
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013
1419

INVITED SURVEY PAPER

Techniques of BDD/ZDD: Brief History and Recent Activity

Shin-ichi MINATO†∗a), Senior Member

SUMMARY Discrete structures are foundational material for computer
science and mathematics, which are related to set theory, symbolic logic,
inductive proof, graph theory, combinatorics, probability theory, etc. Many
problems solved by computers can be decomposed into discrete structures
using simple primitive algebraic operations. It is very important to repre-
sent discrete structures compactly and to execute efficiently tasks such as
equivalency/validity checking, analysis of models, and optimization. Re-
cently, BDDs (Binary Decision Diagrams) and ZDDs (Zero-suppressed
BDDs) have attracted a great deal of attention, because they efficiently
represent and manipulate large-scale combinational logic data, which are
the basic discrete structures in various fields of application. Although a
quarter of a century has passed since Bryant’s first idea, there are still a
lot of interesting and exciting research topics related to BDD and ZDD.
BDD/ZDD is based on in-memory data processing techniques, and it en-
joys the advantage of using random access memory. Recent commodity
PCs are equipped with gigabytes of main memory, and we can now solve
large-scale problems which used to be impossible due to memory short-
age. Thus, especially since 2000, the scope of BDD/ZDD methods has
increased. This survey paper describes the history of, and recent research
activity pertaining to, techniques related to BDD and ZDD.
key words: BDD, ZDD, decision diagram, discrete structure, algorithm,
data structure

1. Introduction

Discrete structures are foundational material for computer
science and mathematics, which are related to set theory,
symbolic logic, inductive proof, graph theory, combina-
torics, probability theory, etc. Many problems solved by
computers can be decomposed into discrete structures us-
ing simple primitive algebraic operations. It is very impor-
tant to represent discrete structures compactly and to exe-
cute efficiently tasks such as equivalency/validity checking,
analysis of models, and optimization. Those techniques are
commonly used in many application areas in computer sci-
ence, for example, hardware/ software system design, fault
analysis of large-scale systems, constraint satisfaction prob-
lems, data mining, knowledge discovery, machine learn-
ing/classification, bioinformatics, and web data analysis.
They have considerable ripple effects on today’s society.

A Binary Decision Diagram (BDD) [1] is a representa-
tion of a Boolean function, one of the most basic models of

Manuscript received November 28, 2012.
Manuscript revised March 21, 2013.
†The author is with the Graduate School of Information Sci-

ence and Technology, Hokkaido University, Sapporo-shi, 060–
0814 Japan.

∗The author is also with JST ERATO MINATO Discrete Struc-
ture Manipulation System Project.

a) E-mail: minato@ist hokudai.ac.jp
DOI: 10.1587/transinf.E96.D.1419

discrete structures. Systematic methods for Boolean func-
tion manipulation were first studied by Shannon in 1938,
who applied Boolean algebra to logic network design. The
AND-OR two-level structure (called DNF or CNF) has been
used for a long time as the data structure of Boolean func-
tions. However, after the epoch-making paper by R.E.
Bryant in 1986, BDD-based methods have become a hot
topic and have been rapidly developed.

BDD was originally invented for the efficient Boolean
function manipulation required in VLSI logic design, but
Boolean functions are also used for modeling many kinds of
combinatorial problems. Zero-suppressed BDD (ZDD) [2]
is a variant of BDD, customized for manipulating “sets of
combinations.” ZDDs have been successfully applied not
only for VLSI design but also for solving various combi-
natorial problems, such as constraint satisfaction, frequent
pattern mining, and graph enumeration. Recently, ZDD has
become more widely known, since D.E. Knuth intensively
discussed ZDD-based algorithms in the latest volume of his
famous series of books [3].

Although a quarter of a century has passed since Bryant
first put forth his idea, there are still many interesting and
exciting research topics related to BDD and ZDD. For ex-
ample, Knuth presented a surprisingly fast algorithm “Sim-
path” [3] to construct a ZDD which represents all the paths
connecting two points in a given graph structure. This work
is important because many kinds of practical problems are
efficiently solved by some variations of this algorithm. An-
other example of recent activity is to extend BDDs to repre-
sent other kinds of discrete structures, such as sequences and
permutations. In this context, new variants of BDDs called
sequence BDD [4] and πDD [5] have recently been proposed
and the scope of BDD-based techniques is now increasing.

This survey paper describes the history of, and recent
research activity into, the techniques related to BDD and
ZDD. We beginning by explaining the basic techniques for
BDD/ZDD manipulation in Sect. 2. Next we give a brief
history of BDD/ZDD-related work in Sect. 3, and then some
recent activity is discussed in Sect. 4. Section 5 concludes
this article.

2. Basic Techniques for BDD/ZDD Manipulation

In this section, we describe the basic data structures and al-
gorithms for manipulating BDDs and ZDDs.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

1420
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

Fig. 1 Binary Decision Tree, BDDs and ZDDs.

Fig. 2 BDD reduction rules.

2.1 BDDs

A Binary Decision Diagram (BDD) is a graphical represen-
tation of a Boolean function, which was originally devel-
oped for VLSI design. As illustrated in Fig. 1, it is derived
by reducing a binary decision tree, which represents a deci-
sion making process that depends on some input variables.
In this graph, we may find the following two types of deci-
sion nodes:

(a) Redundant node: A decision node whose two child
nodes are identical.

(b) Equivalent nodes: Two or more decision nodes having
the same variable and the same pair of child nodes.

If we find such types of nodes, we can reduce the
graph without changing the semantics (in other words,
we can compress the graph) based on the rules shown in
Fig. 2 (a)(b). If we fix the order of input variables and apply
the two reduction rules as much as possible, then we ob-
tain a canonical form for a given Boolean function [6]. Such
a data structure is called an Ordered BDD (OBDD), but in
this article we will just call it a BDD.

The compression ratio of a BDD depends on the prop-
erties of Boolean function to be represented, but it can be 10
to 100 times more compact in some practical cases. In addi-
tion, we can systematically construct a BDD that is the result
of a binary logic operation (i.e., AND or OR) for a given pair
of BDDs, as shown in Fig. 3. This algorithm, proposed by
Bryant [1], is based on a recursive procedure with hash ta-
ble techniques, and it is much more efficient than generating
binary decision trees when the BDDs have a good compres-
sion ratio. The computation time is bounded by the product
of the BDD sizes of the two operands, and in many practical

Fig. 3 Framework of BDD logic operation.

Table 1 Primitive BDD operations.

∅ Returns the constant-0 function. (0-terminal node)
1 Returns the constant-1 function. (1-terminal node)
F.top Returns the variable-ID at the root node of F.
F(x=0) Returns a subfunction of F when variable x = 0.
F(x=1) Returns a subfunction of F when variable x = 1.
F Logical NOT operation.
F ∧G Logical AND operation.
F ∨G Logical OR operation.
F ⊕G Exclusive-OR operation.
F.count Returns the number of input assignments that satisfy F = 1.

Fig. 4 Correspondence of Boolean functions and sets of combinations.

cases, it is linearly bounded by the sum of input and output
BDD sizes†. Table 1 summarizes the list of primitive BDD
operations.

BDDs are based on in-memory data processing tech-
niques, and enjoy the advantage of using random access
memory. Recent commodity PCs are equipped with giga-
bytes of main memory, and we can now solve large-scale
problems which used to be impossible due to memory short-
age. Thus, especially since 2000, the scope of BDD has
increased.

2.2 ZDDs

BDDs were originally invented for Boolean function manip-
ulation. But we can also map a set of combinations into the
Boolean space of n variables, where n is the cardinality of
the set of combinatorial items, as shown in Fig. 4. So, one
could also use a BDD to represent a set of combinations.
When a set consists of many similar combinations, the BDD

†Recently, the counterexamples have been given for some spe-
cial instances [7], but in many practical cases, computation time is
linearly bounded by input and output BDD sizes.

MINATO: TECHNIQUES OF BDD/ZDD: BRIEF HISTORY AND RECENT ACTIVITY
1421

provides a significant data compression and the manipula-
tion becomes faster. In this way, BDDs can be applied not
only to VLSI logic design but also to various combinatorial
problems, such as constraint satisfaction problems and fault
analysis of large systems.

Zero-suppressed BDDs (ZDDs, or ZBDDs) are a vari-
ant of BDDs, customized to manipulate sets of combina-
tions. An example is shown in Fig. 1. This data structure
was first introduced in 1993 by Minato [2]. ZDDs are based
on special reduction rules that differ from the ordinary ones.
As shown in Fig. 5, we delete all nodes whose 1-edge di-
rectly points to the 0-terminal node, but do not delete the
nodes which would be deleted in an ordinary BDD. This
new reduction rule is extremely effective if we are handling
a set of sparse combinations. If the average appearance ra-
tio of each item is 1%, ZDDs are possibly up to 100 times
more compact than ordinary BDDs. Such situations often
appear in real-life problems, for example, in a supermarket,
the number of items in a customer’s basket is usually much
less than the number of all the items displayed.

A ZDD representation has another good property: each
path from the root node to the 1-terminal node corresponds
to one item combination in the set. Namely, the number of
such paths in the ZDD equals the number of combinations in
the set. This attractive property indicates that, even if there
are no equivalent nodes to be shared, the ZDD structure ex-
plicitly stores all the items of each combination at least as
compactly as an explicit linear linked list data structure. In
other words, (the order of) the size of the ZDD never ex-
ceeds that of the explicit representation. If more nodes are

Fig. 5 ZDD reduction rule.

Table 2 Primitive ZDD operations.

∅ Returns empty set. (0-terminal node)
{λ} Returns the set of only null-combinations. (1-terminal node)
P.top Returns the item-ID at the root node of P.
P.offset(v) Subset of combinations not including item v.
P.onset(v) Gets P \ P.offset(v) and then deletes v from each combination.
P.change(v) Inverts the existence of v (add / delete) on each combination.
P ∪ Q Returns the union set.
P ∩ Q Returns the intersection set.
P \ Q Returns the difference set. (in P but not in Q.)
P.count Counts number of combinations.

Extended operations for ZDDs [8]
P ∗ Q Cartesian product of P and Q.
P/Q Quotient of P divided by Q.
P%Q Remainder of P divided by Q.

shared, the ZDD is more compact than the corresponding
linear list.

Table 2 summarizes most of the primitive operations of
the ZDDs. In these operations, ∅, {λ}, and P.top can be ob-
tained in constant time. Here λ means a null combination.
P.offset(v), P.onset(v), and P.change(v) operations require a
constant time if v is the top variable of P, otherwise they re-
quire a time linear in the number of ZDD nodes located at
a higher position than v. The union, intersection, and differ-
ence operations can be performed in a time that is linear in
the size of the ZDDs in many practical cases.

The last three operations in the table constitute an in-
teresting algebra for sets of combinations with multiplica-
tion and division. Knuth has been inspired by this idea and
has developed more various algebraic operations, such as
P
 Q, P � Q, P � Q, P ↗ Q, P ↘ Q, P↑, and P↓. He
called these ZDD-based operations a “Family Algebra” in
the recent fascicle of his book series [3].

The original BDD was invented and developed for
VLSI logic design, but ZDD is now recognized as the most
important variant of BDD, and is widely used in various
kinds of problems in computer science [9]–[12].

3. Brief History of BDD/ZDD Research

Figure 6 gives an overview of research related to BDDs and
ZDDs. In this chart, each topic is referred to by author name
and year. Of course, it is impossible to cover all the research
activities in one chart, so there may be many other interest-
ing topics which are not shown here.

3.1 Overview of BDD/ZDD Related Work

In 1986, Bryant proposed the algorithm called “Apply”
[Bryant86][1]. It was the origin of much work on the use
of BDDs as modern data structures and algorithms for ef-
ficient Boolean function manipulation. Just after Bryant’s
paper, implementation techniques for the BDD manipula-
tion, such as hash-table operations and memory manage-
ment techniques, emerged [Brace90][13], [Minato90][14].
A BDD is a unique representation of a given Boolean func-
tion. However, if the order of input variables is changed, a

1422
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

Fig. 6 Chart of BDD/ZDD related work.

different BDD is obtained for what is essentially the same
Boolean function. Since the size of BDDs greatly depends
on the order of input variables, variable ordering methods
were intensively developed in the early days [Fujita91][15],
[Rudell93][16], [Tani93][17], [Drechsler98][18]. Those
practical techniques were implemented in a software library
called “BDD package.” Currently, several academic groups
provide such packages as open software. ([Somenzi97][19],
for example.)

At first, BDDs were applied to equivalence check-
ing of logic circuits [Fujita88][20], [Malik88][21], [Coud-
ert90][22] and logic optimization [Matsunaga89][23] in
VLSI logic design. Next, BDD-based symbolic manipu-
lation techniques were combined with the already known
theory of model checking. It was really a breakthrough
that formal verification becomes possible for some prac-
tical sizes of sequential machines [Burch,Clarke90][24],
[McMillan93][25]. After that, many researchers became
involved with formal hardware verification using BDDs,
and Clarke received the Turing Award in 2008 for this
work. In addition, the BDD-based symbolic model check-
ing method led to the idea of bounded model check-
ing using SAT solvers [Marques-Silva,Sakallah96][26],
[Biere99][27], [Moskewicz01][28]. These research pro-
duced many practical applications of SAT solvers that are

widely utilized today.
ZDDs [Minato93][2] deal with sets of combinations,

representing a model that is different from Boolean func-
tions. However, the original motivation of developing ZDDs
was also for VLSI logic design. ZDDs were first used
for manipulating very large-scale logic expressions with an
AND-OR two-level structure (also called DNF or CNF),
namely, representing a set including very large number of
combinations of input variables. Sets of combinations of-
ten appear not only in VLSI logic design area but also in
various areas of computer science. It is known that ZDDs
are effective for handling many kinds of constraint satis-
faction problems in graph theory and combinatorics [Coud-
ert97][9], [Okuno98][29].

3.2 “Winter of BDD” and After

In this BDD/ZDD research chart, one can observe a gap be-
tween 1999 and 2005. Of course there are some publica-
tions related to BDDs or ZDDs, but the research activity in
this period is obviously less than in previous or later years.
We may call this gap the “Winter of BDDs.” By that time,
most basic implementation techniques had been matured,
and BDD applications to VLSI design tools seemed to be
almost exhausted. So, many researchers moved from BDD-

MINATO: TECHNIQUES OF BDD/ZDD: BRIEF HISTORY AND RECENT ACTIVITY
1423

related work to other research areas, such as actual VLSI
chip design issues or SAT-based problem solving.

However, after about 2005, many people understood
that BDDs/ZDDs are useful not only for VLSI logic design
but also in various other areas, and then BDD-related re-
search activity was revived. For example, we can see some
applications to data mining [Loekito,Bailey06][10], [Mi-
nato06][30], [Minato,Uno08][31], Bayesian network and
probabilistic inference models [Minato,Sato07][11], [Ishi-
hata,Sato10][12], and game theory [Sakurai11][32]. More
recently, new types of BDD variants, which have not been
considered before, have been proposed. Sequence BDDs
[Loekito,Bailey09][4] represent sets of strings or sequences,
and πDDs [Minato11][5] represent sets of permutations.

Synchronizing with this new movement, the BDD sec-
tion of Knuth’s book was published [Knuth09][3]. As
Knuth presented the potential for wide-ranging applications
of BDDs and ZDDs, these data structures and algorithms
were recognized as fundamental techniques for whole fields
of information science. In particular, his book includes the
“Simpath” algorithm which constructs a ZDD representing
all the connecting paths between two points in a given graph
structure, and a surprisingly fast program is provided for
public use on his web page. Experimental results suggest
that this algorithm is not just an exercise but is the most
efficient method using current technology. Based on this
method, the author’s research group is now developing ex-
tended and generalized algorithms, called “Frontier-based
methods,” for efficiently enumerating and indexing† various
kinds of discrete structures [33]–[35].

As the background of this resurgence and new gen-
eration applications, we should note the great progress of
the computer hardware system, especially the increase of
main memory capacity. Actually, in the early days of using
BDDs in 1990’s, there was some literature on applications
for intelligent information processing. Madre and Coudert
proposed a TMS (Truth Maintenance System) using BDDs
for automatic logic inference and reasoning [Madre92][36].
A method of probabilistic risk analysis for large industrial
plants was also considered [Coudert,Madre92][37]. Coudert
also proposed a fast method of constructing BDDs to repre-
sent prime sets (minimal support sets) for satisfying Boolean
functions [Coudert92][38], which is a basic operation for
logic inference. However, at that time, the main memory
capacities of high-specification computers were only 10 to
100 megabytes, about 10,000 times smaller than those avail-
able today, and thus, only small BDDs could be generated.

In the VLSI design process, the usual approach was
that the whole circuit was divided into a number of small
submodules, and each submodule was designed individu-
ally by hand. So, it was natural that the BDD-based de-
sign tools are used for the sufficiently small submodules
which could be handled with a limited main memory capac-
ity. With the progress of computer hardware performance,
BDD-based methods could gradually be applied to larger
submodule. On the other hand, in the applications of data
mining or knowledge processing, the input data were stored

on a very large hard disks. The processor loaded a small
fragment of data from the hard disk into the main memory,
and executed some meaningful operations on the data in the
main memory, then the processed data was saved with the
original data on the hard disk. Such procedures were com-
mon, but it was very difficult to apply BDD-based methods
to hard disk data. After 2000, computers’ main memory
capacity grew rapidly, and in many practical cases, all the
input data can be stored in the main memory. Thus many
kinds of in-memory algorithms could be actively studied for
data processing applications. The BDD/ZDD algorithm is a
typical instance of such in-memory techniques.

In view of the above technical background, most re-
search on BDDs/ZDDs after the winter period is not just
about remaking old technologies. It also compares classi-
cal and well-known efficient methods (such as suffix trees,
string matching, and frequent pattern mining) with the
BDD/ZDD-based methods, in order to propose combined
or improved techniques to obtain the current best perfor-
mance. For example, Darwiche, who is a well-known re-
searcher in data structures of probabilistic inference models,
is very interested in the techniques of BDDs, and he recently
proposed a new data structure, the SDD (Sentential Deci-
sion Diagram) [Darwiche11][39], to combine BDDs with
the classical data structures of knowledge databases. As
shown in this example, we had better collaborate with many
researchers in various fields of information science to im-
port the current best-known techniques into BDD/ZDD re-
lated work, and then we may develop more efficient new
data structures and algorithms for discrete structure manip-
ulation.

4. Recent Research Activity

Here we will highlight some remarkable work related to
BDDs/ZDDs.

4.1 Knuth’s Simpath Algorithm

As mentioned above, Knuth has presented the surprisingly
fast algorithm “Simpath” [3] (Vol. 4, Fascicle 1, p. 121,
or p. 254 of Vol. 4A) to construct a ZDD which repre-
sents all the paths connecting two points s and t in a given
graph (not necessarily the shortest ones but ones not passing
through the same point twice). This work is important be-
cause many kinds of practical problems can be efficiently
solved by some variations of this algorithm. Knuth pro-
vides his own C source codes on his web page for public
access, and the program is surprisingly fast. For example,
in a 15 × 15 grid graph (420 edges in total), the number of
self-avoiding paths between opposite corners is as great as
227449714676812739631826459327989863387613323440
(≈ 2.27 × 1047) ways. By applying the Simpath algorithm,
the set of paths can be compressed into a ZDD with only

†“Indexing” means not only generating but also storing the data
with a good structure for quick access.

1424
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

Fig. 7 Tree expansion in the Simpath algorithm.

Fig. 8 Equivalent states and frontiers in the Simpath algorithm.

144759636 nodes, and the computation time is only a few
minutes.

Figure 7 illustrates the basic mechanism of the Simpath
algorithm. In the beginning, we assign a fixed ordering for
all the edges, E = {e1, e2, . . . , en} for the given graph G =
(V, E). Then, we construct a binary decision tree from the
top to the bottom in a breadth-first manner. In the first step,
we consider two decisions 1 and 0, representing whether
the edge e1 is used in the s-t path or not. We then make
two leaf nodes, each of which holds the current status of the
path selection. In the second step, we visit each of the two
leaf nodes and expand a new branch from the leaf, to decide
whether the edge e2 is used in the s-t path or not. Then each
of the new leaves has the current status of e1 and e2. In this
way, at the k-th level, we sequentially visit all the leaf nodes
and append a (k + 1)-th level decision node for each case,
but we may prune the branch when we find a contradiction
in the current status such that the edges forming an s-t path
cannot avoid generating a disjoint component or a branch.
In such cases, we assign the value 0 to the leaf node and
we put no more branches there. By repeating this process
until the n-th level, we can construct a total decision tree
including all the s-t paths. We assign the value 1 to each
final leaf node which represents a solution. After that, we
apply the ZDD reduction rules to each node of the decision
tree from the bottom to the top to obtain a compressed ZDD.

In the above procedure, we can avoid unnecessary
expansion by assigning a 0-terminal nodes to the contra-
dicted state, but this is not enough for really fast compu-
tation. The Simpath algorithm also employs another idea

of reduction to check equivalent states in the k-th level,
and those equivalent nodes are merged into one node in
the next expansion step. Here “equivalent states” means
that the two intermediate states have completely the same
requirements for the remaining undecided edges to com-
plete the correct s-t paths. An example on a grid graph is
shown in Fig. 8. Suppose that it has already been decided
whether e1 to e12 are used, and let us compare the two cases
where (e2, e5, e7, e8, e10, e11, e12) are chosen (left one) and
(e1, e4, e7, e8, e10, e11, e12) are chosen (right one). In both
cases, we should connect the vertices v8 and v10, and con-
nect the vertices v7 and t by using remaining edges. Thus,
the requirements of the two cases are completely the same.
In the corresponding ZDD, the two sub-graphs lower than
e13 must be identical, so we do not have to expand such sub-
graphs twice if we can find such equivalent states. In many
cases of the s-t path problem, a number of equivalent states
appear, and the effect on the computation time is very large.

For checking the equivalence of two leaf nodes, we
need only the status on a set of the vertices, specified by
the dotted circle in the figure, where each vertex connects at
least one decided edge and at least one undecided edge. It is
enough to know which vertex is at the end point and which
one is the opposite end. The Simpath algorithm prepares
an array structure called “mate” to store that information at
each leaf node, and registers all the mate data into a hash
table for fast equivalence checking. Knuth called that set
of vertices the “frontier.” The frontier area moves from the
start vertex to the goal vertex during computation.

The Simpath algorithm belongs to the method of dy-

MINATO: TECHNIQUES OF BDD/ZDD: BRIEF HISTORY AND RECENT ACTIVITY
1425

Fig. 9 Conventional and Frontier-based ZDD construction.

namic programming, based on the mate information on the
frontier. If the frontier grows larger in the computation pro-
cess, more intermediate states appear and more computa-
tion time is required. Thus, we had better keep the frontier
small. The maximum size of the frontier depends on the
given graph structures and the order of the edges. Empiri-
cally, planar or narrow graphs are favorable.

Recently, Iwashita et al. [35] reported that they suc-
ceeded in counting the total number of self-avoiding s-t
paths for the 21×21 grid graph. This is the current world
record and is officially registered in the On-Line Encyclope-
dia of Integer Sequences [40].

4.2 Frontier-Based Methods for Various Graph Problems

Knuth described in his book [3] that the Simpath algorithm
can easily be modified to generate not only s-t paths but
also Hamilton paths, directed paths, some kinds of cycles,
and many other problems by slightly changing the mate
data structure. We generically call such ZDD construction
method “Frontier-based methods.”

As illustrated in Fig. 9 (a)(b), a Frontier-based method
is different from the conventional ZDD construction, which
repeats primitive set operations between two ZDDs. In gen-
eral, the primitive set operations are efficiently implemented
based on Bryant’s Apply algorithm, but do not directly use
the properties of the specific problem. Frontier-based meth-
ods are sometimes much more efficient because they are a
dynamic programming method based on the frontier, a kind
of structural property of the given graph.

Frontier-based methods are related to mathematical
work in the literature of graph theory. The Tutte polyno-
mial is known as a basic invariant of a graph structure. For
a given graph G = (V, E), the Tutte polynomial is defined as
[41]:

T (x, y) =
∑

A⊆E

(x − 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A),

where ρ(A) is given by subtracting the number of connecting
components in a set of edges A (⊆ E) from the total number
of vertices |V |. If we could calculate the coefficients of all
terms in the Tutte polynomial, it would be very powerful
since various properties concerning graph connectivity can

easily be evaluated. However, except for small graphs, it is
too time-consuming to exactly calculate the above formula
for the whole subset A.

In 1995, Sekine, Imai, et al. [42] proposed a method for
generating BDDs to calculate Tutte polynomials efficiently.
This method is very similar to the Simpath algorithm†. The
differences are only that they generates BDDs instead of
ZDDs, and that the “mate data” represents a set of partitions
of connected components, not a pair of end points of paths.
The other parts of the algorithm are similar. They also pre-
sented extensive mathematical discussions and a theoretical
analysis of the complexity of the algorithm for some spe-
cial classes of graph, such as planar and grid graphs [43].
Their theoretical results can also be used for the Simpath
algorithm in an almost identical manner.

Unfortunately, at that time, the performance of com-
puter hardware was much poorer than today, and BDD-
related techniques were thought to be matured, so their re-
sults were mainly focused on the theoretical and mathemat-
ical viewpoints and did not consider the real computation
time. Recently, Knuth proposed an efficient implementation
of Simpath, so people have recognized that Frontier-based
methods are interesting not only theoretically but also as
state-of-the-art techniques for solving many practical prob-
lems.

Here we list graph problems which can be enumerated
and indexed by a ZDD using a Frontier-based method.

• Simpath type:
(Equivalent states are identified by end points of paths.)

– all s-t paths,
– s-t paths with length k,
– k-pairs of s-t paths,
– all cycles,
– cycles with length k,
– Hamilton paths / cycles,
– Euler paths / cycles,
– directed paths / cycles.

• Tutte polynomial type:
(Equivalent states are identified by graph partitions.)

†Unfortunately, Knuth did not know their work when writing
the Simpath algorithm for his book.

1426
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

– all connected components,
– spanning trees / forests,
– Steiner trees,
– all cut sets,
– k-partitioning,
– calculating probability of connectivity

• Others:

– all cliques,
– all independent sets,
– graph colorings,
– tilings,
– perfect / imperfect matching.

These problems are strongly related to many kinds of
real-life problems. For example, path enumeration is of
course important in geographic information systems, and is
also used for dependency analysis of a process flow chart,
fault analysis of industrial systems, etc. Recently, Inoue
et al. [34] discussed the design of electric power distribu-
tion systems. Such civil engineering systems are usually
near to planar graphs, so the Frontier-based method is very
effective in many cases. They succeeded in generating a
ZDD to enumerate all the possible switching patterns in a
realistic benchmark of an electric power distribution system
with 468 switches. The obtained ZDD represents as many
as 1060 of valid switching patterns but the actual ZDD size
is less 100MByte, and computation time is around 30 min-
utes. After generating the ZDD, all valid switch patterns are
compactly represented, and we can efficiently discover the
switching patterns with maximum, minimum, and average
cost. We can also efficiently apply additional constraints to
the current solutions. In this way, Frontier-based methods
can be utilized for many kinds of real-life problems.

4.3 Manipulation of Sets of Sequences

A set of sequences (or set of strings) is a very popular
model for representing various data, such as text docu-
ments, gene sequences, and sequential events. This model
is also called a language in traditional computation theory.
{aaa, aba, bbc, bc} is an example of set of sequences ob-
tained from the set of symbols Σ = {a, b, c}. Here we con-
sider only finite sets of sequences.

Since ordinary ZDDs represent sets of combinations,
the order of symbols (e.g. {ab, ba}) and duplicated symbols
(e.g. {aa, aaa, ab, aabb}) cannot be distinguished. In 2009,
Loekito, Bailey, and Pei [4] proposed Sequence BDD (Se-
qBDD), which is a new ZDD-based data structure for rep-
resenting sets of sequences. Figure 10 shows an example
of a SeqBDD. This is almost same as a ZDD but differs in
the variable ordering rule. SeqBDDs are based on the “lex-
icographical variable ordering rule,” such that the variable
order constraint is applied only to the 0-edge, while the 1-
edge side has no ordering constraint. As shown in Fig. 11,
this half-relaxed rule allows the duplication of letters in one
sequence. In the SeqBDD semantics, each path in a Se-
qBDD corresponds to a sequence. More specifically, the top

Fig. 10 A SeqBDD.

Fig. 11 Lexicographical variable ordering rule.

Table 3 Primitive SeqBDD operations.

∅ Returns empty set. (0-terminal node)
{λ} Returns the set of a null-sequence. (1-terminal node)
P.top Returns the item-ID at the root node of P.
P.onset(x) Selects the subset of sequences starting with letter x,

and then removes x from the head of each sequence.
P.offset(x) Selects the subset of sequences not starting with letter x.
P.push(x) Appends x to the head of every sequence in P.
P ∪ Q Returns the union set.
P ∩ Q Returns the intersection set.
P \ Q Returns the difference set. (in P but not in Q.)
P.count Counts number of combinations.
P ∗ Q Cartesian product of P and Q.

(Concatenations of all pairs of sequences in P and in Q)

node corresponds to the head letter of the sequence, and the
successive node of the 1-edge corresponds to the subsequent
letters.

Table 3 summarizes the primitive algebraic operations
of SeqBDDs. We can see that this is very close to the ZDD
algebra. The onset, offset, and push operations are slightly
different from those of ordinary ZDDs. In principle, the Se-
qBDDs give a special meaning to the first position of a se-
quence. Each decision node checks the head letter of all
sequences, and then divides them into two sub-sequences.
Other binary operations, such as union, intersection, and dif-
ference, are almost identical. Another interesting point is
that the zero-suppressed reduction rule is necessary for Se-
qBDD reduction. The ordinary (symmetric) BDD reduction
rule conflicts with the asymmetric variable ordering rule in
SeqBDDs.

A SeqBDD directly represents a set of sequences, and
we do not have to know the maximum length of the se-
quences at the beginning. SeqBDDs are efficient especially
for representing sets of sequences containing both very long

MINATO: TECHNIQUES OF BDD/ZDD: BRIEF HISTORY AND RECENT ACTIVITY
1427

and short sequences. Denzumi et al. [44] presented the theo-
retical relationship between SeqBDDs and acyclic automata
in terms of computation time and space. They also presented
a technique “Suffix-DD” [45], which is a suffix-tree manip-
ulation based on SeqBDDs. This method efficiently con-
structs an index of all substrings for a given long text string.
The techniques of automata and suffix-trees are commonly
used in string data applications, so we hope that many of
those applications will be accelerated by using SeqBDDs.

4.4 Manipulation of Sets of Permutations

Now we focus on manipulating permutations, as one of the
most important discrete structure models. Permutations and
combinations are two basic concepts in elementary combi-
natorics and discrete mathematics [46]. Permutations ap-

Fig. 12 Example of a shared πDD.

Table 4 Primitive πDD operations.

∅ Returns empty set. (0-terminal node)
{πe} Returns the set of an identity permutation.

(1-terminal node)
P.top Returns IDs (x, y) at the root node of P.
P ∪ Q Returns {π | π ∈ P or π ∈ Q}.
P ∩ Q Returns {π | π ∈ P, π ∈ Q}.
P \ Q Returns {π | π ∈ P, π � Q}.
P.τ(x, y) Returns P · τ(x,y).
P ∗ Q Returns {αβ | α ∈ P, β ∈ Q}.
P.cofact(x, y) Returns {πτ(x,y) | π ∈ P, xπ = y}.
P.count Counts the number of permutations.

Fig. 13 Example of the Cartesian product operation for πDDs.

pear in various problems such as sorting, ordering, match-
ing, coding and many other real-life situations. Recently,
the author has developed a new type of decision diagram,
named “πDD” [5], for the compact and canonical represen-
tation of a set of permutations. Figure 12 shows an example
of a multi-rooted πDD corresponding to several sets of per-
mutations. The πDD method is the first practical idea for
the efficient manipulation of sets of permutations on the ba-
sis of decision diagrams. This data structure can compress a
large number of permutations into a compact and canonical
representation.

Similar to ordinary BDDs and ZDDs, πDDs have effi-
cient algebraic set operations, such as union, intersection,
and difference. Table 4 summarizes the primitive opera-
tions used in πDDs for manipulating sets of permutations.
There is also a special Cartesian product operation which
generates all possible composite permutations (cascades of
two permutations) for two given sets of permutations. This
operation is beautiful and is a powerful method for solving
various problems in permutation space. For example, we
can represent the primitive moves of Rubik’s Cube with a
small πDD, and by simply multiplying this πDD by itself k
times, we can generate a single canonical πDD represent-
ing all possible positions reachable within k moves. The
computation time depends on the size of the πDD, which
is sometimes much smaller than the number of positions.
Figure 13 shows an example of a product operation for two
πDDs whose items are disjoint. In this case, even though the
number of permutations increases multiplicatively, the size
of the πDD increases only additively. Since the computation
time also depends on the size of the πDD, in such cases the
effectiveness of the πDD-based method increases exponen-
tially when compared with using an explicit data structure.
Once we have generated πDDs for a problem, we can easily
apply various analysis or testing techniques, such as count-
ing the exact number of permutations, exploring satisfiable
permutations for a given constraint and calculating the min-
imal or average cost of all permutations.

Recently, Kawahara et al. [47] applied πDDs and their
algebraic operations to the analysis of primitive sorting net-
works of width n. They succeeded in calculating that the

1428
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

number of ways to construct minimum primitive sorting net-
works for n = 13 is 2752596959306389652, which was not
previously known. This result is officially registered in the
On-Line Encyclopedia of Integer Sequences [40].

Soeken et al. [48] reported that πDDs are also useful
for reversible logic design. A reversible Boolean function is
a special type of Boolean function which has the same num-
bers of inputs and outputs with a bijective relation between
them. Since a bijection corresponds to a permutation, a set
of reversible functions can be represented by a πDD. Re-
versible logic is strongly related to loss-less encoding and
quantum computation [49], so there will be some interesting
future work.

5. Concluding Remarks

We have given a brief history and described recent research
on the techniques of BDDs and ZDDs. As shown in the
above sections, there are very many interesting and use-
ful ideas about decision diagrams and discrete structure
manipulation. The author has proposed a new research
project which focuses on these techniques. The proposal
was accepted in 2009 as an ERATO project, a nation-wide
project supported by the Japanese scientific research agency,
and it is now ongoing [50]. In this project, we consider
BDDs/ZDDs not just as data structures, but regard them as
integrated manipulation systems for many types of discrete
structures. Discrete structure manipulation is a fundamen-
tal task in various applications of computers. Therefore, its
acceleration will have a great effect on society.

Acknowledgements

The author would like to express his gratitude to all the
members and collaborative researchers of the JST ERATO
Minato Discrete Structure Manipulation System Project for
their fruitful discussions. The author also would like to
thank the chair and the committee members of the Technical
Group on Computation (COMP) of IEICE, for providing the
opportunity to write this survey paper.

References

[1] R.E. Bryant, “Graph-based algorithms for Boolean function manip-
ulation,” IEEE Trans. Comput., vol.C-35, no.8, pp.677–691, 1986.

[2] S. Minato, “Zero-suppressed BDDs for set manipulation in combi-
natorial problems,” Proc. 30th ACM/IEEE Design Automation Con-
ference (DAC’93), pp.272–277, 1993.

[3] D.E. Knuth, The Art of Computer Programming: Bitwise Tricks &
Techniques; Binary Decision Diagrams, Addison-Wesley, 2009.

[4] E. Loekito, J. Bailey, and J. Pei, “A binary decision diagram based
approach for mining frequent subsequences,” Knowledge and Infor-
mation Systems, vol.24, no.2, pp.235–268, 2010.

[5] S. Minato, “πDD: A new decision diagram for efficient problem
solving in permutation space,” in Theory and Applications of Satis-
fiability Testing - SAT 2011, ed. K. Sakallah and L. Simon, Lecture
Notes in Computer Science, vol.6695, pp.90–104, Springer Berlin
Heidelberg, 2011.

[6] S.B. Akers, “Binary decision diagrams,” IEEE Trans. Comput.,
vol.C-27, no.6, pp.509–516, 1978.

[7] R. Yoshinaka, J. Kawahara, S. Denzumi, H. Arimura, and S. Mi-
nato, “Counterexamples to the long-standing conjecture on the com-
plexity of bdd binary operations,” Inf. Process. Lett., vol.112, no.16,
pp.636–640, 2012.

[8] S. Minato, “Zero-suppressed BDDs and their applications,” Interna-
tional J. Software Tools for Technology Transfer, vol.3, pp.156–170,
2001.

[9] O. Coudert, “Solving graph optimization problems with ZBDDs,”
Proc. ACM/IEEE European Design and Test Conference (ED&TC
’97), pp.224–228, 1997.

[10] E. Loekit and J. Bailey, “Fast mining of high dimensional expressive
contrast patterns using zero-suppressed binary decision diagrams,”
Proc. 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD2006), pp.307–316, 2006.

[11] S. Minato, K. Satoh, and T. Sato, “Compiling bayesian networks by
symbolic probability calculation based on zero-suppressed BDDs,”
Proc. 20th International Joint Conference of Artificial Intelligence
(IJCAI-2007), pp.2550–2555, 2007.

[12] M. Ishihata, Y. Kameya, T. Sato, and S. Minato, “Propositionalizing
the EM algorithm by BDDs,” Proc. 18th International Conference
on Inductive Logic Programming (ILP 2008), Sept. 2008.

[13] K.S. Brace, R.L. Rudell, and R.E. Bryant, “Efficient implementa-
tion of a BDD package,” Proc. 27th ACM/IEEE Design Automation
Conference, DAC ’90, pp.40–45, New York, NY, USA, 1990.

[14] S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision di-
agrm with attributed edges for efficient Boolean function manip-
ulation,” Proc. 27th ACM/IEEE Design Automation Conference,
pp.52–57, 1990.

[15] M. Fujita, Y. Matsunaga, and T. Kakuda, “On variable ordering of
binary decision diagrams for the application of multi-level logic syn-
thesis,” Proc. Conference on European Design Automation, EURO-
DAC ’91, Los Alamitos, CA, USA, pp.50–54, 1991.

[16] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” Proc. 1993 IEEE International Conference on Computer-
Aided Design, ICCAD ’93, pp.42–47, Los Alamitos, CA, USA,
1993.

[17] S. Tani, K. Hamaguchi, and S. Yajima, “The complexity of the
optimal variable ordering problems of shared binary decision dia-
grams,” in Algorithms and Computation, ed. K. Ng, P. Raghavan, N.
Balasubramanian, and F. Chin, Lect. Notes Comput. Sci., vol.762,
pp.389–398, 1993.

[18] R. Drechsler, N. Drechsler, and W. Günther, “Fast exact minimiza-
tion of BDDs,” Proc. 35th Design Automation Conference, DAC
’98, pp.200–205, New York, NY, USA, 1998.

[19] F. Somenzi, “Cudd: Cu decision diagram package,” 1997.
http://vlsi.colorado.edu/˜fabio/CUDD/

[20] M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and implemen-
tation of boolean comparison method based on binary decision dia-
grams,” Proc. IEEE International Conf. on Computer-Aided Design
(ICCAD-88), pp.2–5, 1988.

[21] S. Malik, A. Wang, R.K. Brayton, and A. S.-Vincentelli, “Logic ver-
ification using binary decision diagrams in a logic synthesis environ-
ment,” Proc. IEEE International Conf. on Computer-Aided Design
(ICCAD-88), pp.6–9, 1988.

[22] O. Coudert and J.C. Madre, “A unified framework for the formal
verification of sequential circuits,” Proc. IEEE International Conf.
on Computer-Aided Design (ICCAD-90), pp.126–129, 1990.

[23] Y. Matsunaga and M. Fujita, “Multi-level logic optimization us-
ing binary decision diagrams,” Proc. IEEE International Conf. on
Computer-Aided Design (ICCAD-89), pp.556–559, 1989.

[24] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill, “Sequen-
tial circuit verification using symbolic model checking,” Proc. 27th
ACM/IEEE Design Automation Conference, DAC ’90, New York,
NY, USA, pp.46–51, ACM, 1990.

[25] K.L. McMillan, Symbolic Model Checking, Kluwer Academic Pub-
lishers, 1993.

[26] J.P.M. Silva and K.A. Sakallah, “Grasp-a new search algorithm for

MINATO: TECHNIQUES OF BDD/ZDD: BRIEF HISTORY AND RECENT ACTIVITY
1429

satisfiability,” Proc. IEEE/ACM International Conf. on Computer-
Aided Design (ICCAD-96), pp.220–227, 1996.

[27] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu, “Symbolic
model checking using sat procedures instead of BDDs,” Proc. 36th
ACM/IEEE Design Automation Conference, DAC ’99, pp.317–320,
New York, NY, USA, 1999.

[28] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik, “Chaff: engineering an efficient sat solver,” Proc. 38th Annual
Design Automation Conference, DAC ’01, pp.530–535, New York,
NY, USA, 2001.

[29] H. Okuno, S. Minato, and H. Isozaki, “On the properties of combi-
nation set operations,” Inf. Procss. Lett., vol.66, pp.195–199, 1998.

[30] S. Minato, “VSOP (valued-sum-of-products) calculator for knowl-
edge processing based on zero-suppressed BDDs,” in Federation
over the Web, ed. K. Jantke, A. Lunzer, N. Spyratos, and Y. Tanaka,
Lect. Notes Comput. Sci., vol.3847, pp.40–58, 2006.

[31] S. Minato, T. Uno, and H. Arimura, “LCM over ZBDDs: Fast gen-
eration of very large-scale frequent itemsets using a compact graph-
based representation,” in Advances in Knowledge Discovery and
Data Mining, ed. T. Washio, E. Suzuki, K. Ting, and A. Inokuchi,
Lect. Notes Comput. Sci., vol.5012, pp.234–246, 2008.

[32] Y. Sakurai, S. Ueda, A. Iwasaki, S. Minato, and M. Yokoo, “A com-
pact representation scheme of coalitional games based on multi-
terminal zero-suppressed binary decision diagrams,” in Agents in
Principle, Agents in Practice, ed. D. Kinny, J.J. Hsu, G. Governatori,
and A. Ghose, Lect. Notes Comput. Sci., vol.7047, pp.4–18, 2011.

[33] R. Yoshinaka, T. Saitoh, J. Kawahara, K. Tsuruma, H. Iwashita, and
S. Minato, “Finding all solutions and instances of numberlink and
slitherlink by ZDDs,” Algorithms, vol.5, no.2, pp.176–213, 2012.

[34] T. Inoue, K. Takano, T. Watanabe, J. Kawahara, R. Yoshinaka,
A. Kishimoto, K. Tsuda, S. Minato, and Y. Hayashi, “Loss min-
imization of power distribution networks with guaranteed error,”
Hokkaido University, Division of Computer Science, TCS Techni-
cal Reports, vol.TCS-TR-A-10-59, 2012.

[35] H. Iwashita, J. Kawahara, and S. Minato, “ZDD-based computation
of the number of paths in a graph,” Hokkaido University, Division
of Computer Science, TCS Technical Reports, vol.TCS-TR-A-10-
60, 2012.

[36] J.C. Madre and O. Coudert, “A logically complete reasoning mainte-
nance system based on a logical constraint solver,” Proc. 12th inter-
national joint conference on Artificial intelligence - vol.1, San Fran-
cisco, CA, USA, pp.294–299, Morgan Kaufmann Publishers Inc.,
1991.

[37] O. Coudert and J.C. Madre, “Towards an interactive fault tree anal-
yser,” Proc. IASTED International Conference on Reliability, Qual-
ity Control and Risk Assessment, 1992.

[38] O. Coudert and J.C. Madre, “Implicit and incremental computation
of primes and essential primes of boolean functions,” Proc. 29th
ACM/IEEE Design Automation Conference, DAC ’92, pp.36–39,
Los Alamitos, CA, USA, 1992.

[39] A. Darwiche, “SDD: A new canonical representation of proposi-
tional knowledge bases,” Proc. 22nd International Joint Conference
of Artificial Intelligence (IJCAI-2011), pp.819–826, 2011.

[40] “The on-line encyclopedia of integer sequences,” 2011.
https://oeis.org/

[41] D.J.A. Welsh, “Complexity: Knots, colourings and counting,” Lon-
don Mathematical Society Lecture Note Series, vol.186, pp.372–
390, 1993.

[42] K. Sekine, H. Imai, and S. Tani, “Computing the tutte polynomial
of a graph of moderate size,” in Algorithms and Computations, ed.
J. Staples, P. Eades, N. Katoh, and A. Moffat, Lect. Notes Comput.
Sci., vol.1004, pp.224–233, 1995.

[43] H. Imai, S. Iwata, K. Sekine, and K. Yoshida, “Combinatorial
and geometric approaches to counting problems on linear matroids,
graphic arrangements, and partial orders,” Computing and Combina-
torics, ed. J.Y. Cai and C. Wong, Lect. Notes Comput. Sci., vol.1090,
pp.68–80, 1996.

[44] S. Denzumi, R. Yoshinaka, H. Arimura, and S. Minato, “Notes
on sequence binary decision diagrams: Relationship to acyclic au-
tomata and complexities of binary set operations,” Proc. Prague
Stringology Conference 2011, ed. J. Holub and J. Žďárek, Czech
Technical University in Prague, Czech Republic, pp.147–161, 2011.

[45] S. Denzumi, H. Arimura, and S. Minato, “Substring indices based
on sequence bdds,” Hokkaido University, Division of Computer Sci-
ence, TCS Technical Reports, vol.TCS-TR-A-10-42, 2010.

[46] D.E. Knuth, “Combinatorial properties of permutations,” The Art of
Computer Programming, ch. 5.1, pp.11–72, Addison-Wesley, 1998.

[47] J. Kawahara, T. Saitoh, R. Yoshinaka, and S. Minato, “Counting
primitive sorting networks by pidds,” Hokkaido University, Division
of Computer Science, TCS Technical Reports, vol.TCS-TR-A-11-
54, 2011.

[48] M. Soeken, R. Wille, S. Minato, and R. Drechsler, “Using πdds in
the design of reversible circuits,” Preliminary Proc. 4th Workshop
on Reversible Computation (RC-2012), pp.205–211, 2012.

[49] S. Yamashita, S. Minato, and D.M. Miller, “DDMF: An efficient de-
cision diagram structure for design verification of quantum circuits
under a practical restriction,” IEICE Trans. Fundamentals, vol.E91-
A, no.12, pp.3793–3802, Dec. 2008.

[50] S. Minato, “Overview of ERATO Minato project: The art of discrete
structure manipulation between science and engineering,” New Gen-
eration Computing, vol.29, no.2, pp.223–228, 2011.

Shin-ichi Minato is a Professor at the Grad-
uate School of Information Science and Tech-
nology, Hokkaido University. He also serves
as the Research Director of the ERATO MI-
NATO Discrete Structure Manipulation System
Project, executed by JST. He received the B.E.,
M.E., and D.E. degrees in Information Science
from Kyoto University in 1988, 1990, and 1995,
respectively. He worked for NTT Laboratories
from 1990 until 2004. He was a Visiting Scholar
at the Computer Science Department of Stan-

ford University in 1997. He joined Hokkaido University as an Associate
Professor in 2004, and has been a Professor since October 2010. He has
published “Binary Decision Diagrams and Applications for VLSI CAD”
(Kluwer, 1995). He is a member of IEEE, IPSJ, and JSAI.

