
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013
1443

PAPER

Effective Fixed-Point Pipelined Divider for Mobile Rendering
Processors

Yong-Jin PARK†a), Nonmember, Woo-Chan PARK††, Member, Jun-Hyun BAE†, Jinhong PARK†,
and Tack-Don HAN†b), Nonmembers

SUMMARY In this paper, we proposed that an area- and speed-
effective fixed-point pipelined divider be used for reducing the bit-width of
a division unit to fit a mobile rendering processor. To decide the bit-width
of a division unit, error analysis has been carried out in various ways. As
a result, when the original bit-width was 31-bit, the proposed method re-
duced the bit-width to 24-bit and reduced the area by 42% with a maximum
error of 0.00001%.
key words: fixed-point divider, mobile, rendering, error analysis

1. Introduction

In recent years, the design of high performance dividers in
hardware has become increasingly important as the needs
are increased by applications such as 3D graphics, multi-
media, digital signal processing, etc. [1]. In particular, 3D
graphics processing has become an important application of
processors and, as a result, high performance dividers are
required for high performance 3D graphics processing [2]–
[4].

For the rasterization step of the 3D graphics pipeline,
a pipelined divider for high performance is required. In
a desktop PC, a floating-point format is used for the high
performance rendering processor. In [5]–[7], a fixed-point
format has been used for the low-cost rendering processor
of a mobile device. A fixed-point pipelined divider consists
of a left shifter for normalization of the dividend and the
divisor, a division unit for division execution, and a right
shifter for converting the result to a fixed-point format.

Many existing pipelined division unit uses a multi-
plicative algorithm based on the Taylor-series expansion.
Hung et al. stores the first two terms of the Taylor-series
in a lookup table (LUT), and executes a division by refer-
encing the LUT in the first step and using a multiplier in the
second step [8]. In [9], a cost-effective pipelined division al-
gorithm has been proposed by modifying the Taylor-series
and decreasing the LUT size. In [10], the algorithm sug-
gested in [9] has been expanded to handle double precision
floating-point numbers.

Manuscript received July 9, 2012.
†The authors are with the Department of Computer Science,

Engineering College of Yonsei University, 134 Shinchon-Dong,
Sudaemoon-Ku, Seoul 120–749, South Korea.
††The author is with the Department of Internet Computing,

School of Computer Engineering, Sejong University, 98 Kunja-
Dong, Kwangjin-Ku, Seoul 143–747, South Korea.

a) E-mail: jini@msl.yonsei.ac.kr
b) E-mail: hantack@msl.yonsei.ac.kr

DOI: 10.1587/transinf.E96.D.1443

In this paper, we propose a fixed-point division
algorithm that is effective for chip area and speed by reduc-
ing the bit-width of the division unit, while allowing a very
small error range. The proposed algorithm utilizes the fol-
lowing features. If there are leading zeros in the dividend
and the divisor that are inputs of multipliers inside the di-
vision unit, the least significant bits (LSBs) of the normal-
ization result by left shift operations equal 0 as the number
of leading zeros. In addition, when a right shift calculation
is carried out, the LSBs of the division unit results are dis-
carded according to the number of right-shift calculation in
order to convert the result of the division unit to a fixed-point
format. By reducing the bit-width of the division unit, the
proposed method results in a small error when using these
two features.

We performed analytic error analyses of division op-
eration results according to bit-width to prove the proposed
method. As a result, a fixed-point divider, using a pipelined
divider with a 24-bit width, reduces the area by 42%, as
compared to the 31-bit fixed-point pipelined divider pro-
posed in [9], while the maximum error is about 0.00001%.
Also, the critical path has been decreased by 8%.

In the next section, we give a brief overview of the
pipelined divider and its architectural features. In Sect. 3,
we illustrate the new division method and its features. Error
analysis, various simulation results, and performance eval-
uation are given in Sects. 4, 5, and 6. Conclusions are pre-
sented in Sect. 7.

2. Related Work

Hung [8] and Jeong [9] proposed pipelined division algo-
rithms. These express division with Taylor-series expan-
sions, and then calculate the upper two or four terms with
an LUT and multipliers.

First, the Hung algorithm expands division, as in
Eq. (1).

X
Y
=

X
Yh + Yl

=
X
Yh

(
1 − Yl

Yh
+

(Yl

Yh

)2
− · · ·
)

(1)

In Eq. (1), Yh = 20y0 + 2−1y1 + 2−2y2 + · · · + 2−(p−1)yp−1 and
Yl = Y − Yh. If the upper two terms are used in Eq. (1), then
Eq. (2) can be derived as follows:

X
Y
≈ X(Yh − Yl)

Y2
h

(2)

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

1444
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

Fig. 1 Block diagram of Hung’s algorithm.

Fig. 2 Block diagram of Jeong’s algorithm.

Equation (2) requires an LUT to calculate 1/Y2
h , the

multiplication of X and (Yh − Yl), and the multiplication of
X(Yh − Yl) and 1/Y2

h . The block diagram of this process is
shown in Fig. 1. To conduct a division of a single precision
format with the explained procedure, approximately 13 KB
LUT is required.

Jeong proposed an algorithm that derives coarse quo-
tients (Q̃ and ˜̃Q) that reduce the bit-width of Yh, and it re-
duces LUT size with the addition of these two terms [9].
This method conducts division with the procedure in Eq. (3)
and it reduces the area by 27%, as compared to the algorithm
of [8]. Figure 2 shows the block diagram of [9].

X
Y
≈ Q̃ + ˜̃Q =

(X + X̃)(Yh − Yl)

Y2
h

= (X + X̃)A

= (2X − YQ̃)A

= (2X − AYX)A = (2 − AY)AX,

whereA =
(Yh − Yl)

Y2
h

(3)

3. Proposed Method

Whereas a conventional pipelined divider [9] (Fig. 2) uses
the normalized value as input data, we use fixed-point value
as input data. So, when we use a pipelined divider like [9],
we perform a normalization operation of fixed-point input
value. The procedure is conducted through a left-shift after
finding leading ‘1’ of input value on left shifter of Fig. 3.

Figure 4 shows the structure of the 32-bit fixed point
(sign: 1-bit, integer: i-bit, fraction: f -bit). Figure 4 is: (a) an

Fig. 3 Proposed fixed-point divider.

Fig. 4 Example of fixed-point division’s number format.

example of a dividend (or divisor), and (b) the value used for
division calculation after the normalization process. p of the
figure is the starting point of the fraction part.

LSBs of the left shift calculation results for normal-
ization are filled with ‘0’s, as many as leading ‘0’s are
(Fig. 4 (b) and (c)). The LSBs are the lowest bits of mul-
tiplicand and multiplier, thus the LSBs of the multiplication
result values are filled with ‘0’s, as many as leading ‘0’s are.
Meanwhile, to convert the final result of the division unit
to a fixed-point format, a right-shift calculation is repeated.
When the right shift calculations are carried out, the final
result of fixed-point formatted division calculation does not
use LSBs of division unit as many as right-shifts calcula-
tions are repeated.

The proposed method projects these features and uses
upper N-bit on the normalization result of the dividend and
divisor during division conduction. In this case, since the
internal bit-width of the division unit is reduced, the mul-
tiplier and the LUT size are reduced, and the area and the
latency of the divider can be reduced as well.

4. Boundary Conditions for Error Analysis

Figure 5 shows ε1 and ε2, which causes error in the division
calculation of variables X′ and Y ′ when only the N-bit of X
and Y are used.

Following Fig. 4 and Fig. 5, the maximum values of X
and Y occur when all digits have value ‘1’, except the sign-
bit, and can be expressed with 2i − 2− f . The minimum value
of X is ‘0’ and Y is 2− f . This is because an exceptional case
of division by zero happens when Y equals 0. This can be
expressed in the following formula:

PARK et al.: EFFECTIVE FIXED-POINT PIPELINED DIVIDER FOR MOBILE RENDERING PROCESSORS
1445

Fig. 5 Parts to be used for division (X′ and Y′) and loss (ε1 and ε2).

Fig. 6 When ε has the maximum value.

Fig. 7 Minimum value of X′ when ε1 is not zero.

X = X′ + ε1 Y = Y ′ + ε2

0 ≤ X ≤ 2i − 2− f < 2i

2− f ≤ Y ≤ 2i − 2− f < 2i (4)

The minimum values of ε1 and ε2 arel ‘0’ and the maximum
values are the case where the most significant bit (MSB)
is ‘1’ and the lower bits after the upper N-bit are all ‘1’, as
Fig. 6 shows. It can be expressed as Eq. (5).

0 ≤ ε1 ≤ 2i−N − 2− f

0 ≤ ε2 ≤ 2i−N − 2− f (5)

Since X′ = X − ε1 and Y ′ = Y − ε2, following Eq. (4),
the ranges of X′ and Y ′ are as follows:

0 ≤ X′ ≤
(
2i − 2− f

)
−
(
2i−N − 2− f

)
= 2i − 2i−N

2− f ≤ Y ′ ≤
(
2i − 2− f

)
−
(
2i−N − 2− f

)
= 2i − 2i−N (6)

When error occurs while division is being carried out
using X′ and Y ′ instead of X and Y , ε1 or ε2 are not 0. In this
case, the minimum value of X′ occurs when ε1 is 2− f , and
the value is 2N− f , as in Fig. 7. The minimum value of Y ′ is
also 2N− f . The maximum values of X′ and Y ′ are identical
to the maximum values in Eq. (6). With derivation, Eq. (6)
can be converted to Eq. (7).

2N− f ≤ X′ ≤ 2i − 2i−N (in case of ε1 � 0)

2N− f ≤ Y ′ ≤ 2i − 2i−N (in case of ε2 � 0) (7)

If exceptional cases (overflow or underflow) of division cal-
culation results are handled by a divider, the range of divi-
sion results, without exception, will be Eq. (8). The range
happens because of the expressional limitation of fixed-
point representation, and the ranges of minimum and maxi-
mum values of division results are the same as the range of
X in Eq. (4).

0 ≤
∣∣∣∣∣∣
X′

Y ′

∣∣∣∣∣∣ < 2i (8)

5. Error Analysis

In this section, the size of the error, which happens when
division is carried out using X′ and Y ′ instead of X and Y ,
and the portion taken by error in the results of division are
analysed. Error, εrr occurring when the upper N-bit among
the 31-bit are used for division, is expressed as Eq. (9):

|εrr | =
∣∣∣∣∣∣
X
Y
− X′

Y ′

∣∣∣∣∣∣ =
∣∣∣∣∣∣
X′ + ε1

Y ′ + ε2
− X′

Y ′

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Y ′(X′ + ε1) − X′(Y ′ + ε2)

Y ′(Y ′ + ε2)

∣∣∣∣∣∣=
∣∣∣∣∣∣
ε1Y ′ − ε2X′

Y ′(Y ′ + ε2)

∣∣∣∣∣∣ (9)

The error ratio, εrate, which is the portion taken by error in
the final division results, is expressed as Eq. (10):

εrate =
εrr

X′

Y ′

∗ 100 =

∣∣∣∣∣∣
ε1Y ′ − ε2X′

Y ′(Y ′ + ε2)

∣∣∣∣∣∣
X′

Y ′

∗ 100

=

∣∣∣∣∣∣
ε1Y ′ − ε2X′

X′(Y ′ + ε2)

∣∣∣∣∣∣ ∗ 100(%) (10)

The maximum error value, εmax, can be analysed in three
cases: a) ε1 = 0, ε2 � 0, b) ε2 = 0, ε1 � 0, and c) ε1 � 0,
ε2 � 0. According to Eq. (4), when both ε1 and ε2 are ‘0’,
X′ = X and Y ′ = Y , so that there is no error.

5.1 Case a) ε1 = 0, ε2 � 0

When ε1 equals 0, Eqs. (9) and (10) are as follows:

|εrr | =
∣∣∣∣∣∣
0 ∗ Y ′ − ε2X′

Y ′(Y ′ + ε2)

∣∣∣∣∣∣ =
ε2X′

Y ′(Y ′ + ε2)
(11)

εrate =

∣∣∣∣∣∣
0 ∗ Y ′ − ε2X′

X′(Y ′ + ε2)

∣∣∣∣∣∣ ∗ 100 =
ε2

Y ′ + ε2
∗ 100(%) (12)

The maximum error occurs when X′ has the maximum value
and Y ′ has the minimum value, in accordance with Eq. (11).
Since ε1 = 0, X′ = X, and X′ = 2i − 2i−N , following Eq. (6),
the minimum value of Y ′ is 2N− f , in accordance with Eq. (7).
Then, as shown in Fig. 7, ε2 is 2− f . If each of these values is
inserted into Eq. (11), the following formula can be derived:

|εmax| = ε2X′

Y ′(Y ′ + ε2)
=

2− f ∗
(
2−i − 2i−N

)

2N− f ∗
(
2N− f + 2− f

) (13)

If the formula is expanded, it can be expressed as follows:

2− f ∗
(
2−i − 2i−N

)

2N− f ∗
(
2N− f + 2− f

) = 2i2− f ∗
(
1 − 2−N

)

2N2−2 f ∗
(
2N + 1

)

=
1 − 2−N

2N−i− f ∗
(
2N + 1

)

=
1 − 2−N

2N−31 ∗
(
2N + 1

)

1446
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

If Y ′ and ε2 are inserted into Eq. (12), the maximum error
ratio is as follows:

εmax rate =
ε2

Y ′ + ε2
∗ 100 =

2− f

2N− f + 2− f
∗ 100

=
1

2N + 1
∗ 100(%)

5.2 Case b) ε2 = 0, ε1 � 0

When ε2 equals 0, Eqs. (9) and (10) become as follows:

|εrr | =
∣∣∣∣∣∣
ε1 ∗ Y ′ − 0 ∗ X′

Y ′(Y ′ + 0)

∣∣∣∣∣∣ =
ε1

Y ′
(14)

εrate =

∣∣∣∣∣∣
ε1 ∗ Y ′ − 0 ∗ X′

X′(Y ′ + 0)

∣∣∣∣∣∣ ∗ 100 =
ε1Y ′

X′Y ′
∗ 100

=
ε1

X′
∗ 100(%) (15)

The maximum error εmax occurs when Y ′ has the minimum
value and ε1 has the maximum value, in accordance with
Eq. (14). Also the maximum error rate, εmax rate, occurs
when X′ is minimum in accordance with Eq. (15). If the
maximum value of ε1 is 2i−N − 2− f following Eq. (5), then
the MSB of X′ is 1. The minimum value of X′ is 2i−1. It is
expressed in Fig. 8.

Since ε2 equals 0, the next equation can be derived
when X′ is inserted into Eq. (8) to calculate the minimum
of Y ′ without overflow.

X′

Y ′
=

2i−1

Y ′
< 2i

With the substitution of right 2i and left Y ′, Eq. (16) can be
derived. As a result of Eq. (16), the minimum of Y ′ should
be bigger than 2−1.

Y ′ >
2i−1

2i
= 2−1 (16)

As Fig. 9 shows, the minimum value of Y ′, which is bigger
than 2−1, is 2−1 + 2− f . If the value is inserted into Eq. (14),
the maximum error is expressed, as in the following for-
mula:

|εmax| = 2(i−N) − 2− f

2−1 + 2− f
(17)

Fig. 8 Minimum of X′ and maximum of ε1 when ε1 is the maximum.

Fig. 9 Minimum value of Y′ when Y′ > 2−1.

When X′ = 2i−1 and ε1 = 2i−N − 2− f are inserted to equa-
tion, the maximum error rate can be expressed as follows
Eq. (15):

εmax rate =
2i−N − 2− f

2i−1
∗ 100 =

2i−N − 2−31+i

2i−1
∗ 100

= (2−N+1 − 2−30) ∗ 100(%)

5.3 Case c) ε1 � 0, ε2 � 0

Since Y ′ uses N-bit of leading ‘1’ from Y and the rest of
digits are ε2, Y ′ and ε2 are correlated. Since Y ′ � ε2, in
accordance with Eq. (9), εrr would have a maximum value
when Y ′ has a small value rather than a big value of ε2.
Equation (18) can be derived as:

εrr =

∣∣∣∣∣∣
ε1Y ′ − ε2X′

Y ′(Y ′ + ε2)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
ε1MINY ′MIN − ε2MAX X′MAX

Y ′MIN(Y ′MIN + ε2MAX)

∣∣∣∣∣∣ (18)

In accordance with Eq. (7), the maximum value of X′ is
2i − 2i−N , and the minimum value of ε1 is 2− f , following
Fig. 7. In accordance with Eq. (7), the minimum value of Y ′
is 2N− f , and ε2 is 2− f , following Fig. 7. The result of insert-
ing these values into Eq. (18) is Eq. (19). As Eq. (19) shows,
εmax is always smaller than Eq. (13). So the Case c) always
has a smaller error than Case a), and it does not affect the
final maximum error of division result.

εmax =

∣∣∣∣∣∣
ε1Y ′ − ε2X′

Y ′(Y ′ + ε2)

∣∣∣∣∣∣ =
2− f ∗

(
2i − 2i−N

)
− 2− f ∗ 2N− f

2N− f ∗
(
2N− f + 2− f

)

<
2− f ∗

(
2i − 2i−N

)

2N− f ∗
(
2N− f + 2− f

) (19)

6. Results of Error Analysis

In this paper, we measured the maximum error and maxi-
mum error ratio in two cases. The first case is analysis ac-
cording to a number of fraction bits, which are used in the
fixed-point format of OpenGL ES 2.0, which is standard for
mobile devices. The second case is the analysis about the
case of i = 31, which occurs for the largest maximum error
value according to Eqs. (13) and (17).

First, because the fixed-point format of OpenGL ES
2.0 allocates 16-bit to fraction bits [11], we assume that i is
15-bit and f is 16-bit. Table 1 shows the maximum error
and maximum error ratios in accordance with each N. When
N = 24 for division, the maximum error occurs in case b).
The error is 0.0038756, and the portion taken by this error
as a result of division is 0.0000118%. When N = 20, the
maximum error is 0.0624676, and the portion taken by this
error as a result of division is 0.00019%.

The second case is the analysis of the maximum error
that occurs, which uses i to 31-bit according to Eqs. (13)
and (17). Table 2 shows the maximum error and maxi-
mum error ratios in accordance with each N. Since errors
in case a) and case c) are smaller than 1, there is no error in

PARK et al.: EFFECTIVE FIXED-POINT PIPELINED DIVIDER FOR MOBILE RENDERING PROCESSORS
1447

Table 1 Maximum error and error rate according to N in case of i = 15 and f = 16.

Table 2 Maximum error and error rate according to N in case of i = 31 and f = 0.

Table 3 Delay and area cost comparison with Jeong’s and Hung’s algorithm.

the division result related to the value of N. When N = 24
for case b), the maximum error is 127, and the portion taken
by this error as a result of division is 0.0000118%. When
N = 20, the maximum error is 2047, and the portion taken
by this error as a result of division is 0.00019%.

The comparison, in terms of the delay and area cost
of the proposed scheme in relation to previous approaches,
is provided in Table 3. The delay and area cost have been
calculated based on the analytical method in [12]. The de-
lays are expressed in terms of τ- the delay of a complex gate
such as one full adder. The unit employed for the area cost
estimation is the size of one full adder, fa.

According to Jeong’s algorithm, when N = 24 for di-
vision, following the results in Table 3, it decreased the area
by 42%, as compared to N = 31, and critical path delay
decreases by 8%. Hung’s algorithm decreased by 92%, as
compared to the case of N = 31, and critical path delay de-
creases by 5%.

7. Conclusion

For the rasterization step of the 3D graphics pipeline, a di-
vider, especially a pipelined divider for high performance, is
required. Existing pipelined division algorithms use Taylor-

series expansion and this uses a large LUT. In this paper,
an effective fixed-point pipelined divider for area and speed
is proposed for reducing the bit-width of the division unit
to fit the low-cost rendering processor. To decide the bit-
width for a division unit, error analysis has been carried out
in various ways.

When bit-width is restricted to 24-bit from the origi-
nal 31-bit, a 42% decrease of the area is possible. This is
because of the reduction of the input bit-width of the multi-
plier and the reduction of the LUT size in the division unit.
Also, analysis results of error occurrence, followed by input
bit restriction, shows a maximum error of 0.00002% on the
divider implemented with 24-bit. The proposed structure
can be applied not only to a pipelined divider, but also to
other division algorithms.

Acknowledgments

This research was supported by Samsung Advanced Insti-
tute of Technology and Basic Science Research Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technol-
ogy (2011-0027450).

1448
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

References

[1] N. Ide, M. Hirano, Y. Endo, S. Yoshioka, H. Murakami, A.
Kunimatsu, T. Sato, T. Kamei, T. Okada, and M. Suzuoki, “2.44-
GFLOPS 300-MHz floating-point vector-processing unit for high-
performance 3D graphics computing,” IEEE J. Solid-State Circuit.,
vol.35, no.7, pp.1025–1033, 2000.

[2] A. Kugler, “The setup for triangle rasterization,” Proc. 11th Euro-
graphics Workshop Computer Graphics Hardware, pp.49–58, Aug.
1996.

[3] A.J. Thakkar and A. Ejnioui, “Design and implementation of double
precision floating point division and square root on FPGAs,” 2006
IEEE Aerospace Conf., Montana, United States, pp.1–7, March
2006.

[4] K. Yoshida, T. Sakamoto, and T. Hase, “A 3D graphics library for
32-bit microprocessors for embedded systems,” IEEE Trans. Con-
sum. Electron., vol.44, no.4, pp.1107–1114, 1998.

[5] J.-H. Sohn, Y.-H. Park, C.-W. Yoon, R. Woo, S.-J. Park, and H.-J.
Yoo, “Low-power 3D graphics processors for mobile terminals,”
IEEE Commun. Mag., vol.43, no.12, pp.90–99, 2005.

[6] D. Kim and L.-S. Kim, “Area-efficient pixel rasterization and tex-
ture coordinate interpolation,” Comput. Graph., vol.32, pp.669–681,
2008.

[7] W.-J. Lee, W.-C. Park, V.P. Srini, and T.-D. Han, “Simulation and
development environment for mobile 3D graphics architectures,”
IET Comput. Digit. Tech., vol.1, pp.501–507, 2007.

[8] P. Hung, H. Fahmy, O. Mencer, and M.J. Flynn, “Fast division algo-
rithm with a small lookup table,” Conf. Record 33rd Asilomar Conf.
Signals, Systems, and Computers, vol.2, pp.1465–1468, May 1999.

[9] J.-C. Jeong, W.-C. Park, W. Jeong, T.-D. Han, and M.-K. Lee, “A
cost-effective pipelined divider with a small lookup table,” IEEE
Trans. Comput., vol.53, no.4, pp.489–495, 2004.

[10] S.B. Singh, J. Biswas, and S.K. Nandy, “A cost effective
pipelined divider for double precision floating point number,” Int.
Conf. Application-specific Systems, Architectures and Processors,
Colorado, United States, pp.132–137, Sept. 2006.

[11] A. Munshi and J. Leech, “OpenGL ES common Profile Specifica-
tion,” http://www.khronos.org, accessed July 1. 2012.

[12] J.A. Pineiro and J.D. Bruguera, “High-speed double-precision com-
putation of reciprocal, division, square root, and inverse square
root,” IEEE Trans. Comput., vol.51, no.12, pp.1377–1388, 2002.

Yong-Jin Park received the B.S. and M.S.
degrees in computer science from Yonsei Uni-
versity in 2003 and 2005, respectively. He is
a PhD student in the Department of Computer
Science at Yonsei University, Korea. He is cur-
rently researching architecture for 3D computer
graphics.

Woo-Chan Park is an associate professor
at Sejong University, Korea. His research in-
terests include 3D rendering processor architec-
ture, ray tracing accelerator, parallel rendering,
high performance computer architecture, com-
puter arithmetic, and ASIC design. He received
the BS, MS, and PhD degree in computer sci-
ence from Yonsei University, Seoul, Korea.

Jun-Hyun Bae received the B.S. degrees in
information & communication engineering from
Changwon National University in 2011. He is
now M.S. degree course in computer science
from Yonsei University, Seoul, Korea.

Jinhong Park works at LG Electronics.
His research interests include 2D/3D graphics
hardware architecture, GPGPU, and SoC plat-
form. He received the BS, MS, and PhD de-
gree in computer science from Yonsei Univer-
sity, Seoul, Korea.

Tack-Don Han is a professor in the Depart-
ment of Computer Science at the Yonsei Univer-
sity, Korea. His research interests include high
performance computer architecture, media sys-
tem architecture, and wearable computing. He
received a PhD in computer engineering from
the University of Massachusetts.

