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ASPnP: An Accurate and Scalable Solution to the
Perspective-n-Point Problem

Yinqiang ZHENG†a), Nonmember, Shigeki SUGIMOTO†b), and Masatoshi OKUTOMI†c), Members

SUMMARY We propose an accurate and scalable solution to the
perspective-n-point problem, referred to as ASPnP. Our main idea is to
estimate the orientation and position parameters by directly minimizing a
properly defined algebraic error. By using a novel quaternion representa-
tion of the rotation, our solution is immune to any parametrization degen-
eracy. To obtain the global optimum, we use the Gröbner basis technique
to solve the polynomial system derived from the first-order optimality con-
dition. The main advantages of our proposed solution lie in accuracy and
scalability. Extensive experiment results, with both synthetic and real data,
demonstrate that our proposed solution has better accuracy than the state-
of-the-art noniterative solutions. More importantly, by exploiting vector-
ization operations, the computational cost of our ASPnP solution is almost
constant, independent of the number of point correspondences n in the wide
range from 4 to 1000. In our experiment settings, the ASPnP solution takes
about 4 milliseconds, thus best suited for real-time applications with a dras-
tically varying number of 3D-to-2D point correspondences∗.
key words: pose estimation, perspective-n-point, Gröbner basis, global
optimum

1. Introduction

The perspective-n-point problem (PnP) aims to estimate the
orientation and position, or rotation and translation, of a cal-
ibrated perspective camera by using n known 3D reference
points and their corresponding 2D image projections. It has
widespread applications in robot localization [1], hand-eye
calibration [2], augmented reality [3] and so on. Considering
these various application scenarios, a desirable PnP solution
should be accurate, efficient and generally applicable, i.e.,
capable of handling both planar and non-planar cases with
either a few or even hundreds of 3D-to-2D correspondences.

1.1 Related Works

As the minimal case, P3P (n = 3) has been thoroughly inves-
tigated in the literature [4], [5]. However, it has at most four
possible solutions, and this multiplicity makes a P3P solver
very sensitive to noise. In practice, it is usually used together
with some robust estimation methods, like RANSAC [6], to
remove outliers.

To improve robustness to noise, cases of four and more
than four correspondences should be considered. There are
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some specialized algorithms [7] restricted to the slightly re-
dundant n = 4 (P4P) or n = 5 (P5P) cases only. However,
the application of these specialized P4P and P5P solutions
is limited, since the number of point correspondences might
differ from one frame to the other, even in a specific appli-
cation scenario. As a result, a large body of existing works
have tried to improve flexibility, thus applicable to the gen-
eral n ≥ 4 cases. Quan and Lan [8] proposed a linear solu-
tion by combining all the constraints from three-point sub-
sets, whose computational complexity is O(n5). Ansar and
Daniilidis [9] developed linear solutions, but with complex-
ity O(n8), for general PnP with n points and n lines. Due to
higher data redundancy, these methods generally work bet-
ter as the number of points increases. Unfortunately, consid-
ering their high computational complexities, they become
quite inefficient when the number of points is large, for ex-
ample, n ≥ 100.

The excellent work by Lepetit et al. [10] proposed to
use four virtual control points to represent the 3D reference
points, and successfully reduced the computational com-
plexity to O(n), which is much more appropriate for PnP
with large n. Taking advantage of data redundancy, their
proposed method, named as EPnP in short, usually offers
satisfactory solutions for redundant cases with n ≥ 6 points.
As pointed out by Li et al. [11], however, its accuracy is low
for slightly redundant cases with n = 4 or n = 5 points, due
to ignoring some nonlinear constraints in linearization.

To improve estimation accuracy, Li et al. [11] proposed
a noniterative O(n) solution, named RPnP, which estimates
the rotation axis and angle separately and removes only one
nonlinear constraint. Among all existing noniterative solu-
tions, their proposed method is the fastest and most accurate
one. However, we should note that all those methods [8]–
[11] mentioned above estimate the parameters in an indirect
way, that is, to estimate the depth factors first and then trans-
form the PnP problem into the well-known 3D-3D relative
pose problem [12]. Some nonlinear constraints are also ig-
nored so as to develop a linear solution, which surely harms
accuracy. This is especially true for weakly redundant n = 4
and n = 5 cases, where the accuracy loss can hardly be com-
pensated by data redundancy.

Ideally, the highest accuracy can be achieved by di-
rectly minimizing a properly defined error function, either

∗Our MATLAB source code for ASPnP and the scripts to re-
produce all figures in the experiment section are publicly available
at https://sites.google.com/site/yinqiangzheng/
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in the image space or the object space, while accounting
for all nonlinear constraints. Olsson et al. [13] proposed to
minimize the reprojection error in the image space by us-
ing branch-and-bound iterations. Their method retrieves the
global optimum, irrespective of initialization. In addition,
under the assumption of independently and identically dis-
tributed (i.i.d.) Gaussian noise, minimizing the reprojection
error is also statistically optimal in the sense of maximum
likelihood estimation (MLE). Despite these advantages, it
can rarely be used in practice due to its tremendous compu-
tational cost.

As a trade off, most direct minimization based meth-
ods [14], [15] chose instead certain algebraic error functions
and local optimization methods. Lu et al. [14] developed
an orthogonal iteration method to directly minimize the ob-
ject space error. It is one of the most widely used iterative
minimization methods. However, these local optimization
methods suffer from the risk of getting trapped into local
minimum, and provide poor results when they indeed do so.

Some recent works tried to avoid local minimum, by
using convex optimization techniques, like sum of square
(SOS) relaxation [16] and semidefinite program (SDP) re-
laxation [17]. Their computational complexities are O(n),
and the size of the SDP relaxation problems is constant. Al-
though the relaxed SDP problem can be solved in polyno-
mial time, these methods usually take more than 100 mil-
liseconds, making them inappropriate for real-time applica-
tions.

Quite recently, Hesch and Roumeliotis [18] developed
a direct least square (DLS) method with complexity O(n),
in which the polynomial system derived from the first-
order optimal condition of the objective function is directly
solved by using matrix resultant technique. Unfortunately,
they parameterized the rotation matrix by using Cayley
parametrization, which degenerates in all cases of 180 de-
gree rotations around the x-, y- and z-axis†. The accuracy
deteriorates significantly when the camera pose approaches
these singular cases. Note that these singular cases are in-
troduced by the parametrization method, not due to the PnP
problem itself.

In addition to the number of point correspondences, the
configuration of the 3D reference points may also affect the
estimation accuracy. Given 3×n matrix U, with one column
denoting one 3D reference point, Li et al. [11] categorized
the configurations into the ordinary-3D, quasi-singular and
planar case. Specifically, when the rank of UUT is 3, i.e.,
rank(UUT ) = 3, and the condition number of UUT is mod-
erate, the 3D point configuration is grouped as the ordinary-
3D case. When rank(UUT ) = 3 but with a huge condi-
tion number, it is regarded as the quasi-singular case. When
rank(UUT ) = 2, it corresponds to the well-known planar
case. There are some methods [19] dedicated to the pla-
nar case, while most of the recently proposed methods [10],
[11], [18] can handle planar and nonplanar cases simultane-
ously. However, Li et al. [11] pointed out that some exist-
ing methods, like the iterative solution by Lu et al. [14] and
the noniterative EPnP solution, work poorly for the quasi-

singular case, while the method [19] dedicated to the planar
case is not applicable to the quasi-singular one at all.

1.2 Overview of Our Work

In this work, we propose an accurate and scalable solution to
the PnP problem, referred to as ASPnP. Similar to DLS [18],
we directly minimize a properly designed error function,
leading to a nonlinear least square problem with respect
to the rotation parameters only. In contrast to the Cay-
ley parametrization, we use the quaternion parametrization,
and properly avoid all possibilities of degeneracy caused by
parametrization. To find the global optimum, we solve the
polynomial system derived from the first-order optimal con-
dition of the objective function by using standard Gröbner
basis technique. Compared with the state-of-the-art indirect
and noniterative methods, like RPnP [11] and EPnP [10],
our direct minimization method has better accuracy for all
3D reference point configurations, including the challenging
planar and quasi-singular cases. Without suffering from de-
generacy in parametrization, our solution is more stable than
the direct DLS method. Theoretically speaking, the com-
putational complexity of our proposed ASPnP solution is
O(n), which is the same as that of the RPnP [11], EPnP [10]
and DLS method [18]. However, by taking advantage of the
problem structure, we can easily vectorize the ASPnP im-
plementation. As a result, our ASPnP solution is quite ef-
ficient and scalable, taking almost constant computational
time (about 4 milliseconds in our experiment settings) for
the wide spectrum of point correspondences from n = 4 to
n = 1000. In contrast, the computational cost of existing
methods increases drastically, as the problem scale expands.

The organization of the remaining parts is as follows.
In Sect. 2, we present some preliminaries of the PnP prob-
lem. Section 3 covers the formulation of our method as well
as the details of solving polynomial systems. The computa-
tional complexity and vectorization techniques are shown in
Sect. 4. Section 5 includes the experiment results using both
synthetic and real data, and Sect. 6 gives the concluding re-
marks.

2. Preliminaries

2.1 Notations

Throughout this work, we denote matrices, vectors and
scalars by using capital letters, bold lowercase letters and
plain lowercase letters, respectively, with the exception that
T is reserved for matrix or vector transpose. All vectors are
column-wise.

†When this paper was under preparation, Hesch and Roume-
liotis provided a remedy to conquer this problem by solving DLS
three times under different rotated 3D points. Since the computa-
tional time would be tripled, we believe this remedy is not attrac-
tive, especially considering that DLS itself is not very fast.
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2.2 The PnP Problem

It is assumed that we know n 3D reference points qi =[
xi yi zi

]T
, i = 1, 2, · · · , n, in the object reference

framework, and their corresponding projections pi =[
ui vi 1

]T
, i = 1, 2, · · · , n, in the homogeneous image co-

ordinate framework. The perspective camera is assumed to
follow the pinhole imaging model, and its intrinsic parame-
ter matrix K has been calibrated. The objective is to retrieve
the rotation matrix R and the translation vector t, accounting
for the camera orientation and position, respectively, such
that the projective imaging equation

λipi = K(Rqi + t), i = 1, 2, · · · , n, (1)

could be satisfied, in which λi denotes the depth factor of
the i-th point.

Considering that K is known, it is convenient to use

the normalized image coordinate p̃i =
[
ũi ṽi 1

]T
=

K−1pi, i = 1, 2, · · · , n.

3. The Proposed ASPnP Solution

In this section, we shall present our proposed solution to the
PnP problem.

3.1 Eliminating the Depth Factors

Since the depth factor satisfies that

λi = rT
3 qi + t3, (2)

it is desirable to eliminate all depth factors as follows

(rT
3 qi + t3)ũi = rT

1 qi + t1,

(rT
3 qi + t3)ṽi = rT

2 qi + t2,
(3)

in which rT
1 , rT

2 , rT
3 are the 1st, 2nd and 3rd row of R, re-

spectively, and t =
[
t1 t2 t3

]T
.

Let us point out that the DLS method [18] eliminates
the depth factors by solving a large linear system, which
increases the complexity unnecessarily.

3.2 Rotation Parametrization

It is well known that three independent parameters are
enough to represent the rotation matrix R, due to the or-
thonormal constraint RRT = I and the determinant con-
straint det(R) = 1.

There are various parametrization methods for R, such
as the Euler angle, rotation axis-angle, Cayley and quater-
nion parametrization. In contrast to the Cayley parametriza-
tion [18], we choose the quaternion parametrization in its
fractional form, which is free of any trigonometric func-
tion and any possibility of degeneracy. Specifically, letting
s = a2 + b2 + c2 + d2, the quaternion parametrization in its

fractional form reads

R =
1
s

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a2+b2−c2−d2 2bc−2ad 2bd+2ac

2bc+2ad a2−b2+c2−d2 2cd−2ab
2bd−2ac 2cd+2ab a2−b2−c2+d2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
(4)

in which a, b, c, d are the four unknown parameters, and
s � 0, i.e., a, b, c, d are not simultaneously zero. It is
straightforward to verify that the parametrization in Eq. (4)
satisfies RRT = I and det(R) = 1.

Actually, the fractional form in Eq. (4) is quite uncom-
mon in computer vision literature. It is more conventional to
enforce the unit norm constraint a2+b2+c2+d2 = 1 so as to
eliminate the fractional term in Eq. (4). Here, we prefer the
fractional form, since Eq. (3) is homogeneous. Closer in-
spection of Eq. (4) leads us to the important observation that
a, b, c, d in Eq. (4) assume scale ambiguity and sign ambi-
guity, i.e., R(a, b, c, d) = R(ka, kb, kc, kd), for any nonzero
k. Considering that there are only three independent param-
eters in R, we explore the following four cases:
♦ Case-1. When a � 0, without loss of generality, we

can rescale a, b, c, d implicitly, such that a = 1. Then, there
remain only three parameters b, c, d in R

R =
1
s1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1+b2−c2−d2 2bc−2d 2bd+2c

2bc+2d 1−b2+c2−d2 2cd−2b
2bd−2c 2cd+2b 1−b2−c2+d2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
(5)

in which s1 = 1 + b2 + c2 + d2.
Through some basic calculations, one can verify that

Eq. (5) is equivalent to the Cayley parametrization used in
DLS [18]. Therefore, it is straightforward to see that the
Cayley parametrization is always degenerate when a is zero.
♦ Case-2. When a = 0, b � 0, by letting b = 1, it is

possible to reduce the parametrization in Eq. (4) into

R =
1

1+c2+d2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1−c2−d2 2c 2d

2c −1+c2 − d2 2cd
2d 2cd −1−c2+d2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (6)

♦ Case-3. When a = 0, b = 0, c � 0, we can let c = 1,
and simplify Eq. (4) into

R =
1

1 + d2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−1 − d2 0 0

0 1 − d2 2d
0 2d −1 + d2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (7)

♦ Case-4. When a = 0, b = 0, c = 0, d � 0, we can let
d = 1, and now Eq. (4) becomes

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 −1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (8)

It is trivial to recognize that these four cases are inde-
pendent, and cover all possible rotation matrix R. However,
for a given PnP problem, before solving all these four cases,
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there is no way of determining which case is the correct one.
In the following, we show how to build the objective func-
tion and its first-order optimality condition for all these four
cases. We are going to focus primarily on Case-1, since the
remaining three cases can be handled in a similar way.

3.3 Objective Function and Minimization

As for Case-1, let us note that the fractional term in
Eq. (5) would not cause any inconvenience, because of
the homogeneous structure in Eq. (3). After rescaling

t such that t̃ =
[
t̃1 t̃2 t̃3

]T
= s1

[
t1 t2 t3

]T
, we

can eliminate the fractional term 1
s1

by multiplying s1 at
both sides of Eq. (3). Specifically, we denote that v =[
1 b c d b2 bc bd c2 cd d2

]T
, and transform

Eq. (3) into the following matrix form

Mi t̃ = Niv, i = 1, 2, · · · , n, (9)

in which

Mi =

[−1 0 ũi

0 −1 ṽi

]
, (10)

and

Ni =
[
n1

i n2
i

]T
, (11)

n1
i = ũi

[
−zi −2yi 2xi 0 zi 0 −2xi zi −2yi −zi

]T
+
[
xi 0 2zi −2yi xi 2yi 2zi −xi 0 −xi

]T
,

n2
i = ṽi

[
−zi −2yi 2xi 0 zi 0 −2xi zi −2yi −zi

]T
+
[
yi −2zi 0 2xi −yi 2xi 0 yi 2zi −yi

]T
.

(12)

Due to some measurement noise, the equality in Eq. (9)
generally could not be perfectly satisfied. Therefore, we di-
rectly minimize the squared error of Eq. (9), and reach the
following nonlinear least square problem

min
b,c,d,t̃
||Mt̃ − Nv||2, (13)

in which M =
[
MT

1 MT
2 · · · MT

n

]T
, and N =[

NT
1 NT

2 · · · NT
n

]T
.

Let us note that the scaled translation t̃ appears linearly
in the objective function, and all nonlinear terms in v only.
Therefore, we can project out t̃ without changing the optimal
solutions.

Given v, we can easily solve t̃ by using linear least
square

t̃ = M+Nv, (14)

in which M+ denotes the Moore-Penrose matrix inverse.

Plugging Eq. (14) back into Eq. (13), we obtain the
simplified objective function

f (b, c, d) = ||(MM+ − I)Nv||2
= −vT NT (MM+ − I)Nv

= −vT Gv,

(15)

in which I is the 2n×2n identity matrix, (MM+−I)T (MM+−
I) = −(MM+ − I), and G = NT (MM+ − I)N.

Interestingly, the objective function in Eq. (15) has only
three unknown variables, irrespective of the number of point
correspondences n. This fact enables us to solve large scale
problems with even hundreds of reference points.

To minimize f with respect to b, c, d, one can surely
use some standard local optimization methods for nonlin-
ear least square problems, like Newton and Gauss-Newton
methods, which might get trapped into undesirable local op-
timum. In contrast, we are interested in developing a nonit-
erative method and retrieving the global optimal solution.

It is straightforward to build the first-order optimality
condition of Eq. (15), and identify all the stationary points.
By calculating the derivative of f with respect to b, c, d, we
get the first-order optimality condition composed of three
3-order polynomials

∂ f
∂b
= −vT G

∂v
∂b
= 0,

∂ f
∂c
= −vT G

∂v
∂c
= 0,

∂ f
∂d
= −vT G

∂v
∂d
= 0.

(16)

To solve the above multivariate polynomial system, we
adopt the standard Gröbner basis technique, the details of
which shall be addressed in the following section.

Until now, we have shown how to build the objective
function and its first-order optimality condition for Case-1.
As for Case-2, we can apply the same technique to elimi-
nate the fractional term in Eq. (6). Since there are only two
variables c and d in R, the first-order optimality condition
is composed of two 3-order polynomials with respect to c
and d. We are going to adopt the Gröbner basis technique to
solve this polynomial system as well.

As for Case-3, after eliminating the fractional term in
Eq. (7), the objective function is much simpler, since there
is only one variable d. In this case, the first-order optimality
condition is a cubic univariate polynomial with respect to d
only. It is well-known that there exist closed form solutions
for a cubic univariate polynomial. As an alternative, one
can also calculate the eigenvalue of the companion matrix
corresponding to the cubic polynomial.

Resolving Case-4 is trivial, since R is constant. We
can directly solve the translation vector by using linear least
square, which is similar to Eq. (14).

3.4 Solving Multivariate Polynomial Systems

Solving multivariate polynomial systems has been system-
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atically investigated in many minimal problems in computer
vision, based primarily on the Gröbner basis technique [20].
Most noticeably, Kukelova et al. [21] introduced a novel au-
tomatic generator of polynomial system solvers, which is
also applicable to the multivariate polynomial systems aris-
ing from Case-1 and Case-2.

Briefly speaking, the automatic generator first identi-
fies the Gröbner bases in graded reverse lexicographical or-
dering that correspond to the original polynomial system,
and then constructs the elimination template by choosing
proper polynomials in the Ideal generated by multiplying
proper monomials. Finally, the action matrix is built, the
eigen factorization of which provides the solutions of the
original system. In this sense, the action matrix is very sim-
ilar to the companion matrix corresponding to an univariate
polynomial.

As for the three-variable 3-order polynomial system
arising from Case-1, there are at most 27 solutions, thus the
size of the action matrix is 27×27. The elimination template
matrix is of size 89 × 116. As for the two-variable 3-order
polynomial system corresponding to Case-2, the elimination
template matrix is of size 12×21, and the action matrix is of
size 9×9. The eigen factorization of this action matrix gives
all the possible 9 solutions of the original two-variable 3-
order polynomial system. The reader can refer to our source
code for the details on the monomials in the Gröbner bases
and the construction process of the elimination templates,
which are a little bit too verbose to present here.

In both cases, the size of the elimination matrix and that
of the action matrix are independent of the number of point
correspondences n, the computational cost of solving the
multivariate polynomial system is therefore constant. In ad-
dition, the eigen factorization of a small matrix, e.g. 27× 27
matrix for Case-1 and 9 × 9 matrix for Case-2, is compu-
tationally fast, which makes the development of an efficient
PnP solution possible.

3.5 Identifying the Best Solution

After solving the multivariate polynomial systems for Case-
1 and Case-2, the univariate cubic polynomial for Case-3
and the linear least square problem for Case-4, we can ob-
tain all the real stationary points of the PnP problem. By
using the chirality condition that all 3D reference points are
in front of the camera, we can further filter out those physi-
cally infeasible solutions. Finally, we evaluate the reprojec-
tion error for each feasible solution, and choose the one with
the smallest reprojection error as the optimal solution.

4. Computational Complexity and Vectorization

4.1 Computational Complexity

As shown in the previous section, there are two critical steps
in our ASPnP solution, i.e., the construction step to build the
polynomial system and the polynomial system solving step.
The computational cost for the latter is constant, irrespective

of the number of point correspondences n. In contrast, the
construction step depends indeed on the problem scale.

Let’s first consider the complexity of the construc-
tion step for Case-1. In Eq. (15), we need to construct
G = NT (MM+ − I)N = (NT M)(MT M)−1(NT M)T − NT N.
Considering that the size of MT M is 3 × 3, the cost of in-
verting MT M is constant and almost negligible. Then, it
is straightforward to recognize that the complexity of this
construction step is O(n), due to the multiplication of NT M,
MT M and NT N, in which N is of size 2n× 10 and M of size
2n×3. Similarly, the complexity of the construction step for
Case-2, Case-3 and Case-4 would not exceed O(n).

Generally speaking, the computational cost of an O(n)
algorithm increases moderately as the problem scale ex-
pands. However, in some application scenarios, such as re-
altime tracking of a well-textured object, it is possible to
encounter a PnP problem with hundreds of 3D-to-2D cor-
respondences. Therefore, it is quite important to improve
scalability further by exploring and taking advantage of the
problem structure.

4.2 Vectorization

First, by investigating the structure of Eq. (12), it is possi-
ble to vectorize the construction of N, i.e., constructing all
rows of N simultaneously, instead of every two rows in an
iterative way. In addition, M is well structured, specifically,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 ũ1

0 −1 ṽ1
· · · · · · · · ·
−1 0 ũn

0 −1 ṽn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

therefore, instead of using matrix multiplication blindly,
MT M is simply

MT M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
n 0 −∑n

i=1 ũi

0 n −∑n
i=1 ṽi−∑n

i=1 ũi −∑n
i=1 ṽi

∑n
i=1 (ũ2

i + ṽ
2
i )

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (18)

Similarly, we can compute NT M in a vectorized way.
Through these simple vectorization techniques, surprisingly,
our PnP solver takes almost constant computational time for
varying number of 3D-to-2D correspondences from n = 4
to n = 1000, a wide working range that probably covers all
practical applications. It is also worthy of mentioning that
existing EPnP and RPnP could not benefit from such kind
of simple vectorization techniques.

5. Experimental Results

In this section, we test our accurate and scalable solution
to the PnP problem, referred to as ASPnP, and compare it
with the state-of-the-art PnP solutions. For the ordinary-3D
case and the quasi-singular case, we consider three nonit-
erative solutions, including EPnP [10], RPnP [11] and the
direct least square solution (DLS) [18], as well as the pop-
ular iterative method by Lu et al. [14], denoted by LHM
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(a) Ordinary-3D Case

(b) Quasi-Singular Case

(c) Planar Case

Fig. 1 Average and median rotation and translation errors with respect to varying number of points
n = 4, 5, . . . , 15, and fixed image noise level δ = 2 pixels for the ordinary-3D case (a), the quasi-singular
case (b) and the planar case (c).

in short. For the planar case, we include into comparison
the EPnP, RPnP, DLS solutions. In addition, the iterative
method by Schweighofer and Pinz [19] dedicated to the pla-
nar case is also considered, which is denoted by SP+LHM,
since it incorporates the iterative LHM method as the fi-
nal minimization tool. In all synthetic experiments with
ground-truth pose parameters, we also minimize the repro-
jection error via local optimization techniques initialized by
the ground-truth. We denote it by Reproj.

5.1 Experiments with Synthetic Data

To make our results easily reproducible, we use similar ex-
periment configurations as in the work of RPnP [11]. We
assume a virtual perspective camera with image size of
640 × 480 pixels and focal length 800 pixels. The princi-
ple point lies in the image center. n 3D reference points
are randomly generated in the camera framework. For the
ordinary-3D case, these points are randomly distributed in
the x-, y- and z-range of [−2, 2] × [−2, 2] × [4, 8], while

for the quasi-singular case, they are in the range of [1, 2] ×
[1, 2] × [4, 8]. Then, we choose the ground-truth translation
ttrue such that the origin of the object framework coincides
with the centroid of these 3D points, and rotate these 3D
points by using a randomly generated ground-truth rotation
matrix Rtrue. We measure the absolute error in degrees be-
tween Rtrue and the estimated rotation matrix R, which is de-
fined as erot(degrees) = max3

k=1 acos(dot(rk
true, r

k))× 180/π,
where rk

true and rk are the k-th column of Rtrue and R, and
dot(·, ·) and acos(·) represent the dot product and arc-cosine
operation, respectively. The translation error is measured
by the relative difference between ttrue and t defined as
etrans(%) = ||ttrue − t||/||t|| × 100.

5.1.1 Varying Number of Points

We investigate the performance of competing solutions with
varying number of correspondences for the ordinary-3D,
quasi-singular and planar case. We vary n from 4 to 15, and
add zero-mean Gaussian noise with deviation δ = 2 pixels
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(a) Ordinary-3D Case

(b) Quasi-Singular Case

(c) Planar Case

Fig. 2 Average and median rotation and translation errors with respect to varying image noise level
δ = 0.5, 1, . . . , 5 pixels for the ordinary-3D case (a), the quasi-singular case (b) and the planar case (c).
The number of point correspondences is fixed to be 6.

onto the image projections. At each n, 1000 independent
test data sets are generated. As in Fig. 1, we present the av-
erage and the median rotation and translation error among
these 1000 independent trials. It’s straightforward to rec-
ognize that all solutions work better as the point number n
increases, demonstrating that data redundancy actually con-
tributes to improving accuracy.

As for the ordinary-3D case in Fig. 1 (a), when there
are only n = 4 and n = 5 point correspondences, the ac-
curacy of EPnP is very poor, due to ignoring some non-
linear constraints in the process of linearization. As an in-
direct method, RPnP is much better than EPnP, since it
only removes one nonlinear constraint. Although taking into
consideration all nonlinear constraints, the iterative LHM
method fails to work satisfactorily, which reveals that it is
highly risky of local optimum. The direct DLS method does
not suffer from local optimum, however, it might offer poor
estimation when the camera pose is close to the singular-
ities of the Cayley parametrization. Among all the com-
peting solutions except Reproj, our proposed ASPnP is the

most accurate one. Even compared with RPnP, ASPnP is
slightly but consistently better, especially for weakly redun-
dant n = 4 and n = 5 cases.

As for the quasi-singular case in Fig. 1 (b), LHM is
the most seriously deteriorated solution, followed by EPnP.
DLS still suffers from instability. In this case, RPnP and
ASPnP are comparable in terms of the accuracy of rotation,
but ASPnP is better in terms of that of translation.

Among all the solutions for the planar case in Fig. 1 (c),
EPnP is the poorest. DLS provides some unstable results,
thus leading to substantial mean rotation errors. The special-
ized SP+LHM solution works satisfactorily when n ≥ 6. It
might also converge to bad local optimal solutions, as will
be shown in the experiment with real images.

To sum up, in all sub-figures of Fig. 1, ASPnP is the
closest solution to Reproj, thus verifying its accuracy and
widespread applicability for both planar and nonplanar 3D
point configurations even with a few point correspondences.
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(a) Ordinary-3D Case

(b) Quasi-Singular Case

(c) Planar Case

Fig. 3 Experiment results using Cayley non-degenerate random rota-
tions.

5.1.2 Varying Noise Levels

Here, we fix the number of correspondences to be 6, which
is a very challenging situation, and vary the noise devia-
tion level δ from 0.5 to 5 pixels. At each noise level, we
run 1000 independent trials and report the average and the
median rotation and translation error for the ordinary-3D,
quasi-singular and planar case in Fig. 2 (a), Fig. 2 (b) and
Fig. 2 (c), respectively. EPnP is quite inaccurate, especially
in the quasi-singular and planar case. Again, we can observe
that the iterative solutions, including LHM for the ordinary-
3D and the quasi-singular case and SP+LHM for the planar
case, suffer from poor convergence and possible local opti-
mum. The instability of DLS is obvious. Both RPnP and
ASPnP work properly when the noise level is low. However,
ASPnP is consistently better when the noise level is higher
than 2 pixels.

5.1.3 Investigating Degeneracy of Cayley Parametrization

From Fig. 1 and Fig. 2, we have concluded that the overall

(a) Ordinary-3D Case

(b) Quasi-Singular Case

(c) Planar Case

Fig. 4 Experiment results using Cayley quasi-degenerate random rota-
tions.

accuracy of DLS is very poor. To further verify that the
inaccuracy of DLS is caused by the degeneracy of Cayley
parametrization, we repeat the aforementioned experiments
by using random rotations generated under three different
conditions. As mentioned in Sect. 3.2, when a � 0, we can
rescale the quaternion parameter (a, b, c, d) such that a = 1,
leading to the Cayley representation. Therefore, when a = 0
or a ≈ 0, the Cayley representation is degenerate or quasi-
degenerate, respectively. We thus randomly generate non-
degenerate, quasi-degenerate and degenerate rotations ac-
cording to a ∈ [0.1, 1], a ∈ [0, 0.1] and a = 0, respec-
tively. Using the same experiment settings as in Sect. 5.1.1,
the experiment results in the case of non-degenerate, quasi-
degenerate and degenerate rotations are shown in Fig. 3,
Fig. 4 and Fig. 5, respectively. For clarity, only the mean
rotation and translation error curves of DLS, ASPnP and
Reproj are shown. From Fig. 3, we observe that DLS and
ASPnP are of comparable accuracy. The minor difference
might be explained by the difference in their problem for-
mulation. However, as shown in Fig. 4 and Fig. 5, the accu-
racy of DLS deteriorates drastically in the quasi-degenerate
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(a) Ordinary-3D Case

(b) Quasi-Singular Case

(c) Planar Case

Fig. 5 Experiment results using Cayley degenerate rotations.

and degenerate cases, while that of ASPnP is sufficiently
satisfactory.

5.1.4 Computational time

We are interested in the speed of our ASPnP solution and
how it compares with existing fast noniterative solutions,
including EPnP, RPnP and DLS. The iterative solution
LHM is excluded from comparison, because it is known
to be slow [10], [11], especially when the number of points
is large. We implement our ASPnP solution in MAT-
LAB and incorporate the vectorization techniques shown
in Sect. 4.2. We use the publicly available source code of
EPnP†, RPnP†† and the fast version of DLS†††. We run
all codes in MATLAB environment on a notebook with
2.26 GHz CPU.

We vary the number of points n from 4 to 1004. For
each n, we conduct 1000 independent tests and report the
average running time in milliseconds (ms) for each solution.
As shown in Fig. 6, the computational cost of EPnP, RPnP
and DLS increases nontrivially as the problem scale ex-
pands. Interestingly, our ASPnP solution always takes about

Fig. 6 Average computational time with respect to varying number of
points n = 4, 54, . . . , 1004 (left), and the close-up in the range of n =
4, 8, . . . , 100 (right).

(a) Image Pair �1 with 169 inliers among 178 correspondences

(b) Image Pair �2 with 408 inliers among 422 correspondences

Fig. 7 Real experiments with a 3D box. For each row, the reference im-
age is at left, while the input image right. Inliers and outliers are indicated
by thin green lines and dashed red lines, respectively. The input images are
overlaid with the box contours using the pose parameters from ASPnP.

4 ms, independent of the number of points in the whole
range from n = 4 to n = 1004, thus verifying its scalability
and applicability to large scale PnP problems. For example,
when n = 500, our ASPnP solution is about 5 times faster
than EPnP and RPnP, and about 20 times faster than DLS.
Let’s observe that when the number of points n is less than
100, RPnP is faster than ASPnP. In spite of that, we still
recommend our ASPnP solution as a competitive alterna-
tive, on the basis of its superiority in accuracy for slightly
redundant cases and highly noisy cases.

5.2 Experiments with Real Data

For experiments with real images, we use a calibrated per-
spective camera with image resolution 640 × 480 pixels. As
shown in Fig. 7 and Fig. 8, we construct the 3D template
of a box and that of a planar book cover, with 1338 and
971 SIFT [22] feature points in their corresponding refer-

†http://cvlab.epfl.ch/software/EPnP/
††http://xuchi.weebly.com/rpnp.html
†††http://www-users.cs.umn.edu/˜joel/index.php?page=software
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Table 1 Performance statistics of competing solutions for the experiment with a box shown in Fig. 7.

image �1 (n = 169) �2 (n = 408)
method EPnP RPnP DLS LHM ASPnP EPnP RPnP DLS LHM ASPnP

erot (deg.) 0.849 0.190 0.108 0.101 0.108 0.315 0.095 0.027 0.227 0.026
etrans (%) 0.418 0.132 0.014 0.013 0.014 0.288 0.061 0.044 0.092 0.043
time (ms) 5.2 5.3 41.3 220.9 4.6 10.2 18.1 78.6 547.4 4.7

Table 2 Performance statistics of competing solutions for the experiment with a planar book cover
shown in Fig. 8.

image �1 (n = 213) �2 (n = 46)
method EPnP RPnP DLS SP+LHM ASPnP EPnP RPnP DLS SP+LHM ASPnP

erot (deg.) 1.440 0.390 0.178 0.080 0.087 1.611 0.146 0.105 17.874 0.051
etrans (%) 1.122 0.686 0.109 0.182 0.172 0.252 0.087 0.172 17.322 0.070
time (ms) 6.8 9.7 61.1 872.4 5.2 3.4 3.3 23.3 147.4 4.4

(a) Image Pair �1 with 213 inliers among 223 correspondences

(b) Image Pair �2 with 46 inliers among 58 correspondences

Fig. 8 Real experiments with a planar book cover. For each row, the
reference image is at left, while the input image right. Inliers and outliers
are indicated by thin green lines and dashed red lines, respectively. The
input images are overlaid with the contours using the pose parameters from
ASPnP.

ence images. Given an input image, we first build ten-
tative correspondences by matching SIFT points between
the reference and the input image. To remove mismatches,
a P3P solution is used in combination with RANSAC [6].
All inliers are used to estimate the camera pose. Since the
ground truth camera pose is not easily available, we mini-
mize the reprojection error by using the branch-and-bound
method [13] and use the estimated pose as the ground truth,
with respect to which the rotation and translation error are
evaluated. The branch-and-bound method takes more than
two minutes in each of the experiments, thus inappropriate
for real-time applications at all. The performance statistics
for all competing methods are shown in Table 1 and Table 2,
from which we can observe that, in all the experiments, our
proposed ASPnP is more accurate than EPnP and RPnP. In
case of proper convergence, the iterative solution LHM and
SP+LHM could provide accurate results (e.g., in Fig. 7 (a)
and Fig. 8 (a)), but they indeed suffer from undesirable lo-
cal optimum (e.g., in Fig. 7 (b) and Fig. 8 (b)). For all the

experiments in Fig. 7 and Fig. 8, DLS retrieves sufficiently
accurate results, since the real camera pose happens to be
far from the singularities of its parametrization. In spite of
that, our ASPnP solution is much faster.

6. Conclusion

In this work, we have proposed an accurate and scalable so-
lution to the perspective-n-point pose estimation problem.
Our central idea is to estimate the orientation and position
parameters by directly minimizing a properly defined alge-
braic error. By using Gröbner basis technique, we solve the
polynomial system derived from the first-order optimality
condition, and retrieve the global optimum without itera-
tions. Experiment results have demonstrated its superior-
ity over the state-of-the-art noniterative methods in terms
of accuracy for both planar and nonplanar 3D point config-
urations. Our method is fast enough for real-time applica-
tions, and takes almost constant computation cost for widely
varying number of point correspondences from n = 4 to
n = 1000. To facilitate reproduction and further improve-
ment, we have made the source code publicly available.
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