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PAPER

Link Prediction in Social Networks Using Information Flow via
Active Links

Lankeshwara MUNASINGHE†a), Nonmember and Ryutaro ICHISE†,††b), Member

SUMMARY Link prediction in social networks, such as friendship net-
works and coauthorship networks, has recently attracted a great deal of
attention. There have been numerous attempts to address the problem of
link prediction through diverse approaches. In the present paper, we fo-
cused on predicting links in social networks using information flow via
active links. The information flow heavily depends on link activeness. The
links become active if the interactions happen frequently and recently with
respect to the current time. The time stamps of the interactions or links
provide vital information for determining the activeness of the links. In the
present paper, we introduced a new algorithm, referred to as T Flow, that
captures the important aspects of information flow via active links in social
networks. We tested T Flow with two social network data sets, namely, a
data set extracted from Facebook friendship network and a coauthorship
network data set extracted from ePrint archives. We compare the link pre-
diction performances of T Flow with the previous method PropFlow. The
results of T Flow method revealed a notable improvement in link predic-
tion for facebook data and significant improvement in link prediction for
coauthorship data.
key words: link prediction, time stamps, link activeness, social networks

1. Introduction

Link prediction was introduced as a way to infer which new
links are likely to occur in the near future in a given net-
work [9]. If we are presented with a snapshot of a network
at the current time, the goal is to predict links that will occur
in the future. The structural information, features of nodes
and edges of the given network can be used to predict future
links.

Link prediction has many applications and, it offers
many benefits to the users of social networking services. For
example, online social networking services, such as Face-
book, can use link prediction to provide their users with
better recommendations or suggestions. Therefore, users of
these services can efficiently find their friends, colleagues,
or people whom they wish to meet. Organizations such as
research organizations, business organizations, and security
agencies will be able to uncover information regarding un-
seen relationships among people or organizations. Thus,
they may operate more effectively. Link prediction in sci-
entific researcher networks allow researchers to find experts
and research organizations in the same research field [22].
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However, highly structured massive real-world networks in-
volving heterogeneous entities with complex associations
have added new challenges to link prediction research. Su-
pervised and unsupervised learning methods have been used
in previous studies with different frameworks for link pre-
diction [4], [8]. The machine learning approaches remain an
immense challenge due to different factors such as sparsity,
complexity, size, time-dependent nature of the networks and
imbalance between possible links and actual links observed
in these networks [10].

Information flow between nodes is a vital factor for link
evolution in social networks. It varies over time depending
on the activeness of the links between nodes. It is worth-
while to study the factors which determine the information
flow and how these factors can be effectively used for link
prediction in networks. Particularly, the activeness of links
is one of the key factors which determines the information
flow. Some of the recent link prediction research have in-
troduced supervised/unsupervised methods based on infor-
mation flow in social networks. One of them is PropFlow
algorithm [10]. This algorithm has used random walk to de-
termine the information flow between nodes. Link weights
are the transition probabilities for the random walker. If a
node pair has higher transition probability, more informa-
tion flow happens between the node pair and the node pair
is more likely to get linked in the future. One supervised
random walk algorithm [2] learns link strengths using link
and node attributes and uses the strengths as the transition
probabilities. However, those studies haven’t been consid-
ered the activeness of the links. We therefore, introduced
a new algorithm which considers the effect of information
flow via active links for link evolution.

The remainder of the present paper is organized as fol-
lows. Section 2 discuss related research in link prediction
in social networks and biological networks. The newly pro-
posed algorithm, T Flow has been introduced in Sect. 3. Ex-
perimental evaluation and experimental results are presented
in Sect. 4. Section 5 presents our conclusions.

2. Related Work

In this section, we review some of the research related to
link prediction as well as background information on link
prediction. The increase in the number of studies related
to link prediction in the recent past reveals the emerging
interest in link prediction. Diverse approaches, including
machine learning approaches and probabilistic approaches,
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have been proposed in order to address the problem of link
prediction.

Classification using a learned model is the prominent
feature of machine learning. Supervised and unsupervised
machine learning methods have been widely used for link
prediction in coauthorship networks [16] along with set of
structural features of networks introduced in [9]. Later, the
introduction of new features such as cooccurrence proba-
bility [21], keyword match count for paper topics and ab-
stracts [18] in combination with supervised machine learn-
ing methods provided more accurate link predictions in
coauthorship networks. The supervised learning approach
introduced for predicting link strengths using transactional
information by [6] shows the correlation between varying
link strength and future link evolution. These previous stud-
ies have proven the consistency and effectiveness of ma-
chine learning methods in link prediction.

Besides machine learning approaches, there are dif-
ferent approaches can be seen in the literature. Paramet-
ric probabilistic model based on topological features of net-
works has introduced in [7] for link prediction in biological
networks. A matrix alignment method was used to deter-
mine the most predictive features of coauthorship networks
by aligning adjacency matrix of a network with weighted
similarity matrices [19]. The weighted similarity matrices
are computed from node attributes and neighborhood topo-
logical features. The weights learned by minimizing an ob-
jective function.

The recent research [12] has introduced a new feature
which captures the impact of information flow via active
links for link evolution in social networks. However, it is
limited to common neighbors. We therefore, introduced
T Flow algorithm which computes the information flow be-
tween any pair of nodes in a social network by considering
the link activeness. Once we compute it, we used it as a fea-
ture for link prediction using supervised machine learning
methods.

3. Supervised Learning Method for Link Prediction

Most of the approaches discussed in the previous section
have used structural features of networks and the features of
the nodes and edges for link prediction. For example, the
features such as number of common neighbors, Jaccard’s
coefficient [11] are used to measure the similarity between
nodes. Once these features are computed for a particular
node pair, we obtain a vector of values referred to as a fea-
ture vector [16], which may be correlated with the future

Table 1 Feature listing.

Feature Formula PropFlow combination (PFC) T Flow combination (TFC)
Adamic/Adar

∑
kεΓ(i)

⋂
Γ( j)

1
log|Γ(k)| � �

Common neighbors |Γ(i)⋂Γ( j)| � �
Jaccard’s coefficient |Γ(i)⋂Γ( j)|

|Γ(i)⋃Γ( j)| � �
Preferential attachment |Γ(i)||Γ( j)| � �
PropFlow � -
T Flow - �

possible link between that node pair.
In supervised learning approach, we train the learning

system with the feature vectors of each node pair to learn a
model which can be used to predict the future links. Once
we compute the feature vectors for each node pair in a net-
work, we obtain a set of feature vectors for node pairs that
are already linked and another set of feature vectors for node
pairs that are not linked. The learning system is trained to
learn a model using the feature vectors and the model used
to predict unlinked node pairs that are to be linked in the
future.

3.1 Features Used for Link Prediction

Table 1 lists the details of the features used in the present
study. We used two different combinations of features in
the proposed machine learning approach for link prediction.
The two sets of features includes a set of features used in
[12] with PropFlow score computed by previous PropFlow
algorithm [10] and T Flow score computed by T Flow al-
gorithm introduced in this paper. One set was used as the
PropFlow combination which includes the PropFlow score
and used as the base line combination. The other set is the
T Flow combination, which includes the T Flow score in-
troduced herein.

The existing features used in [12] are described below.

Adamic/Adar [1] This measure indicates if a node pair has
a common neighbor which is not common to several
other nodes, then the similarity of that particular node
pair is higher than the node pairs having neighbors that
are common to several other nodes. This measure as-
signs higher weights to common neighbors that are not
common to several other nodes.

Common neighbors Number of common neighbors of a
node pair.

Jaccard’s coefficient [11] Normalized measure of common
neighbors.

Preferential attachment [14] This measure indicates that
new links are more likely to be formed with nodes of
higher degree, or nodes that are popular in the network.

We have shown the feature computation formulas in
Table 1 for a pair of nodes i and j. In the formulas, Γ(i)
and Γ( j) denote the sets of neighbors of i and j respectively,
k denote a node. In Sect. 3.2, we discuss the computation
method of the previous algorithm PropFlow and in Sect. 3.3
we discuss the computation method of the new algorithm
T Flow introduced in this paper.
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3.2 PropFlow Algorithm

Information flow between nodes is a vital factor for link
evolution in social networks and it depends very much on
link attributes such as link weights and activeness. The
PropFlow algorithm [10] focused on information flow. It
computes information flow based on random walk method
which select its path based on link weights. This method is
somewhat similar to rooted page rank, but restricted to lo-
cal neighborhood of a node. Unlike rooted page rank, the
random walker doesn’t need to restart or convergence and
use modified breadth first search restricted to depth l. The
random walker starts from a particular node and reach the
desired node in l steps or fewer. Revisiting any node in-
cluding starting node is not allowed for the random walker.
PropFlow algorithm computes the information flow called
PropFlow for a pair of nodes i and j based on the random
walks between them. Equation (1) shows how to compute
PropFlow(i, j) if nodes i and j directly linked. In this case,
random walker starts from node i and walk to node j.

PropFlow(i, j) = NodeInputi ∗ wi j∑
k∈N(i)

wik
(1)

Where, wi j denotes the weight of the link between nodes i
and j. k denotes a node and set N(i) denotes node i’s neigh-
bors whose depth is greater than the depth of node of i from
the starting node. Initial node input is regarded as 1. If nodes
i and j are indirectly linked, PropFlow algorithm computes
the information flow through all the shortest paths from node
i to node j using Eq. (1) recursively and take the summation.

For example, Eqs. (2) to (7) show how to compute
the PropFlow(A,D) between nodes A and D in the coau-
thorship network shown in Fig. 1. Link weights are de-
noted by p. We assumed the random walker starts from
node A. PropFlow(A,D) is computed using link weights
of links AB, BC, CD, BE, ED. There are four paths
the random walker can reach node D from node A. They
are A→B→C→D, A→B→E→D, A→B→E→C→D, and
A→B→C→E→D. We have to note that PropFlow al-
gorithm use modified breadth-first search method and it

Fig. 1 An example of a coauthorship network.

stops when revisiting any node. Thus, random walker
doesn’t revisit node C from node E. Therefore, the
paths A→B→E→C→D and A→B→C→E→D have not
considered for computations. First, we have to compute
PropFlow(A, B). Weight of the link between A and B is
3. The sum of the link weights of links between A and its
neighbors is 4. Note that initial node input of A is considered
as 1. PropFlow(A, B) can be compute as;

PropFlow(A, B) = 1 ∗ 3
(1 + 3)

= 1 ∗ 3
4
=

3
4

(2)

PropFlow(B,C) can be compute as;

PropFlow(B,C) = PropFlow(A, B) ∗ 1
(1 + 1 + 2)

=
3
4
∗ 1

4
=

3
16

(3)

PropFlow(B, E) can be compute as;

PropFlow(B, E) = PropFlow(A, B) ∗ 1
(1 + 1 + 2)

=
3
4
∗ 1

4
=

3
16

(4)

PropFlow(C,D) can be compute as;

PropFlow(C,D) = PropFlow(B,C) ∗ 5
5

=
3
16
∗ 1 =

3
16

(5)

PropFlow(E,D) can be compute as;

PropFlow(E,D) = PropFlow(B, E) ∗ 1
1

=
3

16
∗ 1 =

3
16

(6)

Therefore, the PropFlow(A,D) is;

PropFlow(A,D) =
3

16
+

3
16
=

6
16
=

3
8

(7)

Although PropFlow algorithm computes the informa-
tion flow in social networks using link weights, the infor-
mation flow doesn’t depend only on the link weights. The
activeness of the links is a vital factor for information flow.
The links become weak or deactivate if nodes haven’t inter-
acted recently with respect to the current time. Despite of
their weights, the weakened or deactivated links can cause
a decay in information flow. We therefore, introduced an
extension of PropFlow algorithm referred to as T Flow al-
gorithm in order to consider the effect of active links for
information flow.

3.3 T Flow Algorithm

The time stamps of the links or interactions are useful in
determining the activeness of the links. If a node pair in-
teract recently the link between them become active. In
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other words, the time stamp of the last interaction is a vi-
tal information in deciding the activeness of a link. Hence,
we used the most recent time stamps of the interactions be-
tween nodes for our computations. Time stamp can be the
most recent hour, day or year of a interaction between a
node pair. The time unit of the time stamps depends on
the network. T Flow algorithm use the same settings as
in PropFlow algorithm for random walk. It considers link
weight as well as link activeness to compute transition prob-
abilities. The T Flow algorithm computes the information
flow called T Flow between a pair of nodes in a network.
We assumed the decay of information flow as a function
of decaying factor α and difference of time stamps of ad-
jacent links. The decaying function d(i, j) for information
flow from node i to its adjacent node j is defined as;

d(i, j) = (1 − α)|tx−ty | (8)

The decaying factor α (0 < α < 1) is the rate of decay per
unit time of the information flow and tx is the time stamp
of the link which random walker comes into the node i and
ty is the time stamp of the link which random walker going
to node j. The value of decaying function become 1 when
α = 0 which means no decay in information flow. At this
point T Flow algorithm is identical to its previous version
PropFlow algorithm. The T Flow algorithm computes the
information flow from node i to j via direct link as follows;

T Flow(i, j) = NodeInputi ∗ wi j∑
k∈N(i)

wik
∗ (1 − α)|tx−ty |

(9)

If nodes i and j are indirectly linked, T Flow algorithm com-
putes the information flow through all the shortest paths
from node i to node j using Eq. (9) recursively and take the
summation. The total flow between two nodes regarded as
the T Flow for the node pair. At the start of the random
walk, tx is regarded as the current time and the initial node
input is considered as 1. We have listed the T Flow algo-
rithm in Algorithm 1.

For example, Eqs. (10) to (15) show how to compute
T Flow(A,D) between nodes A and D in Fig. 1. Time
stamps of the links denoted by t in Fig. 1. We assumed the
random walker starts from node A and the current time is the
year 2012. T Flow(A,D) is computed using link weights of
links AB, BC, CD, BE, ED and their time stamps. First, we
have to compute T Flow(A, B).

T Flow(A, B) = 1 ∗ 3
(1 + 3)

∗ (1 − α)|2012−2011|

=
3
4
∗ (1 − α)1 =

3
4
∗ (1 − α) (10)

The link BC has the time stamp (2007) and the link BE has
the time stamp (2004). Therefore, BC is the most active
link. Thus, more information should flow through BC than
BE which has the same weight as BC but less active than
BC. T Flow(B,C) can be compute as;

Algorithm 1: T Flow Algorithm
Input: network G = (V, E), start node s, depth l, decaying factor

α, current time tc
Output: T Flow T f for all neighbors of s within depth l
begin

insert s into Visitedset
push s into NewS earchqueue
push tc into Timequeue
insert (s,1) into T f

OldS earchqueue←− empty
for Distance← 0 to l do

OldS earchqueue←− NewS earchqueue
empty NewS earchqueue
while OldS earchqueue is not empty do

pop i from OldS earchqueue
pop tx from Timequeue
find NodeInput using i in T f

ty ← 0
S umWeight ← 0
Flow← 0
for j in neighborhood of i do

if depth of j > depth of i then
add weight of edge between i and j to
S umWeight

end
end
for j in neighborhood of i do

if depth of j > depth of i then
wi j ← weight of edge between i and j
ty ← time stamp of edge between i and j
Flow←
NodeInput ∗ wi j

S umWeight ∗ (1 − α)|tx−ty |

add ( j, Flow) into T f

if j is not in Visitedset then
insert j into Visitedset
push j into NewS earchqueue
push ty into Timequeue

end
end

end
end

end
end

T Flow(B,C)

= T Flow(A, B) ∗ 1
(2 + 1 + 1)

∗ (1 − α)|2011−2007|

=
3
4
∗ (1 − α) ∗ 1

4
∗ (1 − α)4

=
3

16
∗ (1 − α)5 (11)

T Flow(B, E) can be compute as;

T Flow(B, E)

= T Flow(A, B) ∗ 1
(2 + 1 + 1)

∗ (1 − α)|2011−2004|

=
3
4
∗ (1 − α) ∗ 1

4
∗ (1 − α)7

=
3

16
∗ (1 − α)8 (12)

T Flow(C,D) can be compute as;
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T Flow(C,D) = T Flow(B,C) ∗ 5
5
∗ (1 − α)|2007−2009|

=
3

16
∗ (1 − α)7 (13)

T Flow(E,D) can be compute as;

T Flow(E,D) = T Flow(B, E) ∗ 1
1
∗ (1 − α)|2004−2006|

=
3

16
∗ (1 − α)10 (14)

Therefore, the T Flow(A,D) is;

T Flow(A,D) =
3

16
∗ (1 − α)7 +

3
16
∗ (1 − α)10 (15)

4. Experimental Evaluation

At first, we analyzed effectiveness of T Flow algorithm for
link prediction by varying α from 0 to 0.9. Then, the
link prediction performances of PropFlow algorithm and
T Flow algorithm were compared using feature combina-
tions PropFlow combination which includes PropFlow al-
gorithm and T Flow combination which includes T Flow
algorithm. For the comparison, we conducted the experi-
ments for T Flow combination using two-loop cross valida-
tion where the inner loop determines α and the outer-loop
evaluates prediction. Training data in the outer loop is used
in the inner loop to find the optimal parameter value which
is then used to evaluate the test data in the outer loop. The
feature combinations used in the experiments are shown in
Table 1. In our experiments, J48 Weka implementation [5]
of C4.5 decision tree algorithm [17] was used with 10-fold
cross validation. All network data sets are very sparse and
hence SMOT oversampling algorithm [3] was used in order
to deal with class imbalance problem. Precision, recall and
F-measure are used as performance metrics in the experi-
ments. In both PropFlow and T Flow algorithms, the depth
l is set to 3 which means we excluded the nodes that are
more than three links away from a node. We tested the
effectiveness of T Flow algorithm for a data set extracted
from facebook social network and coauthorship data sets ex-
tracted from e-print archive†.

4.1 Experiment with Facebook Data

Facebook data set is a set of wall postings collected from the
regional facebook network of New Orleans from September,
2006 to January, 2009 [20]. This data set consist of wall
postings exchanged by 60,290 users who are connected by
1,545,686 links. We extracted six different snapshots of data
from May, 2008 to December, 2008 which shows a rapid
increase of wall postings. Wall postings are considered as
the interactions between users. Each data set consist of wall
postings of three weeks. Link weight represents the number
of wall postings exchanged between a pair of users. The day
of the most recent wall posting represents the time stamp of
a link.

Table 2 Statistics of Facebook data.

Training data Nodes Edges Clustering coefficient Mean degree
D1 7094 13294 0.0270 1.87
D2 12862 29656 0.0292 2.30
D3 9310 18138 0.0277 1.94
D4 14405 30142 0.0242 2.09
D5 19614 51030 0.0319 2.60
D6 17277 36414 0.0300 2.10

Fig. 2 Performance of T Flow combination for different α values
(Facebook data).

We train the decision tree algorithm for Facebook data
using wall postings in two consecutive weeks to predict
links in the following week. The statistics of the facebook
training data are shown in Table 2. The unit of time for
Facebook data is days. The experiment was conducted for
six data sets and the average performance of T Flow algo-
rithm was computed.

Link prediction performance of T Flow combination
with the variation of α for Facebook data is shown in Fig. 2
which was reported in [13]. Average recall and average F-
measure shows peaks at α = 0.1 and α = 0.3 and then
decrease as α increase from 0.3 to 0.9 while the average
precision doesn’t show any drastic changes. We obtained
the highest average F-measure for T Flow combination at
α = 0.1. The decaying factor α measures the decay of influ-
ence of wall posting exchange per unit time on information
flow. The links become more active if users exchange wall
postings frequently and recently. Hence, the information
flow decays with the time if users don’t exchange wall post-
ings frequently and recently. The facebook network grow
rapidly over time and the interactions happen within a quick
time. As a consequence, the decay in information flow per
unit time (per day) proportionately small. In other words, if
a wall posting does not exchange within a day the decay of
information flow is proportionately low. Hence, the results
are better for the smaller α values (smaller decay). As shown
in Table 2, the clustering coefficients and mean degrees of
the data is fairly small. It implies that the users interact with
less number of friends and only few links are active during
the particular time period.

Table 3 shows the comparison of PropFlow combi-

†http://arxiv.org/
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Table 3 Comparison of PropFlow combination and T Flow combination
for Facebook data.

Feature Avg. Precision Avg. Recall Avg. F-measure
combination
PropFlow 0.6692 0.2898 0.4023

T Flow 0.6658 0.3327 0.4412

Table 4 Statistics of coauthorship data.

Data set Training Nodes Edges Clustering Mean
(Subject area) data coefficient degree

Astro-ph

D1 (1992–1996) 8098 53086 0.6974 6.55
D2 (1993–1997) 12647 113924 0.7092 9.00
D3 (1994–1998) 17346 177390 0.7062 10.22
D4 (1995–1999) 22180 261724 0.7042 11.80
D5 (1996–2000) 27067 358794 0.7031 13.25
D6 (1997–2001) 31526 455670 0.6992 14.45

Condmat-ph

D1 (1992–1996) 8798 35288 0.6269 4.01
D2 (1993–1997) 14197 67120 0.6702 4.73
D3 (1994–1998) 20410 108926 0.6965 5.33
D4 (1995–1999) 27053 157530 0.7139 5.82
D5 (1996–2000) 33461 209852 0.7229 6.27
D6 (1997–2001) 40786 278152 0.7336 6.81

Hep-ph

D1 (1992–1996) 9029 56108 0.5879 6.21
D2 (1993–1997) 10670 71328 0.6004 6.68
D3 (1994–1998) 12230 88644 0.6082 7.24
D4 (1995–1999) 13189 98494 0.6095 7.46
D5 (1996–2000) 14325 136754 0.6237 9.54
D6 (1997–2001) 15259 139362 0.6315 9.13

Hep-th

D1 (1992–1996) 8438 24904 0.4904 2.95
D2 (1993–1997) 9459 29286 0.4976 3.09
D3 (1994–1998) 10242 33026 0.5094 3.22
D4 (1995–1999) 10543 35322 0.5164 3.35
D5 (1996–2000) 11001 38648 0.5146 3.51
D6 (1997–2001) 11392 41212 0.5162 3.61

nation and T Flow combination for facebook data. We
tested T Flow combination using two-loop cross validation
method for determining α and 10-fold cross validation for
computing the results. The results shows that average F-
measure of T Flow combination is better than the average
F-measure of PropFlow combination which implies that the
information flow via active links is a vital factor for link pre-
diction.

4.2 Experiment with Coauthorship Data

The coauthorship data sets extracted from e-print archive
within ten years period of publications on subject ar-
eas Astro physics (Astro-ph), Condensed matter physics
(Condmat-ph), High energy physics (theory) (Hep-th) and
High energy physics (phenomenology) (Hep-ph) from 1992
to 2002. We created six data sets for each subject area and
computed the average performance of T Flow algorithm.
We have shown the statistics of each coauthorship network
in the Table 4. Publications are considered as the interac-
tions between authors and the year of the most recent pub-
lication represents the time stamp of a link. Link weights
were computed using method introduced in [15] which is
explained here. Let i and j are two authors and δki and δkj are
indicator functions. If author i is an author of paper k then
δki = 1 and zero otherwise. If paper k has nk authors, the

(a) Astro-ph (b) Condmat-ph

(c) Hep-ph (d) Hep-th

Fig. 3 Variation of F-measure with decaying factor α (coauthorship
data).

weight of collaboration wi j between two authors i and j is
computed as the summation of all coauthored papers;

wi j =
∑

k

δki δ
k
j

nk − 1
(16)

We train the decision tree algorithm using five consec-
utive years of coauthor data to predict links in the following
year. For example, data from 1992 to 1996 is used as train-
ing data to predict links emerged in the year 1997. The unit
of time for the coauthorship data is years.

Link prediction performance of T Flow combination
with the variation of α for each coauthorship data is shown
in Fig. 3. We obtained the highest average F-measures at dif-
ferent α values for different subject areas. The activeness of
links in coauthorship networks are not change rapidly as au-
thors work together for long time to publish research papers.
Therefore, the influence of coauthorship on link activeness
is proportionately high. The other notable characteristic is
that Astro-ph, Condmat-ph and Hep-ph coauthorship net-
works have high clustering coefficients and mean degrees as
shown in Table 4. Higher clustering coefficients and mean
degrees in the recent years tells that authors tends to inter-
act (via publications) with more coauthors as networks grow
with the time. More interactions makes networks more ac-
tive and T Flow combination perform better than PropFlow
combination. In contrast, PropFlow combination performs
significantly better than T Flow combination for Hep-th data
as shown in Fig. 3 (d). As shown in Table 4, Hep-th coau-
thorship network has low clustering coefficients and low
mean degrees. This observation tells that this network is
less active compared to the other subject areas. In other
words, the authors rarely make new coauthorships. This
phenomenon could specific to the network. In our experi-
ments, we have assumed that the average time taken for a
publication is one year. However, it takes more than one
year in some research areas to make a publication. In such
kind of situations, we have to choose the time unit depend-
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Table 5 Comparison of PropFlow combination and T Flow combination
for coauthorship data.

Data set Feature Avg. Avg. Avg.
(Subject area) combination Precision Recall F-measure

Astro-ph
PropFlow 0.7003 0.4208 0.5005

T Flow 0.7394 0.5005 0.5802

Condmat-ph
PropFlow 0.6573 0.4872 0.5480

T Flow 0.7095 0.5208 0.5960

Hep-ph
PropFlow 0.6795 0.3438 0.4443

T Flow 0.6963 0.3525 0.4654

Hep-th
PropFlow 0.6775 0.5180 0.5862

T Flow 0.7381 0.3973 0.5157

(a) Astro-ph (b) Condmat-ph

(c) Hep-ph (d) Hep-th

Fig. 4 Variation of F-measure with network growth (coauthorship data).

ing on the interaction time.
Table 5 shows summary of comparison of PropFlow

combination and T Flow combination for coauthorship data.
We tested T Flow combination using two-loop cross valida-
tion method for determining α and 10-fold cross validation
for computing the results. The results shows that average F-
measure of T Flow combination is better than the average F-
measure of PropFlow combination. In fact, T Flow combi-
nation shows significant improvement in average F-measure
for Astro-ph data. The results implies that the information
flow via active links is a vital factor for link prediction.

In our further analysis, we observed that the difference
between F-measure values of PropFlow and T Flow combi-
nations increase for recent coauthorship networks as shown
in Figs. 4 (a), (b), and (c). In other words, T Flow combina-
tion shows better performances on recent data sets which has
higher clustering coefficient and mean degrees. Further, we
obtained the highest F-measure for Condmat-ph data in the
experimental results shown in Table 5. This means that the
decay of information flow per unit time in Condmat-ph data
is higher than the other subject areas. Such kind of data are
appropriate to study the correlation between dynamic be-
havior of networks (network growth) and performance of
T Flow algorithm.

Table 6 Statistics of Condmat-ph data.

Training Nodes Edges Clustering Mean
data coefficient degree

D1 (1997–2001) 40786 278152 0.7336 6.81
D2 (1998–2002) 46124 328432 0.7348 7.11
D3 (1999–2003) 50632 373934 0.7347 7.38
D4 (2000–2004) 55425 424116 0.7349 7.65
D5 (2001–2005) 59742 467608 0.7357 7.82
D6 (2002–2006) 62802 493634 0.7367 7.86

Fig. 5 Performance of T Flow combination for different α values
(Condmat-ph).

Table 7 Comparison of PropFlow combination and T Flow combination
for Condmat-ph data.

Feature Avg. Precision Avg. Recall Avg. F-measure
combination
PropFlow 0.5852 0.1655 0.2567

T Flow 0.6637 0.3258 0.4302

4.3 Experiment with Condmat-ph Data

We carried out further experiments to investigate the perfor-
mance of T Flow algorithm when networks change rapidly.
More recent network data shows rapid changes. Hence,
we used six different network data sets extracted from
Condmat-ph publications from 1997 to 2007. Statistics of
the data sets are shown in Table 6 and experimental set-
tings are the same as in Sect. 4.2. Clustering coefficients and
mean degrees are almost same for six data sets. Link predic-
tion performance of T Flow combination with the variation
of α is shown in Fig. 5. Comparison of PropFlow combi-
nation with T Flow combination is shown in Table 7. We
tested T Flow combination using two-loop cross validation
method for determining α and 10-fold cross validation for
computing the results. The results shows a significant im-
provement for T Flow combination. It implies that T Flow
algorithm is more sensitive for rapid changes in link active-
ness and hence, shows better performance for dynamic net-
works.

5. Conclusion

In this paper, we introduced a new algorithm called T Flow
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based on information flow which can be used for link predic-
tion in social networks. T Flow algorithm computes T Flow
using activeness of links and link weights. The main char-
acteristic of T Flow algorithm is that it considers the impact
of link activeness for information flow which has not been
discussed in the previous method. We combined the active-
ness of links and link weights in T Flow algorithm and in-
vestigated how it affect the information flow which is a vital
factor for link prediction. The experimental results shows
that T Flow algorithm outperform the previous PropFlow
algorithm which only considers the impact of link weights
for information flow. Thus, T Flow algorithm is better for
link prediction in social networks where the link activeness
varies over time.
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