. and Comput. Biol.,
vol.3, pp.103–126, 2005.

[4] D.K.C. Bahadur, E. Tomita., J. Suzuki, K. Horimoto, and T. Akutsu,
“Protein threading with profiles and distance constraints using clique
based algorithms,” J. Bioinform. and Comput. Biol., vol.4, pp.19–
42, 2006.

[5] E. Balas, S. Ceria, G. Cornuéjols, and G. Pataki, “Polyhedral meth-
ods for the maximum clique problem,” in DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, vol.26, ed.
D.S. Johnson and M.A. Trick, pp.11–28, 1996.

[6] I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo, “The maxi-
mum clique problem,” in Handbook of Combinatorial Optimization,

Supplement vol.A, ed. D.-Z. Du and P.M. Pardalos, pp.1–74, Kluwer
Academic Publishers, 1999.

[7] J.-M. Bourjolly, P. Gill, G. Laporte, and H. Mercure, “An exact
quadratic 0-1 algorithm for the stable set problem,” in DIMACS
Series in Discrete Mathematics and Theoretical Computer Science,
vol.26, ed. D.S. Johnson and M.A. Trick, pp.53–73, 1996.

[8] S. Butenko and W.E. Wilhelm, “Clique-detection models in compu-
tational biochemistry and genomics — Invited Review,” Eur. J. Oper.
Res., vol.173, pp.1–17, 2006.

[9] R. Carraghan and P.M. Pardalos, “An exact algorithm for the maxi-
mum clique problem,” Operations Research Letters, vol.9, pp.375–
382, 1990.

[10] T. Fahle, “Simple and fast: Improving a branch-and-bound algo-
rithm for maximum clique,” European Symp. on Algorithms 2002,
LNCS 2461, pp.485–498, 2002.

[11] F. Fomin, F.V. Grandoni, and D. Kratsch, “A measure & conquer for
the analysis of exact algorithms,” J. ACM, pp.25(1)–25(32), 2009.

[12] T. Fujii and E. Tomita, “On efficient algorithms for finding a maxi-
mum clique,” Tech. Rep. IECE, AL81-113, pp.25–34, 1982.

[13] J. Håstad, “Clique is hard to approximate within n1−ε,” Acta Mathe-
matica, vol.182, pp.105–142, 1999.

[14] T. Higashi and E. Tomita, “A more efficient algorithm for finding
a maximum clique based on an improved approximate coloring,”
Tech. Rep. Univ. Electro-Commun., UEC-TR-CAS5, 2006.

[15] W.J. von Hoeve, “Exploiting semidefinite relaxations in con-
straint programming,” Computers & Operations Research, vol.33,
pp.2787–2804, 2006.

[16] K. Hotta, E. Tomita, and H. Takahashi, “A view-invariant human
face detection method based on maximum cliques,” Trans. IPSJ,
vol.44, no.SIG14(TOM9), pp.57–70, 2003.

[17] D.S. Johnson and M.A. Trick (eds.), “Cliques, coloring, and satis-
fiability,” DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol.26, American Math. Soc., 1996.

[18] http://www.cs.sunysb.edu/˜algorith/implement/dimacs/distrib/color/
graph/form

[19] S. Kobayashi, T. Kondo, K. Okuda, and E. Tomita, “Extracting glob-
ally structure free sequences by local structure freeness,” in Proc.
Ninth International Meeting on DNA Based Computers, ed. J. Chen
and J. Reif, p.206, 2003.

[20] Y. Kohata, T. Nishijima, E. Tomita, C. Fujihashi, and H. Takahashi,
“Efficient algorithms for finding a maximum clique,” Tech. Rep.
IEICE, COMP89-113, pp.1–8, 1990.

[21] J. Konc and D. Janežič, “An improved branch and bound algorithm
for the maximum clique problem,” MATCH Commun. in Mathemat-
ical and in Computer Chemistry, vol.58, pp.569–590, 2007.

[22] E. Liu, Q. Zhang, and K.K. Leung, “Clique-based utility maximiza-
tion in wireless mesh networks,” IEEE Trans. Wireless Commun.,
vol.10, no.3, pp.948–957, 2011.

[23] T. Matsunaga, C. Yonemori, E. Tomita, and M. Muramatsu, “Clique-
based data mining for related genes in a biomedical database,” BMC
Bioinformatics, vol.10, pp.1–9, 2009.

[24] T. Mori, T. Tamura, D. Fukagawa, A. Takasu, E. Tomita, and T.
Akutsu, “A clique-based method using dynamic programming for
computing edit distance between unordered trees,” J. Computational
Biology, vol.19, pp.1089–1104, 2012.

[25] T. Nakagawa and E. Tomita, “An efficient algorithm for generating
large maximal cliques,” Tech. Rep. IPSJ, 2005-MPS-57, pp.49–52,
2005.

[26] Y. Nakui, T. Nishino, E. Tomita, and T. Nakamura, “On the mini-
mization of the quantum circuit depth based on a maximum clique
with maximum vertex weight,” Tech. Rep. RIMS, 1325, Kyoto
Univ., pp.45–50, 2003.

[27] H. Ogawa, “Labeled point pattern matching by Delaunay triangu-
lation and maximal cliques,” Pattern Recognit., vol.19, pp.35–40,
1986.

[28] P.R.J. Östergård, “A fast algorithm for the maximum clique prob-
lem,” Discrete Appl. Math., vol.120, pp.197–207, 2002.

TOMITA et al.: A SIMPLE AND FASTER BRANCH-AND-BOUND ALGORITHM FOR FINDING A MAXIMUM CLIQUE WITH COMPUTATIONAL EXPERIMENTS
1297

[29] P.M. Pardalos and J. Xue, “The maximum clique problem,” J. Global
Optim., vol.4, pp.301–328, 1994.

[30] J.-C. Régin, “Using constraint programming to solve the maximum
clique problem,” Principles and Practice of Constraint Program-
ming, LNCS 2833, pp.634–648, 2003.

[31] J.M. Robson, “Finding a maximum independent set in time O(2n/4),”
Tech. Rep. 1251-01, LaBRI, Universite Bordeaux, 2001.

[32] E.C. Sewell, “A branch and bound algorithm for the stability number
of a sparse graph,” INFORMS J. Computing, vol.10, pp.438–447,
1998.

[33] M. Shindo, E. Tomita, and Y. Maruyama, “An efficient algorithm for
finding a maximum clique,” Tech. Rep. IECE, CAS86-5, pp.33–40,
1986.

[34] M. Shindo and E. Tomita, “A simple algorithm for finding a maxi-
mum clique and its worst-case time complexity,” Systems and Com-
puters in Japan, vol.21, pp.1–13, Wiley, 1990.

[35] N.J.A. Sloane, “Challenge problems: Independent sets in graphs,”
http://www.research.att.com/˜njas/doc/graphs.html

[36] V. Stix, “Target-oriented branch and bound method for global opti-
mization,” J. Global Optim., vol.26, pp.261–277, 2003.

[37] Y. Sutani and E. Tomita, “Computational experiments and analyses
of a more efficient algorithm for finding a maximum clique,” Tech.
Rep. IPSJ, 2005-MPS-57, pp.45–48, 2005.

[38] Y. Sutani, T. Higashi, and E. Tomita, “A more efficient algorithm for
finding a maximum clique with an improved approximate coloring,”
Tech. Rep. Summer LA Symp., no.12, pp.1–6, 2006.

[39] Y. Sutani, T. Higashi, E. Tomita, S. Takahashi, and H. Nakatani, “A
faster branch-and-bound algorithm for finding a maximum clique,”
Tech. Rep. IPSJ, 2006-AL-108, pp.79–86, 2006.

[40] S, Takahashi and E. Tomita, “Parallel computation for finding a
maximum clique on shared memory computers,” Tech. Rep. Univ.
Electro-Commun., UEC-TR-CAS3, 2007.

[41] R.E. Tarjan and A.E. Trojanowski, “Finding a maximum indepen-
dent set,” SIAM J. Comput., vol.6, pp.537–546, 1977.

[42] E. Tomita and M. Yamada, “An algorithm for finding a maximum
complete subgraph,” Conference Records of the National Conven-
tion of IECE 1978, p.8, 1978.

[43] E. Tomita, Y. Kohata, and H. Takahashi, “A simple algorithm for
finding a maximum clique,” Tech. Rep. Univ. Electro-Commun.,
UEC-TR-C5(1), 1988.

[44] E. Tomita, S. Mitsuma, and H. Takahashi, “Two algorithms for find-
ing a near-maximum clique,” Tech. Rep. Univ. Electro-Commun.,
UEC-TR-C1, 1988.

[45] E. Tomita and T. Seki, “An efficient branch-and-bound algorithm for
finding a maximum clique,” Discrete Math. and Theoret. Comput.
Sci., LNCS 2731, pp.278–289, 2003.

[46] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time com-
plexity for generating all maximal cliques and computational exper-
iments (An invited paper in the Special Issue on COCOON 2004),”
Theoret. Comput. Sci., vol.363, pp.28–42, 2006.

[47] E. Tomita and T. Kameda, “An efficient branch-and-bound algorithm
for finding a maximum clique with computational experiments,” J.
Global Optim., vol.37, pp.95–111, 2007; J. Global Optim., vol.44,
p.311, 2009.

[48] E. Tomita, Y. Sutani, T. Higashi, H. Takahashi, and M. Wakatsuki,
“A simple and faster branch-and-bound algorithm for finding a max-
imum clique,” WALCOM 2010, LNCS 5942, pp.191–203, 2010.

[49] E. Tomita, T. Akutsu, and T. Matsunaga, “Efficient algorithms
for finding maximum and maximal cliques: Effective tools
for bioinformatics,” in Biomedical Engineering, Trends in Elec-
tronics, Commun. and Software, ISBN: 978-953-307-475-7, In-
Tech, ed. A.N. Laskovski, pp.625–640, 2011. Available from:
http://www.intechopen.com/articles/show/title/efficient-algorithms-
for-finding-maximum-and-maximal-cliques-effective-tools-for-
bioinformatics

[50] M. Wakatsuki, S, Takahashi, and E. Tomita, “A parallelization of an
algorithm for finding a maximum clique on shared memory comput-

ers,” Tech. Rep. IPSJ, 2008-MPS-71, pp.17–20, 2008.
[51] D.R. Wood, “An algorithm for finding a maximum clique in a

graph,” Oper. Res. Lett., vol.21, pp.211–217, 1997.
[52] C. Yonemori, T. Matsunaga, J. Sekine, and E. Tomita, “A structural

analysis of enterprise relationship using cliques,” DBSJ J., vol.7,
no.4, pp.55–60, March 2009.

Appendix: Clique Benchmark Results

Type of Machine: Pentium 4 3.6 GHz,
Main memory 2 Gbytes, Cache memory 1 Mbytes.

Compiler and flags used: gcc -O2.

In the second column of Table A· 1, we show our user time
(T1) required to solve each of the given DIMACS bench-
mark instances: r100.5, r200.5, r300.5, r400.5, and
r500.5 on our computer by the benchmark program df-
max [17], [18]. (Correction : Note that these values shown
in the Appendix of [48] should be corrected as in Table A· 1.
However, no other change of the values in [48] is necessary,
since the other values in [48] are calculated based on the
correct values. This correction is also noted on p.631 in
Sect. 3.4 of [49].) For Östergård’s user time for instances
(T2), Konc and Janežič’s user time for instances (T3), and
Sewell’s [32] user time for instances (T4), by excluding the
values of T2/T1, T3/T1, and T4/T1 for r100.5 and r200.5,
since these instances are extremely small, the average val-
ues of T2/T1, T3/T1, and T4/T1 are obtained as 4.48, 1.12,
and 86.76, respectively. For Fahle’s [10] user time (T5), we
obtained the average value of T5/T1 to be 2.03 through the
dfmax running time for the common DIMACS benchmark
graphs in [47]. Hence, Fahle’s χ + DF running times for
DIMACS benchmark graphs on our machine are calculated
from [10]. Subsequently, for Régin’s [30] user time (T6), we
obtained the average value of T6/T1 to be 1.35 by referring
to the Fahle’s χ + DF running time in [30] for the common
DIMACS benchmark graphs which require more than 2,000
seconds on his machine.

Table A· 1 Each user time for instances [sec].

Graph MCS New [28] MCDyn [21] COCR [32]

Our Östergård’s KJ’s Sewell’s
T1 T2 T2/T1 T3 T3/T1 T4 T4/T1

r100.5 1.57×10−3 0.01 6.37 0.00 0 0.14 89.17
r200.5 4.15×10−2 0.23 5.54 0.04 0.96 3.64 87.71
r300.5 0.359 1.52 4.23 0.40 1.11 31.10 86.63
r400.5 2.21 10.05 4.55 2.48 1.12 191.98 86.87
r500.5 8.47 39.41 4.65 9.45 1.12 734.99 86.78

1298
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.6 JUNE 2013

Etsuji Tomita received his B. Eng. and Dr.
Eng. degrees in Electronics Engineering from
Tokyo Institute of Technology, Japan, in 1966
and 1971, respectively. Then he was with the
faculties of Tokyo Institute of Technology, and
was appointed Associate Professor and subse-
quently Professor at the University of Electro-
Communications (UEC Tokyo), Japan. He
served as the founding Head of the Advanced
Algorithms Research Laboratory at UEC Tokyo.
He was also Professor at the Research and De-

velopment Initiative, Chuo University. He is presently Professor Emeritus
at UEC Tokyo and is with the Advanced Algorithms Research Laboratory,
UEC Tokyo, and is also Research Advisor of Japan Science and Technol-
ogy Agency (JST) ERATO Minato Discrete Structure Manipulation System
Project, and is with Tokyo Institute of Technology. His research interests
include combinatorial optimization, algorithmic learning theory, and theory
of automata and formal languages. He served as Director of Information
Processing Society of Japan (IPSJ), Chair of Computer Science Domain
of IPSJ, Program Committee Chair of ALT 2005, and Conference Chair
of ICGI 2006. He is an Editor of ISRN Discrete Mathematics and some
other journals. Dr. Tomita was given the Yonezawa Award of IECE, the
Funai Information Technology Prize and was awarded Theoretical Com-
puter Science Top Cited Article 2005–2010 for [46]. His book chapter [49]
was downloaded over 8,000 times. He is a Fellow of IPSJ.

Yoichi Sutani received his B. Eng. and
Master of Eng. degrees from the University of
Electro-Communications in 2006 and 2008, re-
spectively. He worked for algorithms for the
maximum clique problem. Mr. Sutani was given
IPSJ Yamashita SIG Research Award. He is
with Sony Corporation from 2008.

Takanori Higashi received his B. of
Eng. degree from the University of Electro-
Communications in 2006. He worked for algo-
rithms for the maximum clique problem. He is
with Japan Systems Co., Ltd from 2006.

Mitsuo Wakatsuki was born in Tokyo,
Japan, 1965. He received his Dr. Eng. degree
from the University of Electro-Communications
in 1993. He is now an Assistant Professor in
the Graduate Course of Informatics, Graduate
School of Informatics and Engineering at the
University of Electro-Communications. His re-
search interests include theory of automata and
formal languages, computational learning the-
ory, and combinatorial optimization problems.
Dr. Wakatsuki is a member of the Information

Processing Society of Japan and Japanese Society for Artificial Intelli-
gence.

