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SUMMARY Scaling up the system size has been the common approach
to achieving high performance in parallel computing. However, designing
and implementing a large-scale parallel system can be very costly in terms
of money and time. When building a target system, it is desirable to ini-
tially build a smaller version by using the processing nodes with the same
architecture as those in the target system. This allows us to achieve efficient
and scalable prediction by using the smaller system to predict the perform-
ance of the target system. Such scalability prediction is critical because
it enables system designers to evaluate different design alternatives so that
a certain performance goal can be successfully achieved. As the de facto
standard for writing parallel applications, MPI is widely used in large-scale
parallel computing. By categorizing the discrete event simulation methods
for MPI programs and analyzing the characteristics of scalability predic-
tion, we propose a novel simulation method, called virtual-actual combined
execution-driven (VACED) simulation, to achieve scalable prediction for
MPI programs. The basic idea behind is to predict the execution time of
an MPI program on a target machine by running it on a smaller system so
that we can predict its communication time by virtual simulation and ob-
tain its sequential computation time by actual execution. We introduce a
model for the VACED simulation as well as the design and implementa-
tion of VACED-SIM, a lightweight simulator based on fine-grained activ-
ity and event definitions. We have validated our approach on a sub-system
of Tianhe-1A. Our experimental results show that VACED-SIM exhibits
higher accuracy and efficiency than MPI-SIM. In particular, for a target
system with 1024 cores, the relative errors of VACED-SIM are less than
10% and the slowdowns are close to 1.
key words: parallel computing, scalability prediction, MPI, communica-
tion primitive

1. Introduction

In the past few decades, scaling up the system size has been
the common approach to achieving high performance in par-
allel computing. The Top500 list [1] shows that the num-
ber of cores in a Petascale system has already reached 105.
Some experts forecast that an Exascale system will consist
of more than 108 cores in the future [2]. Such large-scale
parallel systems each cost millions of dollars and take years
to design and implement [3]. When building a target system,
system designers usually start with a smaller system with the
processing nodes whose architecture is the same as those in
the target system in order to predict the performance of the
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target system [4], [5]. This kind of performance prediction
is called scalability prediction [6]. Scalability prediction is
desirable because it enables system designers to evaluate de-
sign alternatives to meet a certain performance goal.

Scalability prediction is a kind of performance predic-
tion. Discrete event simulation is a popular performance
prediction method. According to the driving events used,
discrete event simulation can be categorized into trace-
driven simulation and execution-driven simulation. In trace-
driven simulation [5], [7]–[9], the trace of a program is ob-
tained with an instrumentation tool by running the program
first. Then the simulator uses the trace to drive the events
and predict the execution time of the program. However,
when predicting the performance of a large-scale parallel
computing system, the time spent on extracting and the
space taken for storing the trace can become intolerable.
In addition, due to some uncertain factors in a program
(e.g., condition branches, dynamic instruction generations
and non-deterministic communications), trace-driven simu-
lation may be inaccurate when an incorrect trace is acquired.

In contrast, execution-driven simulation drives events
through executing a program [10]–[13]. In addition to being
able to simulate more complex program characteristics such
as branch prediction and dynamic instruction generation,
execution-driven simulation can also make use of available
system resources to directly execute portions of the program
and simulate the features that are of specific interest or are
unavailable [14]. Therefore, compared to the trace-driven
simulation, the execution-driven simulation is closer to the
program execution reality and has higher efficiency. How-
ever, existing execution-driven simulation methods cannot
deal with the scalability prediction problem well, because
they do not utilize the characteristics of scalability predic-
tion to gain high accuracy and efficiency.

Nowadays, most large-scale parallel applications are
written using MPI, which has become the de facto standard
for parallel computing [15]. In this paper, we present the
design and implementation of an execution-driven simula-
tor by combining virtual and actual simulation to achieve
scalable prediction for MPI programs in large-scale parallel
computing. The contributions are summarized as follows:

• We categorize the existing discrete event simulation
methods for MPI programs, according to how they pre-
dict the performance and drive the events.

• We propose for the first time the idea of conducting
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virtual-actual combined execution-driven (VACED)
simulation to achieve scalable prediction for MPI pro-
grams and build a model for the VACED simulation.

• We propose for the first time a fine-grained activity and
event definition approach, which allows us to design
and implement a lightweight VACED simulator, called
VACED-SIM, for scalability prediction.

• We demonstrate the effectiveness of VACED-SIM by
experimentation using NPB3.3-MPI benchmarks on a
sub-system of Tianhe-1A [16]. For a target system with
16 cores, the relative errors of VACED-SIM are less
than 6% and the performance speedups are close to lin-
ear. Compared to a classic execution-driven simulator
(named MPI-SIM) developed by UCLA [12], VACED-
SIM exhibits better prediction accuracy and efficiency.
For a target system with 1024 cores, the relative errors
of VACED-SIM are less than 10% and the slowdowns
are close to 1.

The rest of the paper is organized as follows. Section 2
categorizes the discrete event simulation methods for MPI
programs and presents the basic idea behind the VACED
simulation. Section 3 introduces our VACED-SIM simu-
lator, which is designed and implemented based on the idea
of VACED simulation. Section 4 describes our approach
for simulating communication activities and calculating the
timestamps of the communication end events. Our exper-
imental results are presented and analyzed in Sect. 5. The
related work is reviewed in Sect. 6. Section 7 concludes.

2. VACED Simulation for Scalability Prediction

This section describes our VACED simulation approach.
Section 2.1 analyzes the characteristics of scalability pre-
diction. Section 2.2 introduces some concepts of discrete
event simulation-based performance prediction methods for
MPI programs and then categorizes these methods. Sec-
tion 2.3 proposes the basic idea of VACED simulation for
scalability prediction of MPI programs and then builds its
simulation model, based on the characteristics of scalabil-
ity prediction analyzed in Sect. 2.1 and the the performance
prediction methods introduced in Sect. 2.2.

2.1 Scalability Prediction

Let us explain a few terms used. By a target machine, we
mean a large-scale parallel machine that designers plans to
build. By a host machine, we mean a smaller machine built
with the processing nodes whose architecture is the same as
those in the target machine. By a target program, we mean a
program whose performance is to be predicted. Scalability
prediction is to predict the performance of a target program
on a target machine by using the resources of a host ma-
chine, with the following two characteristics:

• First, the architectures of the processing nodes in the
host and target machines are the same.

• Second, the host machine has fewer processing nodes

than the target machine, which implies that they have
different network sizes and configurations.

We are thus motivated to develop a novel prediction
method to solve the scalability prediction problem.

2.2 Categorization of the Discrete Event Simulation-based
Performance Prediction Methods for MPI Programs

Discrete event simulation [17] is a popular way to solve the
performance prediction problem. As a standard library in-
terface for message-passing applications, the Message Pass-
ing Interface (MPI) [18] is widely used in high-performance
computing. For an MPI program, at any point in execution, a
process is either in sequential computation state or in com-
munication state. So there are four kinds of events during
the simulation of MPI program:

• Simulation start event: starts the simulation of a pro-
cess.

• Simulation end event: ends the simulation of a process.
• Communication start event: changes the state of a pro-

cess from the sequential computation state to the com-
munication state.

• Communication end event: changes the state of a pro-
cess from the communication state to the sequential
computation state.

In a process, the operations between two adjacent
events are referred to as activities. The activities in an MPI
program can be categorized into sequential computation ac-
tivities and communication activities. A sequential compu-
tation activity, which performs sequential computation oper-
ations that are irrelevant to communication, corresponds to
the sequential computation state. A communication activity,
which performs operations that are relevant to communica-
tion, corresponds to the communication state. A process al-
ternately executes the sequential computation activities and
communication activities. Figure 1 shows the relationships
among the events and activities in a process.

If we can predict the execution time of all the activities
in a process, we can calculate the occurrence time of each
event and predict the execution time of the process. When
simulating an activity, we call the simulation of this activity
an actual simulation if the following conditions are satisfied.
First, the way in which the activity executes on the host ma-
chine is exactly the same as that on the target machine. Sec-
ond, the execution time is obtained by measurement during
its execution on the host machine. Otherwise, the simulation
of this activity is referred to as a virtual simulation.

Fig. 1 The relationship between events and activities.
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Table 1 Categorization of the discrete event simulation-based perform-
ance prediction methods for MPI programs.

Pure-virtual Virtual-actual combined

Trace-driven
Dip [7]

PHANTOM [5]
PERC [8]

Execution-driven
BigSim [13]

—
MPI-SIM [12]

Generally speaking, actual simulation is more accu-
rate than virtual simulation. A simulation method is said
to be pure-virtual if it only contains virtual simulation and
virtual-actual combined if it also contains actual simulation.
Note that pure-actual simulation does not exist because the
target machine has not been completely built yet.

As stated in Sect. 1, there are two ways to drive the
events: trace-driven and execution-driven. Therefore, we
can categorize the simulation-based performance prediction
methods for MPI programs into pure-virtual trace-driven
(PVTD), pure-virtual execution-driven (PVED), virtual-
actual combined trace-driven (VACTD) and virtual-actual
combined execution-driven (VACED) simulations. Table 1
lists some typical simulation methods for MPI programs,
which will be discussed in Sect. 6. To the best of our
knowledge, predicting the performance of MPI programs by
VACED simulation has not been proposed yet.

2.3 The VACED Simulation

The basic ideas behind the VACED simulation are:

Execution-Driven Execute a target program on the host
machine so that events are invoked during execution;

Actual Simulation for Sequential Computation Measure
the execution time of each sequential computation ac-
tivity when the target program executes on the host ma-
chine, since the first characteristic of scalability predic-
tion ensures that the actual simulation is accurate;

Virtual Simulation for Communication Calculate the ex-
ecution time of each communication activity on the tar-
get machine based on the network information of the
target machine, according to the second characteristic
of scalability prediction.

Below we present a model for the VACED simulation
to achieve scalable prediction for MPI programs.

Without loss of generality, we assume that the number
of processes in the target program is equal to the number
of cores in the target machine, denoted as P. The simu-
lation for the ith (i = 0, 1, . . . , P − 1) process of the tar-
get program is associated with ni + 1 events. We use the
term Ei, j ( j = 1, 2, . . . , ni + 1) to refer to the jth event of
the ith process, where Ei,1 and Ei,ni+1 are the simulation start
event and simulation end event, respectively, and we use Ai, j

( j = 1, 2, . . . , ni) to refer to the jth activity of the ith process.
Let t(Ei, j) be the timestamp [17] of event Ei, j, i.e.,

the time when Ei, j happens on the target machine, where
t(Ei,1) = 0. TT (Ai, j) and TH(Ai, j) represent the execution
time of activity Ai, j on the target and host machines, respec-

tively. Since Ai, j occurs between Ei, j and Ei, j+1, we have:

t(Ei, j+1) = t(Ei, j) + TT (Ai, j) (1)

In the VACED simulation for scalability prediction of
MPI programs, when a target MPI program is executed on
the host machine, the events of each process are invoked and
the execution time TT (Ai, j) of each activity Ai, j is acquired
by measurement (actual simulation) or virtual simulation:

• If Ai, j is a sequential computation activity, then

TT (Ai, j) = TH(Ai, j) (2)

where TH(Ai, j) is measured when the target program is
executed on the host machine.

• If Ai, j is a communication activity, TT (Ai, j) is derived
by the virtual simulation of Ai, j, and the details of vir-
tual simulation will be discussed in Sect. 4.

Due to t(Ei,1) = 0 and Eq. (1), we can obtain the times-
tamps of all the events in process i, including t(Ei,ni+1),
which is the timestamp of the simulation end event and rep-
resents the execution time of process i on the target machine.

Then
P−1

max
i=0

t(Ei,ni+1) is the execution time of the target pro-

gram on the target machine, i.e., the prediction result.

3. The VACED-SIM Simulator

This section introduces our VACED-SIM simulator, which
is fine-grained (Sect. 3.1) and lightweight (Sect. 3.2). We
deal with the events by modifying an MPI library and imple-
ment the execution-driven simulation by executing a target
program on the host machine with the modified MPI library.

3.1 Fine-Grained Activities and Events

To design a simulator using discrete event simulation, the
activities of a process and its corresponding events should
be defined first.

An MPI library provides the programmers with point-
to-point and collective communication primitives. The ex-
isting simulators, such as MPI-SIM [12], SIM-MPI [9], de-
fine the communication activities at the granularity of MPI
communication primitives; they choose some typical point-
to-point communication primitives from the MPI library and
use them to re-implement the other communication primi-
tives in the library. Then by simulating those chosen prim-
itives, the time overheads of all the communication primi-
tives can be predicted [9], [19]. However, in existing MPI
libraries, communication primitives are not implemented by
point-to-point communication primitives. Therefore, those
existing prediction methods, which need to re-implement
the communication primitives, require lots of modifications
to an MPI library. In addition, changing the ways in which
the communication primitives are implemented in an MPI
library also reduces prediction accuracy.

Therefore, in this section, we first analyze how the
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communication primitives are implemented in existing MPI
libraries (Sect. 3.1.1), and then propose a method to define
the activities and events at a finer granularity, which respects
the ways in which the communication primitives are imple-
mented in existing MPI libraries (Sect. 3.1.2).

3.1.1 Analyzing Point-to-Point Communication

In existing MPI libraries, both point-to-point and collec-
tive communication primitives are implemented by point-
to-point communications. Point-to-point communications
switch communication protocols according to the size of the
data to be transferred. There are two major protocols, eager
and rendezvous [20]. In the eager protocol, the data message
is immediately sent to the buffer of the receiver directly, as
shown in Fig. 2 (a). In the rendezvous protocol, a handshake
happens between the sender (the process sending data) and
the receiver (the process receiving data) via REQ and ACK
messages before the data message is sent to the receiver, as
shown in Fig. 2 (b). Therefore, there are three types of mes-
sages implemented in MPI libraries, REQ, ACK and DATA.

For a point-to-point communication, denoted as c, both
the sender and receiver complete the sending and receiving
operations in two phases: starting phase and waiting phase.
It is noteworthy that the waiting phase of c does not always
follow the starting phase of c immediately, and either the
sequential computation or some other point-to-point com-
munication’s starting/waiting phase can appear between c’s
starting phase and waiting phase. The detailed operations of
the starting and waiting phases are as follows:

• The starting phase is used to start c. The sender starts c
by sending the DATA message in the eager protocol or
sending the REQ message in the rendezvous protocol.
For the receiver, there are two cases. If the receiver can
find the message related to c in an unexpected queue,
which is used to store the messages that arrive before
their corresponding starting phases begin, it will start c
by receiving the DATA message in the eager protocol
or sending the ACK message in the rendezvous proto-
col. Otherwise, the receiver starts c by registering some
information without sending or receiving any message.

• The waiting phase is used to guarantee the comple-
tion of c. Both the sender and receiver must wait until
c is completed (for the sender, c is completed when
the DATA message has been sent; for the receiver, c
is completed when the DATA message has been re-
ceived). Furthermore, in the MPI implementation, a
message will only be stored in a message buffer, which

Fig. 2 Communication protocols: (a) eager protocol; (b) rendezvous
protocol.

is maintained by an MPI library and directly accessed
by hardware, when arriving at its destination. So when
c has not been completed, the waiting phase takes the
initiative to progress c by accessing and dealing with
the messages in the message buffer. The operations in
the waiting phase are described in Algorithm 1.

Algorithm 1 Operations of waiting phase
1: while c is not completed do // c is the point-to-point communication,

which this waiting phase belongs to
2: Access the message buffer in arrival order and get the first message

which has not been accessed, denoted as m;
3: if c′ has began its starting phase then // c′ is the point-to-point com-

munication, which m is related to
4: if m.type = REQ then
5: Send the ACK message;
6: else if m.type = ACK then
7: Send the DATA message;
8: else if m.type = DAT A then
9: Receive the DATA message; // Copy the data from the message

buffer to the buffer specified by MPI primitive
10: end if
11: else
12: Add m into the unexpected queue;
13: end if
14: end while

3.1.2 Defining Fine-Grained Activities and Events

Based on the analysis described in Sect. 3.1.1, we divide all
the communication operations in an MPI library into five
fine-grained activities: DATA-sending activity and REQ-
sending activity for the starting phase of the sender; DATA-
receiving activity and ACK-sending activity for the starting
phase of the receiver; and waiting activity for the waiting
phase. All the activities involved in VACED-SIM are listed
in Table 2, with the five items in the middle row being com-
munication activities.

It is noteworthy that the communication activities listed
in Table 2 are implemented in the MPI library code and in-
voked by MPI primitives. However, in an MPI library, apart
from the code used to implement these communication ac-
tivities, there is also a great deal of code used to perform
some prerequisite operations. These prerequisite operations
do not influence the execution times of communication ac-
tivities, and the execution times of these prerequisite opera-
tions are only related to the architecture of a local process-
ing node. Therefore, VACED-SIM simulates these opera-
tions as sequential computation activities by actual simula-
tion, thereby improving the simulation accuracy.

Figure 3 gives an example of standard non-blocking
point-to-point communication in the rendezvous protocol.
When the sender encounters the MPI Isend, the starting
phase of the sender begins and invokes ARS to send a REQ
message. When the REQ message arrives at the receiver,
it will be stored in the message buffer. In this example, no
waiting phase takes the initiative to access the REQ message
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Table 2 Activities simulated in VACED-SIM.

Symbol Activity Operations

ADS DATA-sending activity Send the DATA message in eager protocol in starting phase
ARS REQ-sending activity Send the REQ message in rendezvous protocol in starting phase
ADR DATA-receiving activity Receive the DATA message in eager protocol in starting phase
AAS ACK-sending activity Send the ACK message in rendezvous protocol in starting phase
AWT Waiting activity Operations in waiting phase, as shown in Algorithm 1

AS C Sequential computation activity Compute the sequential codes

Fig. 3 An example of standard non-blocking communication.

from the message buffer before the MPI Irecv. So when
the receiver encounters the MPI Irecv, the REQ message
has not been added into the unexpected queue and then the
starting phase of the receiver just registers some informa-
tion. When the sender encounters the MPI Wait, the waiting
phase of the sender begins. Because the DATA message has
not been sent, it takes the initiative to progress c by access-
ing and dealing with the messages in the message buffer.
Concretely, the sender sends the DATA message after ac-
cessing the ACK message in the message buffer. When the
receiver encounters the MPI Wait, the waiting phase of the
receiver begins. Because the DATA message has not been
received, it also takes the initiative to progress c by access-
ing and dealing with the messages in the message buffer.
Concretely, the receiver sends the ACK message after ac-
cessing the REQ message in the message buffer and receives
the DATA message from the message buffer after having ac-
cessed the DATA message.

Based on the activities listed in Table 2, VACED-SIM
includes 12 types of events listed as follows:

• Simulation start event ES tart

• Simulation end event EEnd

• 5 types of communication start events:
- DATA-sending start event EDS

start
- REQ-sending start event ERS

start
- DATA-receiving start event EDR

start
- ACK-sending start event EAS

start
- Waiting start event EWT

start

• 5 types of communication end events:
- DATA-sending end event EDS

end
- REQ-sending end event ERS

end
- DATA-receiving end event EDR

end
- ACK-sending end event EAS

end
- Waiting end event EWT

end

The first executable statement in an MPI process is
MPI Init and the last one is MPI Finalize. So the execution
time of a process that we are concerned with is the time pe-
riod spanning between MPI Init and MPI Finalize. There-
fore, the simulation start event ES tart (simulation end event
EEnd) happen after the MPI Init (before the MPI Finalize)
statement. The communication start (end) event happens
before (after) the corresponding communication activity.

3.2 Lightweight Driving and Simulation

Based on the fine-grained activities and events defined in
Sect. 3.1, VASED-SIM is used to perform a lightweight
execution-driven simulation, by simply modifying an exist-
ing MPI library and integrating all the functions of VACED-
SIM into the modified MPI library. The guiding principles
used when modifying the MPI library are as follows:

• Do not modify the code corresponding to sequential
computation activities.

• Make modifications as few as possible to the codes cor-
responding to the 5 kinds of communication activities
in an MPI library to implement the virtual simulations.

• Add codes at the places, where the 12 types of events
occur, to compute their timestamps.

In order to calculate the timestamp of each event,
VACED-SIM adds three private variables for each process:
tV for the simulation time; t′1 for the process CPU time when
the latest sequential computation activity starts on the host
machine; t′2 for the process CPU time when the latest se-
quential computation activity finishes on the host machine.

The core idea of VACED-SIM lies in updating tV when
a process executes. When a process encounters event e, tV
will be updated with the timestamp of e, denoted as t(e),
which refers to the time when e happens on the target ma-
chine. For different events, tV is updated in different ways.

Simulation start event ES tart Initialize tV to 0 and then up-
date t′1 with the current process CPU time.

Communication start event E∗start Update t′2 with the cur-
rent process CPU time and then calculate the value of
tV , based on Eq. (1) and Eq. (2), as follows:

tV = t(E∗start) = tV + (t′2 − t′1)

Communication end event E∗end Calculate the value of
t(E∗end) by simulating the corresponding communica-
tion activity virtually, and update tV with t(E∗end) and
update t′1 with the current process CPU time. Note that
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the way that t(E∗end) is calculated is related to the virtual
simulation of the corresponding communication activ-
ity, which will be discussed in Sect. 4.

Simulation end event EEnd Update t′2 with the current pro-
cess CPU time and then tV = tV + t′2 − t′1.

Based on the modifications to an MPI library, VACED-
SIM works by executing a target program on the host ma-
chine with the modified MPI library. The code added into
the library can drive the simulator to simulate sequential
computation activities actually and communication activi-
ties virtually. After EEnd for a process is finished, tV rep-
resents the execution time of the process on the target ma-
chine. When all the processes of the target program finish
their EEnds, the maximum of all the tVs represents the exe-
cution time of the target program on the target machine, i.e.,
the prediction result obtained by VACED-SIM.

3.3 Synchronization Mechanisms

There is a common problem shared by all discrete event
simulation methods for MPI programs. For the communi-
cations in non-deterministic mode (e.g., a receive request
contains MPI ANY SOURCE as the source), the simulator
relies on a synchronization mechanism to make sure that the
right messages (i.e., the messages that are received when the
program executes on the target machine) are accepted dur-
ing the simulation on the host machine.

There are two kinds of synchronization mechanisms:
conservative and optimistic. If a conservative mechanism
is used, all events are strictly processed in the chronologi-
cal order. Two protocols have been commonly used: syn-
chronous and asynchronous. With the synchronous protocol
(also called the quantum protocol) [21], after a previously
determined interval, every process executes a global barrier.
With the asynchronous protocol, when a process encoun-
ters a non-deterministic receive, EIT [22], which represents
a lower bound on the receive timestamps of future messages,
will be calculated. A receive timestamp for a message is de-
fined as the time when the message arrives at the receiver on
the target machine. A process only accepts a message if its
receive timestamp is smaller than EIT.

An optimistic mechanism [23], [24] allows the earliest
available event to be processed with no regard for safety.
When an older message arrives, a rollback mechanism is
needed to undo earlier out-of-order executed events and re-
execute these events in order to ensure correctness.

In VACED-SIM, an asynchronous conservative mech-
anism is preferred for two reasons. First, the overheads in-
curred by an optimistic mechanism in saving the program
state, rollback and re-execution are unacceptable for large-
scale parallel computing. Second, the asynchronous conser-
vative protocol, which only gets switched on when a non-
deterministic receive is encountered, is more efficient than
the synchronous conservative protocol. Note that synchro-
nization mechanisms are not the focus of this work. The
interested readers are referred to [19], [25] for more details.

4. Virtual Simulation of Communication Activities

In this section, we introduce the virtual simulations of com-
munication activities and explain how to calculate the times-
tamps of communication end events.

4.1 Terminology and Assumptions

When studying communications, researchers always make
assumptions on whether there are message buffers at the
sending and receiving ends and whether DMA (direct mem-
ory access) and asynchronous message transfer using net-
work interface hardware are supported or not [26], [27]. Ac-
cording to the state-of-the-art parallel machines, we as-
sume that both the sending and receiving ends have message
buffers, both DMA and asynchronous message transfer us-
ing network interface hardware are supported, and the MPI
library we modify is a standard MPI library in which the
rendezvous protocol does not support zero-copy data trans-
fer [28]. In order to clearly describe the virtual simulations
of communication activities in VACED-SIM, we use a user
buffer to refer to the buffer specified by an MPI primitive.
Both the message buffer and user buffer are in the memory.

For a message m, m.size stands for the size of m and
m.sID and m.rID stand for the process IDs of the sender
and receiver, respectively. Because both the sending and
receiving ends have message buffers, the procedure of send-
ing a message is divided into two steps. In the first step, the
message is sent from the user buffer to the message buffer
at the sending end. In the second step, the message is sent
from the message buffer at the sending end to the message
buffer at the receiving end. Note that after the first step,
the sender can move on to perform computations. Conse-
quently, for a message m, we define three time parameters:
ts(m) represents the time when the sender starts to send m;
tr(m) represents the time when the first step of sending m
finishes; and ta(m) represents the arrival time, i.e., the time
when m completely arrives at the receiver’s message buffer.
ts(m), tr(m) and ta(m) satisfy the following equation:

tr(m) = ts(m) + m.size/Bmem

ta(m) = tr(m) + L(m.size, hop(m.sID,m.rID))
(3)

where Bmem is the memory bandwidth, hop(x, y) is the num-
ber of hops traversed by a message from process x to process
y on the target machine, and L(s, h) is the time overhead of
transferring the message of size s from the message buffer
at the sending end to the message buffer at the receiving end
across h hops. hop(x, y) depends on the network topology
of the target machine and how a target program is mapped
onto the target machine. L(s, h) is defined to be:

L(s, h) =

{
s/Bnet + l(h), h > 0
s/Bmem, h = 0

(4)

where Bnet is the network bandwidth and l(h) is the net-
work latency of an h-hop transmission on the target ma-
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chine. VACED-SIM does not presently model communi-
cation congestion, but it can be easily extended to do so by
integrating with it an existing congestion model.

4.2 Virtual Simulation of ADS , ARS and AAS

As shown in Table 2, the operations of ADS , ARS and AAS

are concerned with sending the corresponding messages, de-
noted as m. However, the time overheads of transferring m
on the target machine and on the host machine may be dif-
ferent. In order to make sure that the receiver knows ta(m)
during the simulation, VACED-SIM simulates ADS , ARS and
AAS by inserting code to calculate ta(m) and sending ta(m)
with m together. Since tV has been updated by EDS

start, ERS
start

and EAS
start, respectively, before simulating ADS , ARS and AAS ,

the equation for calculating ta(m) is defined by:

ta(m) = tV + m.size/Bmem + L(m.size, hop(m.sIDr,m.rID))

The sender can proceed to perform its own computa-
tions after it has sent a message in the first step. Therefore,
tV has been updated by EDS

end, ERS
end and EAS

end at the end of
ADS , ARS and AAS , respectively:

tV = tr(m) = tV + m.size/Bmem

4.3 Virtual Simulation of ADR

The operations of ADR are concerned with receiving the
DATA message m; they are implemented by transferring the
data from the message buffer to the user buffer. VACED-
SIM simulates ADR without modifying any code in the orig-
inal MPI library, i.e., ADRs in the original MPI library and
in the modified MPI library are the same. Because both
the message buffer and user buffer are in the memory, EDR

end,
which is at the end of ADR, updates tV by:

tV = tV + m.size/Bmem

4.4 Virtual Simulation of AWT

There are some difficulties in performing virtual simulation
for AWT . First, the time when a message arrives on the
target machine may be different from that on the host ma-
chine. Second, AWT may take the initiative to progress the
point-to-point communication by handling the messages in
the message buffer. For example, Fig. 4 (a) shows the arrival
of message m on the target machine when m is processed
by the second AWT . When the target program runs on the
host machine, m may arrive before the first AWT (as shown
in Fig. 4 (b)) or after the second AWT (as shown in Fig. 4 (c)).
These two cases may induce an incorrect AWT (i.e., the first
or the third rather than the second AWT ) to deal with m.

It should be clarified that the other existing simula-
tion methods, which define the activities and events at the
granularity of MPI primitives, cannot even reveal, let alone
solve the above problems. But our fine-grained activity and

Fig. 4 Problems in simulating AWT : (a) message arrival on the target
machine; (b) the first problem of message arrival on the host machine; (c)
the second problem of message arrival on the host machine.

event definitions provide us with opportunities to discover
and address these problems effectively. If simulation costs
are ignored, we can use the synchronization mechanisms de-
scribed in Sect. 3.3 to solve the problems successfully.

However, we aim to develop a lightweight simulator.
To this end, we have designed an early queue for each pro-
cess in VACED-SIM to store the messages to deal with the
problem illustrated in Fig. 4 (b); In addition, in order to ad-
dress the problem illustrated in Fig. 4 (c), we also define
num to count the number of AWT s that have been simulated,
and record the start time and end time of all the AWT s in
AWTstart[] and AWTend[], respectively, for each process.

Our algorithm for performing virtual simulation of
AWT is given in Algorithm 2. If c has not completed when
the waiting phase begins, we progress the communication
by accessing the messages in the early queue (lines 5-10).
We then progress the communication by accessing the mes-

Algorithm 2 Virtual simulation of AWT

1: AWTstart[num]← tV ; // Currently, tV = t(EWT
start)

2: if c is completed then // c is the point-to-point communication, which
this waiting phase belongs to

3: AWTend[num]← tV ;
4: else
5: for all m ∈ early queue do
6: if ta(m) ≤ tV or m is related to c then
7: DealMessage(c,m);
8: Delete m from the early queue;
9: end if

10: end for
11: while c is not completed do
12: Access the message buffer in arrival order and get the first mes-

sage which has not been accessed, denoted as m;
13: if ta(m) > tV and m is not related to c then
14: Add m into the early queue;
15: else if c′ has not began its starting phase then // c′ is the point-to-

point communication, which m is related to
16: Add m into the unexpected queue;
17: else
18: DealMessage(c,m);
19: end if
20: end while
21: end if
22: for all m ∈ early queue do
23: if ta(m) ≤ AWTend[num] then
24: DealMessage(c,m);
25: Delete m from the early queue;
26: end if
27: end for
28: num← num + 1;
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sages in the message buffer (lines 11-20). Unlike Algo-
rithm 1, after having retrieved message m from the mes-
sage buffer, we must decide whether m exhibits the prob-
lem as shown in Fig. 4 (b) (lines 13-14). Furthermore, there
may be messages that arrive between AWTstart[num] and
AWTend[num] on the target machine in the early queue af-
ter calculating the time of AWTend[num] when c completes.
Therefore, we re-traverse the early queue to find out these
messages and deal with them (lines 22-27).

DealMessage(c,m), the function used in Algorithm 2, is
given in Algorithm 3. We first calculate ttemp, the time when
m is dealt with on the target machine (lines 1-13) and then
deal with m. Unlike Algorithm 1, we send the corresponding
message with its arrival time together if m is a REQ message
or ACK message (lines 14-19). When dealing with an ACK
or DATA message, we set AWTend[num] as desired (lines
20-22 and 25-27) if m is related to c.

Algorithm 3 Dealing with the message: DealMessage(c,m)
1: if ta(m) ≥ AWTstart[num] then
2: ttemp ← ta(m);
3: else
4: i← num − 1;
5: while AWTstart[i] > ta(m) do
6: i← i − 1;
7: end while
8: if AWTend[i] > ta(m) then
9: ttemp ← ta(m);

10: else
11: ttemp ← AWTstart[i + 1];
12: end if
13: end if
14: if m.type = REQ then
15: Calculate ta(mACK ) by Eq. (3) with ts(mACK ) = ttemp;
16: Send the ACK message mACK with ta(mACK ) together;
17: else if m.type = ACK then
18: Calculate ta(mDAT A) by Eq. (3) with ts(mDAT A) = ttemp;
19: Send the DATA message mDAT A with ta(mDAT A) together;
20: if m is related to c then
21: AWTend[num]← max{AWTstart[num], ttemp+mDAT A.size/Bmem};
22: end if
23: else if m.type = DAT A then
24: Receive the DATA message;
25: if m is related to c then
26: AWTend[num]← max{AWTstart[num], ttemp+mDAT A.size/Bmem};
27: end if
28: end if

Finally, EWT
end , which is at the end of AWT , updates tV by

AWTend[num − 1], which is obtained by Algorithm 2.
It should be noted that in Algorithms 2 and 3, we as-

sume that there is no interaction between the messages that
are dealt with in the same AWT on the target machine, for
the convenience of dealing with the problem as shown in
Fig. 4 (c). Otherwise, we must use checkpointing meth-
ods [29] to rollback the simulation and re-calculate the time
overheads and timestamps of the corresponding AWT . Our
experiments discussed below show that this assumption is
acceptable in the sense that VACED-SIM can still achieve
high accuracy even under this assumption.

5. Experiments

We demonstrate the accuracy and efficiency of VACED-
SIM in this section. Section 5.1 introduces the benchmarks
and experiment platform used. Section 5.2 describes the
methodology used for evaluating this work. Section 5.3
presents and analyzes our results.

To facilitate introducing the experiments, we introduce
the following notations. T Real

x,y denotes the real execution
time of an x-process benchmark on a y-core machine by us-
ing the original MPI library. T S im

x,y represents the prediction
result obtained by VACED-SIM for an x-process benchmark
on a y-core host machine. T Exe

x,y represents the execution
time that VACED-SIM takes to predict the performance of
an x-process benchmark on a y-core host machine.

5.1 Benchmarks and Platform

We have selected the NPB3.3-MPI benchmarks to evaluate
VACED-SIM. There are five parallel kernels, EP, MG, CG,
FT and IS, and three parallel applications, LU, SP and BT.
All the benchmarks are executed on a Red Hat Enterprise
Linux Server (Release 5.5) with MPICH2-1.3.1 being used.

Our platform is a sub-system of Tianhe-1A, used to be
the fastest supercomputer (designed by the National Univer-
sity of Defense Technology) in the world [1]. In TianHe-1A,
each processing node is equipped with two 2.93G 6-core In-
tel Xeon X5670 CPUs with 24 GB RAM. The interconnec-
tion is the same as described in [30]: 16 processing nodes
are connected with a switching board, and switching boards
compose a fat-tree through routers.

5.2 Evaluation Methodology

We have implemented VACED-SIM by modifying
MPICH2-1.3.1 according to the techniques described in
Sect. 3 and Sect. 4. The parameters discussed in Sect. 4.1
are determined by using a ping-pong program: Bmem =

6.38 GB/s, Bnet = 4.16 GB/s and l(h) = 15us + h × 0.6us.
We compare the accuracy and performance of VACED-

SIM with MPI-SIM [12], which also requires the same pro-
cessor configurations in the host and target machines. A
detailed description of MPI-SIM is given in Sect. 6. The
CPU used in MPI-SIM is a single-core processor. So we
have used Xeon X5670 CPUs during these experiments: the
processes allocated in the same CPU are bound to the same
core. In our experiments, we use 16 CPUs connected by the
same switching board as the target machine with hop(x, y) =
3. We vary the core count N for the host machine and mea-
sure the relative error RE(16,N) = T S im

16,N/T
Real
16,16 − 1 and the

performance speedup S (16,N) = T Exe
16,N/T

Exe
16,1 of VACED-

SIM. We then compare VACED-SIM with MPI-SIM.
In order to validate the accuracy and performance of

VACED-SIM for large-scale parallel computing, we fix
the core count N of the target machine to be 1024 and
the problem size of the target program to be class C and
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then vary N to measure the relative error RE(1024,N) =
T S im

1024,N/T
Real
1024,1024 −1 and the slowdown [31] S D(1024,N) =

T Exe
1024,N/T

Real
1024,N of VACED-SIM. In these tests, all the six

cores in a Xeon X5670 CPU are used. In addition, we have:

hop(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, i f (x/12 = y/12)
3, i f (x/12 � y/12, x/192 = y/192)
5, otherwise

(5)

5.3 Results and Analysis

5.3.1 VACED-SIM vs. MPI-SIM

To compare VACED-SIM with MPI-SIM, we choose the
same benchmarks with those used in MPI-SIM [12]: LU
(Class A), MG (Class S), BT (Class S) and SP (Class S).
Figure 5 shows the relative errors of VACED-SIM when pre-
dicting the execution time of 16-process target programs.
The absolute values of the relative errors are less than 6%
by using VACED-SIM. In VACED-SIM, the errors of pre-
diction results are mainly affected by two communication-
related aspects. First, communication activities cause the
process switching in the cores of the host machine, leading
to the inaccurate simulation of sequential computation activ-
ities. For example, the sequential computation times may be
over-estimated due to the cache thrashing. Second, the prob-
lem discussed in Sect. 4.4 will arise during the virtual sim-
ulation of communication. Algorithm 2 and 3 have solved
well the problem illustrated in Fig. 4 (b). However, for the
problem shown in Fig. 4 (c), we assume that there is no inter-
action between the messages dealt with in the same AWT on
the target machine rather than using checkpointing to totally
solve it. While critical in making our simulator lightweight,
this assumption will cause the predicted execution time to be
smaller than the real one. Which of these two aspects affects
prediction accuracy more varies from program to program.
This is why the four benchmarks in Fig. 5 show different
relative errors. Generally speaking, RE(16, 16) is small, be-
cause the host machine has the same scale as the target ma-
chine. RE(16, 16) for MG, shown in Fig. 5, is −5%, because
its execution time (in Class S) on 16 cores is small. How-
ever, compared to MPI-SIM [12], whose relative errors are
5%–20% for the above benchmarks, VACED-SIM is much
more accurate.

Figure 6 shows the performance speedups of VACED-
SIM, by varying the core counts of the target machine. It
is easy to observe that for all the four benchmarks, the
performance speedups of VACED-SIM are close to linear,
which are better than MPI-SIM. When N = 16, the speedup
S (16, 16) is as large as 39.13. That is because when there
are as many cores in the host machine as the number of pro-
cesses in the target program, VACED-SIM runs with one
process per core, with no process switching.

Fig. 5 The relative errors of VACED-SIM for 16-process target pro-
grams: RE(16,N) = T S im

16,N/T
Real
16,16 − 1.

Fig. 6 The performance speedups of VACED-SIM: S (16,N) =

T Exe
16,N/T

Exe
16,1.

Table 3 The real execution time of 1024-process target programs on dif-
ferent machine configurations (s).

T Real
1024,1024 T Real

1024,512 T Real
1024,256 T Real

1024,128

CG 62.09 476.68 2343.10 8932.46

IS 272.13 52.97 173.30 625.63

EP 0.48 1.51 7.57 26.25

MG 9.45 52.30 262.28 1034.15

FT 16.64 73.18 346.26 1327.51

SP 34.87 900.56 4694.97 16995.70

BT 20.87 453.88 2357.30 8553.26

LU 47.19 599.30 3255.13 11853.90

Avg. 57.96 326.30 1679.99 6168.61

5.3.2 Prediction for Large-Scale Computing

To validate the accuracy and efficiency of VACED-SIM
for large-scale parallel computing, we choose all the NPB
benchmarks (Class C) with 1024 processes in the target pro-
grams. The real execution times of these target programs on
different machines are listed in Table 3. It is easy to find
that T Real

1024,N increases greatly as N decreases. There are two
reasons. First, as the hardware parallelism decreases, each
core’s computation time increases. Second, binding several
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Fig. 7 The relative errors of VACED-SIM for 1024-process target programs: RE(1024,N) =
T S im

1024,N/T
Real
1024,1024 − 1.

Table 4 Slowdowns of VACED-SIM: S D(1024,N) = T Exe
1024,N/T

Real
1024,N .

CG IS EP MG FT SP BT LU Avg.

S D(1024, 128) 1.00 1.00 1.02 1.00 1.00 0.99 1.00 0.99 1.00

S D(1024, 256) 1.01 1.00 1.01 1.01 1.00 1.00 0.99 0.98 1.00

S D(1024, 512) 1.00 1.03 0.99 1.01 1.01 0.99 1.00 1.02 1.01

S D(1024, 1024) 1.02 1.01 1.05 0.99 1.02 1.02 0.98 1.02 1.02

processes onto the same core increases the communication
and synchronization costs. It should be pointed out that for
IS, T Real

1024,1024 > T Real
1024,512. This is because IS makes use of

lots of collective communications, with their costs increas-
ing rapidly as the interconnection size scales up.

From Table 3, we observe that for the NPB bench-
marks, the average values of T Real

1024,128/T
Real
1024,1024 are more

than 100. The large difference between the sizes of the target
and host machines leads to extremely long execution times
for the target programs on the host machine. Therefore, the
trace-driven simulation method, which relies on extracting
the trace of a target program by executing it several times,
may result in intolerable time overhead.

Figure 7 illustrates the results of the scalability pre-
diction for the above benchmarks on the 1024-core target
machine by using the host machines with different sizes.
The accuracy of VACED-SIM for the scalability prediction
of large-scale parallel computing system, whose parallelism
degree reaches 1024, increases as the size of the host ma-
chine increases. VACED-SIM has high accuracy with the
average values of relative errors being less than 10%, even
when the size of target machine is 8 times larger than the
host machine (i.e., when the host machine only contains
128 cores). For the same reasons illustrated in Sect. 5.3.1,
the prediction errors of the eight benchmarks show different
characteristics. From Fig. 7, we can find that as the scale
of the host machine (i.e. N) goes up, the prediction becomes
more and more accurate (i.e., |RE(1024,N)| decreases). Fur-
thermore, for the benchmarks with little communication,
such as EP, VACED-SIM shows higher accuracy, which is
close to 0. That is because when predicting the performance
of EP, all simulations performed in VACED-SIM are actual.

The slowdowns of VACED-SIM are shown in Table 4.
All the functions of VACED-SIM are integrated into the
modified MPI library and the additional codes are used to
calculate the timestamps of events. Therefore, the slow-
downs of VACED-SIM are close to 1, as listed in Table 4.

6. Related Work

MPI is widely used as the de facto standard for writing paral-
lel applications. Performance prediction simulators for MPI
programs are highly needed for finding the bottlenecks of a
system at its design phase.

Dip [7] is a PVTD simulator according to our catego-
rization. For MPI programs, Dip uses a set of trace files
generated by linking a program with the instrumented MPI
library to reconstruct the behavior of a parallel program. Se-
quential computation time is acquired by using the architec-
ture model of the target machine. Communication time is
computed using a simple latency-bandwidth model, which
ignores the influence of distance between processors.

PERC [8] is a performance prediction framework us-
ing PVTD simulation. It is conducted based on a simplify-
ing hypothesis that a parallel application’s performance is
often dominated by its single processor performance and its
use of the network. To model single-processor performance,
it separates various performance factors by measuring each
in isolation and integrates them for a model of overall per-
formance, and then combines the information derived by the
performance model with a existing network simulator.

BigSim [13] is a PVED simulator. Based on the
CHARM++ [32] parallel programming system, BigSim de-
fines a set of application interfaces, such as addMessage
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and sendPacket, which are used to implement the MPI inter-
faces. All the application interfaces are executed by the sim-
ulator, and the other codes are directly executed on the host
machine. In BigSim, the sequential computation time is cal-
culated by heuristic approaches, which cannot obtain high
accuracy, and the communication time is derived by a no-
contention model or a network simulator known as BigNet-
Sim [33].

MPI-SIM [12] is a PVED simulator developed by
UCLA. Just as in VACED-SIM, the processor configura-
tions in the host and target machines must be similar. MPI-
SIM uses a portable library MPI-LITE to translate a tar-
get program into a multithreaded program and measures
the execution time of sequential computation codes when
the multithreaded program is executing. As cache replace-
ment policy and execution pattern (among others) are differ-
ent between threads and processes, sequential computation
time cannot be measured accurately. For the communication
simulation, the developers re-implement all the collective
communication functions and point-to-point communica-
tion functions by using a set of core functions, MPI Issend,
MPI Ibsend, MPI Irecv and MPI Wait. The simulation is
performed at a coarse granularity according to our analysis
in Sect. 3.1 and the re-implementation changes the behav-
iors of the communications implemented in the MPI library,
both of which reduce prediction accuracy.

It is worth mentioning that Susukita et al. proposed
a macro-level simulation method [34], which executes a
skeleton in an environment (BSIM) for predicting parallel
performance. The skeleton contains the execution time of
each sequential computation activity, i.e., sequential per-
formance, and the execution trace of the program. After
the target application is analyzed, the sequential calcula-
tion blocks are abstracted as macros, whose execution times
are predicted independently by processor simulations or real
executions, so that the simulation efficiency is improved.
However, BSIM simulates the communication at the gran-
ularity of MPI primitives, such as MPI Send and MPI Recv
and assumes that send operations are always asynchronous.
This kind of simulation cannot take the influence of MPI
implementation details into consideration, including, for ex-
ample, the communication protocol, the implementation of
point-to-point communication. Therefore, it will reduce the
prediction accuracies of the communication time and the
convolution of the computation and communication, and
consequently, the prediction accuracy of the whole program.

Furthermore, Zhai et al. [5] proposed a new method,
named Phantom to acquire the sequential computation time,
which is used in a trace-driven simulator SIM-MPI [9]. The
main contribution of Phantom lies in obtaining the sequen-
tial computation time more accurately. Phantom uses a de-
terministic replay technique and thus must execute a target
program twice. During the first execution, communication
traces of parallel applications are generated by intercepting
all communication operations for each process and the com-
putation between communication operations is marked as a
sequential computation unit. During the second execution,

the real sequential computation time is measured on a target
processing node for each process one by one. This tech-
nique eliminates the influence of process switching, such
as cache thrashing, resulting in sometimes higher accuracy
than VACED-SIM. However, executing a target program
twice is time-consuming. In addition, it cannot deal with
uncertain programs (the programs with condition branches,
dynamic instruction generations, non-deterministic commu-
nication, etc.) because an inaccurate trace is usually gener-
ated.

7. Conclusion

Scalability prediction for MPI programs in large-scale par-
allel computing is greatly desired by system designers. Ac-
cording to the characteristics of scalability prediction, we
propose a novel simulation method, called VACED simula-
tion, to predict the execution time of communication activ-
ities by virtual simulation and sequential computation ac-
tivities by actual simulation. Based on VACED simula-
tion, we have designed and implemented VACED-SIM, a
fine-grained and lightweight simulator for scalability predic-
tion of MPI programs. Our experimental results show that
VACED-SIM exhibits high accuracy and efficiency. For a
target system with 1024 cores, the relative errors of VACED-
SIM are less than 10% and the slowdowns are close to 1.
In future work, we will further improve the efficiency of
VACED-SIM, for example, by using (with extensions) the
method proposed by Susukita et al. [34] to reduce the times
of simulating sequential computation activities while main-
taining and further improving our prediction accuracy.
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