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PAPER

Bayesian Word Alignment and Phrase Table Training for Statistical
Machine Translation

Zezhong LI†a), Member, Hideto IKEDA†, Nonmember, and Junichi FUKUMOTO†, Member

SUMMARY In most phrase-based statistical machine translation
(SMT) systems, the translation model relies on word alignment, which
serves as a constraint for the subsequent building of a phrase table. Word
alignment is usually inferred by GIZA++, which implements all the IBM
models and HMM model in the framework of Expectation Maximum (EM).
In this paper, we present a fully Bayesian inference for word alignment.
Different from the EM approach, the Bayesian inference makes use of all
possible parameter values rather than estimating a single parameter value,
from which we expect a more robust inference. After inferring the word
alignment, current SMT systems usually train the phrase table from Viterbi
word alignment, which is prone to learn incorrect phrases due to the word
alignment mistakes. To overcome this drawback, a new phrase extraction
method is proposed based on multiple Gibbs samples from Bayesian infer-
ence for word alignment. Empirical results show promising improvements
over baselines in alignment quality as well as the translation performance.
key words: Bayesian inference, word alignment, phrase extraction, re-
ordering, statistical machine translation

1. Introduction

In phrase-based statistical machine translation, a source sen-
tence is translated by the decoder concatenating translation
options from an inventory called a phrase table, which is
the key component that contributes to the success of the fi-
nal translation performance. Approaches to building such a
phrase table can be classified into two groups: the first ap-
proach is called two-staged approach, in which phrases are
collected by fixing a word alignment and applying phrase
extraction heuristics, and a typical representation of such an
idea is described in [1]; the second approach is called di-
rect phrase alignment, in which phrases can be learned di-
rectly [2]. A great deal of literature has compared the above
two approaches. In theory, the direct phrase alignment
is more theoretically sound and elegant over the heuristic-
based two-staged approach, but it also has challenges, pri-
marily including computing complexity that arises from the
exponentially large number of decompositions of a bilin-
gual sentence pair into phrase pairs and degenerate behav-
ior (explaining the training corpus with one phrase pair per
sentence). Currently the two-staged approach has already
been more broadly adopted by phrase-based SMT systems,
such as Moses [4] and Phrasal [5], and the reason might be
attributed to the massive amounts of effort on word align-
ment and phrase extraction, which provides more reliable
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baselines for the translation performance. We also conjec-
ture that phrase is a better translation granularity than word,
but not necessarily means it is also an appropriate granu-
larity for learning, which is determined by the property of
data sparseness in natural language processing (henceforth
NLP). Therefore, we will follow the two-staged approach.

In the first step of our two-staged approach, we propose
a Bayesian inference for word alignment, which has been
broadly applied to various unsupervised learning of latent
linguistic structure [6]. Two theoretical factors contribute to
its superiority. One factor is that taking advantage of all
possible parameter values leads to greater robustness in de-
cision, thus mitigating over-fitting manifested as “garbage
collector” (the phenomenon that low-frequency words in the
target language aligning to too many words in the source
language) [7]. The other factor is that the use of priors can
lead to sparse distributions, which is more consistent with
the nature of natural language. Another practical advan-
tage of Bayesian approach is that the implementation can
be much easier [8], whereas GIZA++ is usually treated as a
black box, which is hard to understand and to improve [9].

In the second step of our two-staged approach, we ex-
tract phrase pairs from all the generated alignment sam-
ples in the previous step. This is very similar with phrase
extraction from N-best alignments, which can overcome
some disadvantages of extraction from 1-best alignment,
and has proven to be effective in improving translation per-
formance [13], [14].

In the following sections, we describe our Bayesian
model and Gibbs sampling in Sect. 2, and show our new ap-
proach to extracting phrases in Sect. 3. Section 4 reports
the result of experiment. Section 5 compares the related re-
search, and Sect. 6 draws the conclusions.

2. Word Alignment Models

2.1 Alignment

In statistical machine translation, one core task is to model
the translation probability P(F|E), which describes the re-
lationship between a source sentence F = f1, f2 . . . fJ and
a target sentence E = e1, e2 . . . eI . In alignment model
P(F, A|E), a hidden variable A = a1, a2 . . . aJ is introduced
to describe a mapping between words in E and F, and the
value a j is defined as the index of the word in E to which f j

is aligned. The relationship between the translation model
and the alignment model is given by:
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P(F|E) =
∑

A

P(F, A|E)

A special case in the alignment model is a j = 0, which
means f j is aligned with spurious word e0 (i. e. not aligned
with any target word). P(F, A|E) can be written as a product
of conditional probabilities. Each such product corresponds
in a natural way to a generative process of developing (F, A)
from E, and varying the generative process leads to different
alignment models, such as the series of IBM models [10].

2.2 Review of IBM Model 4

IBM Model 4 is a fertility-based alignment model, where
fertility φi is defined as the number of source words aligned
with target word ei. As is shown in (1), the alignment model
is decomposed into fertility model P(φI

0|E), lexical model
P(τI

0|φI
0, E) and distortion model P(πI

0|φI
0, τ

I
0, E), n, t and d

are their parameter sets respectively. This decomposition
corresponds to such a generative process: given E, Model
4 first generates φi for each ei with a probability of n(φi|ei)
and a list of source words to connect to it; this list is called
tablet τi, and the kth word τik in the list τi is produced with a
probability of t(τik |ei); after producing all the source words,
Model 4 performs a distortion, i. e. places word τik into po-
sition πik with a probability of pik(πik), and finally (F, A) is
generated.

P(F, A|E; n, t, d) (1)

= P(φI
0|E; n)P(τI

0|φI
0, E; t)P(πI

0|φI
0, τ

I
0, E; d)

= n0

⎛⎜⎜⎜⎜⎜⎝φ0|
I∑

i=1

φi

⎞⎟⎟⎟⎟⎟⎠ I∏
i=1

n(φi|ei)
I∏

i=0

φi∏
k=1

t(τik |ei)

1
φ0!

I∏
i=1

φi∏
k=1

pik(πik)

where

n0

⎛⎜⎜⎜⎜⎜⎝φ0|
I∑

i=1

φi

⎞⎟⎟⎟⎟⎟⎠ =
( ∑I

i=1 φi

φ0

)
p0

∑I
i=1 φi−2φ0 p1

φ0 (2)

pik(πik) =

{
d1( j − cρi |A(eρi ),B(τi1)) i f k = 1
d>1( j − πik−1|B(τik)) i f k > 1

(3)

The distortion and fertility probabilities for e0 are treated
differently. As is seen in Eq. (2), φ0 follows a binomial dis-
tribution with auxiliary parameters p0 and p1. Equation (3)
shows the distortion distribution, where d1 is the probabil-
ity of placing τi1 into position πi1, and d>1 is the probabil-
ity of placing τik into position πik. Words aligned to e0 are
placed only after all the other words have been placed, i. e.
the words are permuted in the left φ0 vacancies, thus the
probability of the permutation is 1/φ0!. As for the other
variables, ρi is the first position to the left of i for which
φρi > 0, and cρ is the ceiling of the average position of the
words of tablet τρ, A(e) is the target word class and B( f ) is
the source word class (more details can be seen in Brown’s
paper) [10].

2.3 Bayesian Model

Our Bayesian model almost repeats the same generative
scenarios shown in the previous section, but puts appro-
priate priors for the parameters in the model and changes
a simplified distortion model. As the same in Model 4,
both the fertility and translation for each target word follow
a Multinomial distribution, but in our proposed Bayesian
setting, all the fertility and translation parameters will be
treated as random variables with priors, and Dirichlet dis-
tribution [11] seems to be a natural choice for them, since
it is conjugate to the Multinomial distribution so that infer-
ence will be tractable. Note that we can’t identify how many
source words will be as the possible translations of a target
word e, or how many kinds of fertility a word can have.
In other words, we can’t decide on the dimensionality for
the distributions beforehand. Fortunately, Dirichlet Process
(DP) [11] can solve this problem, which can be seen as an
infinite-dimensional analogue of Dirichlet distribution:

ne ∼ DP(α,N0(φ|e)) (4)

te ∼ DP(β,T0( f |e)) (5)

ne and te denote all the fertility and lexical parameters for
the target word e, α and β are concentration parameters that
determine ne and te’s variances. We set base distributions N0

as Poisson distribution with parameter λe to encode our prior
knowledge that high fertility value should be discouraged,
and λe denotes the expected fertility for e, and we assign
1 for all λe for simplicity. Formula (4) doesn’t include the
fertility parameters for e0, and we still use Formula (2) to
model it. As for base distribution T0, shown as:

T0( f |e) =
∑
et, f t

p(et|e)p( f t|et)p( f | f t) (6)

where et ( f t) denotes e’s ( f ’s) word class, p( f t|et) is a class
translation model, p(et|e) is a transition probability from
word to class, and p( f | f t) is a uniform distribution (over
word types included in f t) for each class f t. In practice, the
word class can be replaced with Part-of-Speech (POS), and
in this case, Eq. (6) encodes such a prior knowledge: POS
provides clues for the alignment. Especially for Named En-
tity, words that share same Named Entity type tend to be
aligned.

As for the distortion model, we abandon the condi-
tion on the word class to decrease model’s complexity (as
is shown in Eq. (3)), and here we simply adopt a distance
penalty (except words aligned to e0) shown as follows

pπ(A) ∝ 1
φ0!

J∏
j=1,a j�0

b| j−prev( j)| (7)

prev( j) =

{
πρiφρi

i f k = 1
πik−1 i f k > 1

(8)

where b is a fixed value less than 1, prev( j) means position



1538
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.7 JULY 2013

of f j’s predecessor along the j-axis whose coordinate rep-
resents the index of words in F. In the first part of (7), the
reciprocal of φ0! models the distortion procedure for words
generated by e0, which uses the same strategy as Model 4
(seen in Eq. (1)). In the second part, the continued prod-
uct means a distance penalty. Due to the above simplifi-
cation for distortion model, we will see a more direct and
concise inference in the following section. Another theoret-
ical reason is that we don’t expect a skewed distribution for
the above parameters the same as the lexical models. There-
fore, it is unnecessary to put a sparse prior for these param-
eters. In the Bayesian framework, all the parameters will
be treated as variables. With the given ES

1 and fixed hyper-
parameters θ, the joint distribution of FS

1 , AS
1 and parameters

can be noted as

P(FS
1 , A

S
1 , n, t, d|ES

1 ; θ) (9)

where θ represents all the hyper-parameters including α and
β, n and t include all the ne and te for each target word e, and
d actually just contains b. Unlike Eq. (1), we write ES

1 (FS
1 )

instead of E (F), which refers to all the S target (source)
sentences included in the parallel corpus, since in practice,
the inference is performed on the whole corpus rather than
a single sentence.

2.4 Bayesian Inference

Instead of sampling the parameters explicitly, we adopt a
collapsed sampler with all the parameters marginalized out

P(FS
1 , A

S
1 |ES

1 ; θ) =
∫

n,t
P(FS

1 , A
S
1 , n, t, d|ES

1 ; θ) (10)

where d doesn’t need integral since we don’t treat this pa-
rameter as a random variable, and will be replaced by con-
stant b in the left part of Formula 10. Using P(FS

1 , A
S
1 |ES

1 ; θ),
we can easily estimate by normalization the distribution
of alignment given ES

1 and FS
1 , which is the objective of

our inference. Apparently, we can’t get the analytic solu-
tion to the above posterior distribution in Formula 10, so
a frequent strategy is Gibbs sampling [12], an instance of
Markov Chain Monte Carlo technique. Since F is observ-
able, the only hidden variable that needs sampling is A (here
F and A belong to the current (E, F) that is being sampled),
then we sample each a j alternatively. The probability for a
new component value when the other values are fixed is

P(a j|A¬ j, F
S
1 , E

S
1 ; θ) ∝ Pφ(a j|A¬ j, F

S
1 , E

S
1 ; θ) (11)

Pτ(a j|A¬ j, F
S
1 , E

S
1 ; θ)Pπ(a j|A¬ j, F

S
1 , E

S
1 ; θ)

where A¬ j denotes the alignment exclude a j. As is shown
in Formula 11, the probability of new sample can be calcu-
lated according to the three sub-models (fertility model Pφ,
lexical model Pτ and distortion model Pπ), which is very
similar to the E step in the IBM models training [10], but
in a way that can be metaphorized as Chinese Restaurant
Process (CRP) or cache model instead of using fixed param-
eters.

First, we investigate the lexical model which is respon-
sible for generating the appropriate translation word:

Pτ(a j|A¬ j, F
S
1 , E

S
1 ; θ) ∝ N(eaj , f j) + βT0( f j|eaj )

Σ f N(eaj , f ) + β
(12)

where N(e, f ) is the number of links between (e, f ) in the
other part of this sentence pair and other sentence pairs in
the training corpus, and can be called cache count. This
formula is deduced by the integral for te. One way of un-
derstanding this prediction that DP model makes is through
cache model, where f can be generated either by drawing
from the T0 with a probability proportional to βT0( f |e), or
by drawing from the cache of previous translation events
with a probability proportional to N(e, f ).

Second, the probability of fertility model is

Pφ(a j|A¬ j, F
S
1 , E

S
1 ; θ) ∝ (13)

N(eaj , φa j + 1) + αN0(φa j + 1|eaj )

N(eaj , φa j ) + αN0(φa j |eaj )

where N(e, φ) is the frequency of cases that word e has a fer-
tility φ, and the denominator encodes the fact that the new
prediction will cause an instance of word-fertility to be re-
moved from the cache as the new word-fertility is added.

As for the distortion model, it’s unnecessary to con-
sider the cache model for calculating the distortion model,
we have

Pπ(a j|A¬ j, F
S
1 , E

S
1 ; θ) ∝ (14)

b| j−prev( j)|+|next( j)− j|−|next( j)−prev( j)|

where the exponent means 3 distortions are changed (in this
exponent, the first two terms are the new distortions, and
the third term is the old distortion), and next( j) is an inverse
function of prev( j), which means successor’s position of f j.

As in the Model 4, the fertility and distortion for e0

are treated differently. If a j = 0, Formula (13) and (14)
should be replaced by (15) and (16) respectively, which can
be derived from Formula (1) and (2).

Pφ(a j = 0|A¬ j, F
S
1 , E

S
1 ; θ) ∝ n0(φ0 + 1|∑I

i=1 φi)

n0(φ0|∑I
i=1 φi)

(15)

=
(
∑I

i=1 φi − φ0)p1

(φ0 + 1)p0

Pπ(a j = 0|A¬ j, F
S
1 , E

S
1 ; θ) ∝ φ0!

(φ0 + 1)!
=

1
φ0 + 1

(16)

The whole procedure for sampling is described in Ta-
ble 1: lines 1-3 initialize each bilingual pair with an HMM
Viterbi alignment. Although initialization can be arbitrary
in theory, HMM alignment can speed up the convergence;
for-loops in line 4 and 5 denote sample each sentence in the
corpus for each sampling iteration; in lines 6-13, alignment
is sampled by sampling each a j alternatively; line 7 deletes
the old value of a j, and accordingly update the cache count
N(e, f ) and N(e, φ); line 9 calculates the probability of each



LI et al.: BAYESIAN WORD ALIGNMENT AND PHRASE TABLE TRAINING FOR STATISTICAL MACHINE TRANSLATION
1539

Table 1 Gibbs sampling for word alignment.

1 For each sentence pair (E, F) in (ES
1 , F

S
1 )

2 Initialize alignment
3 End for
4 For each iteration
5 For each sentence pair (E, F) in (ES

1 , F
S
1 )

6 For j := 1 to J
7 Delete a j; update the cache count
8 For i := 0 to I
9 Calculate p(a j = i|A¬ j, F, E; θ)
10 End for
11 Normalize p(a j |A¬ j, F, E; θ)
12 Sample a new value for a j; update the cache count
13 End for
14 If (Current iteration ≥ Burn-in)
15 Collect alignments for (E, F)
16 End for
17 End for

possible value for a j, i. e. we get the distribution of a j; and
line 12 selects a possible value for aj in terms of the dis-
tribution; and lines 14-15 collect the samples after burn-in
which will be used in the succeeding training.

3. Phrase Table Training

We adopt the two-staged approach to phrase table training.
Since previous research has pointed out that phrase extrac-
tion from Viterbi alignment will lead to inaccurate and in-
sufficient phrase extraction, we extend the ideas proposed
in [13], [14], where N-best alignments are exploited which
helps reducing the propagation of errors to downstream es-
timation in the MT system.

Liu et al. [14] proposed a new structure called weighted
alignment matrix (WAM) to encode all possible alignments
for a sentence pair compactly. In this matrix, each element
that corresponds to a word pair is assigned a probability to
measure the confidence of aligning the two words, and the
confidence score is calculated from N-best alignments. A
similar matrix called alignment sample matrix (SM) is used
to store our output of Gibbs sampling for word alignment,
which consists of multiple samples of word alignment, but
leads to a more direct phrase extraction. We will see that,
it’s more convenient to compute the confidence score.

Suppose we already get the output of Bayesian in-
ference for word alignment that contains N samples bidi-
rectionally, that is, we have 2N samples, then construct
a I × J matrix SM, in which each element S M(i, j) de-
notes the number of alignment points between (i, j) among
all the samples (see Fig. 1). Our objective is to build a
phrase table and associate each phrase pair (ei2

i1
, f j2

j1
) in the ta-

ble with 4 scores, including relative frequency tran(ei2
i1
| f j2

j1
),

tran( f j2
j1
|ei2

i1
), lexical weight lex(ei2

i1
| f j2

j1
) and lex( f j2

j1
|ei2

i1
), all

of which will be used as features in the decoder of transla-
tion system. The overall framework is shown in Table 2: line
1 initializes an empty phrase table; in lines 2-10, we extract
all the possible phrase pairs that meet some constraints; a
local pruning is performed in lines 7-8; lines 11-16 compute

Fig. 1 An example for SM, each element value denotes the number of
alignment points between word pairs marked by its x coordinate and y co-
ordinate, we omit the element that has a value less than 100.

Table 2 Building phrase table.

1 Initialize the phrase table T = {}
2 For each sentence pair (Es, Fs) , do
3 Construct the alignment sample matrix SM
4 Ps = {(ei2

i1
, f j2

j1
) : satisfies some constraints}

5 For each (ei2
i1
, f j2

j1
) in Ps

6 Calculate fC(ei2
i1
, f j2

j1
)

7 If( fC(ei2
i1
, f j2

j1
) < σ)

8 Discard (ei2
i1
, f j2

j1
) from Ps

9 End for
10 End for
11 For each Ps

12 For each (̃e, f̃ ) in Ps

13 Add (̃e, f̃ ) to T
14 Accumulate fC(ei2

i1
, f j2

j1
) to Count(̃e, f̃ )

15 End for
16 End for
17 For each (̃e, f̃ ) in T
18 Calculate tran(ei2

i1
| f j2

j1
), tran( f j2

j1
|ei2

i1
), lex(ei2

i1
| f j2

j1
)

and lex( f j2
j1
|ei2

i1
)

19 End for

the phrase count; and the left part calculates the 4 scores for
each phase pair.

3.1 Initial Phrase Extraction

This subsection discusses how to get initial set Ps in line 4
of Table 2. Apparently, it’s not practical to enumerate all
possible phrase pairs, which will result in slow decoding
and translation noise. Therefore, constraints for extraction
should be introduced. Different from the extraction from
Viterbi alignment, we can’t give a consistence constraint [1]
since multiple alignments are combined into a matrix. Be-
fore we describe our constraint, we need define a concept
called Link probability pm(i, j) to show how good the corre-
spondence for (ei, f j) is in this sentence pair.
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Fig. 2 Two regions of a phrase pair in SM.

pm(i, j) =
S M(i, j)

2N
(17)

Now our constraints can be described as: at least one pm(i, j)
inside the phrase pair (the points in the black region of
Fig. 2) is greater than σ1, and none of pm(i, j) outside (the
points in the gray region of Fig. 2) is greater than σ2; the
length limitations are set to be 6 both for source and target
phrases, and prune phrase pairs whose difference in phrase
length are higher than 4.

3.2 Relative Frequency

Using relative frequency as a feature is a common practice
to measure the goodness of a bilingual phrase pair. And it’s
easy to get the traditional estimation for relative frequency
tran(ei2

i1
| f j2

j1
), since we just need to count how often it occurs

in the corpus. But for our extraction from multiple samples
(see lines 5-19 in Table 2), we resort to fractional count.

In order to define the fractional count, we follow the
approach in [14], and the difference is that we get phrases
from SM instead of WAM. Given a SM and a phrase
pair (ei2

i1
, f j2

j1
), two regions are identified: in(i1, j1, i2, j2) (the

black part in Fig. 2) and out(i1, j1, i2, j2) (the gray part in
Fig. 2). First, we define inside probability α(i1, j1, i2, j2) and
outside probability β(i1, j1, i2, j2) respectively.

α(i1, j1, i2, j2) = 1 −
∏

(i, j)∈in(i1 , j1,i2, j2)

1 − pm(i, j)

β(i1, j1, i2, j2) =
∏

(i, j)∈out(i1 , j1,i2, j2)

1 − pm(i, j)

Then we can define the fractional count of phrase pair
in region (i1, j1, i2, j2) as:

fC(ei2
i1
, f j2

j1
) = α(i1, j1, i2, j2)β(i1, j1, i2, j2)

We should notice that the above formula just means a
local fractional count, which is estimated from a single re-
gion (i1, j1, i2, j2) in a sentence pair (E, F), and the global
fractional count of phrase pair (̃e, f̃ ) can be calculated by
collecting fC from the entire corpus.

count(̃e, f̃ ) =
∑
E,F

∑
i1, j1,i2, j2

fC(ei2
i1
, f j2

j1
)δ(ei2

i1
, ẽ)δ( f j2

j1
, f̃ )

where δ is the Kronecker delta function, equal to 1 when

both of its arguments are the same and equal to 0 otherwise.
With the aid of fractional count, we can get the relative fre-
quency of phrase pair (̃e, f̃ ):

tran(̃e| f̃ ) =
count(̃e, f̃ )∑
ẽ′ count(̃e′, f̃ )

3.3 Lexical Weight

Since most phrase pairs appear only a few times in the train-
ing corpus, lexical weight is introduced as another measure-
ment for goodness of a phrase pair and has the advantage
of avoiding overestimation [1]. The calculation for lexical
weight can be written as

lex(ei2
i1
| f j2

j1
) =

i2∏
i=i1

max
j

t(ei| f j)

where j ∈ { j|t(ei| f j) > 0 and ( j1 � j � j2 or j = 0)}, and
t(e| f ) denotes lexical probability, so lexical weight measures
the phrase quality on the level of words in the phrase pair.
Recall the Bayesian inference in Sect. 2, and we just treat
the lexical parameter as a hidden variable and integrate out
it, thus we can’t get it from the Bayesian inference directly.
But through counting the number of alignment links in the
Gibbs samples, we can get the expected values for the lexi-
cal parameters as follows

t(e| f ) =

∑
E,F

∑
i, j S M(i, j)δ(ei, e)δ( f j, f )∑

E,F
∑

j(δ( f j, f )
∑

i S M(i, j))

3.4 Phrase Pruning

Low-quality phrase pairs should be discarded to boost ef-
ficiency of phrase training and alleviate decoding errors as
well. As is seen in Table 2, the procedure described in lines
7 and 8 is called Phrase Pruning, and we discard any phrase
pair that has a local fractional count lower than threshold σ.

4. Experiments

4.1 Corpus Preprocess

The corpus we used is a Chinese-English corpus in domain
of patent, which is released by NTCIR 9 [16]. Corpus pre-
processing is necessary, such as Chinese segmentation, long
sentence filtering and numeric character processing. Finally,
we select 350000 sentence pairs as the training corpus (sen-
tences longer than 35 words are filtered), 1000 pairs as the
development set, and 1000 pairs as the test set (we prepare
one referenced translation for each sentence) for translation.

4.2 Evaluation for Word Alignment

We adopt the standard AER (alignment error rate) as our
evaluation metric [18]. We annotated 300 sentence pairs
only with sure alignment for alignment evaluation.
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Table 3 Performance of word alignment.

Method Description AER
GIZA++ & grow-diag-final 16.12%
Proposed & δ=0.3 & POS 13.70%
Proposed & δ=0.4 & POS 12.45%
Proposed & δ=0.5 & POS 13.08%
Proposed & δ=0.3 & word cluster 15.23%
Proposed & δ=0.4 & word cluster 14.06%
Proposed & δ=0.5 & word cluster 14.78%

We take Model 4 as a standard baseline, since it seems
that Model 4 provides the most stable and widely-used base-
line for many language pairs and domains. First, we run
GIZA++ bidirectionally in the standard configuration (train-
ing scheme is abbreviated as 15H53343) and have a sym-
metrization following the heuristics grow-diag-final [1].

Before running our Bayesian aligner, we should esti-
mate the parameters in Eq. (6). We tagged the training cor-
pus using some POS taggers, and replace each word by its
POS to get a POS parallel corpus. Then, we ran IBM model
1 on the POS corpus to get the POS translation probabil-
ities. Through dividing the number of occurrences of the
word-tag pair (e, et) by the number of occurrences of e, we
can get p(et|e). For each POS f t, if word f is tagged with
f t at least once in the training corpus, then p( f | f t) is equal
to the result of dividing 1 by the number of unique words
tagged with f t; otherwise, p( f | f t) is 0. Another way to tag
the corpus is using some automatically induced word clus-
ters. Moreover, we used mkcls (included in GIZA++) to
get 50 word clusters both for English and Chinese, and the
comparisons between them are shown in Table 3.

We set 1000 as the number of total iterations and 0 as
the burn-in value, and set α = 1, β = 100 and b = 0.9.
After two unidirectional Bayesian models are trained simul-
taneously, we combine them using soft union [26], where an
alignment link (i, j) is kept if pm(i, j) > δ. Apparently, vary-
ing this threshold offers a natural way to tradeoff precision
and recall for alignment. Table 3 shows the comparison of
AER between Model 4 and our Bayesian model with δ in
several values. We can see that Bayesian model reveals a
satisfying improvement for alignment quality when using
POS and δ = 0.4 (hereafter our proposed method will adopt
this configuration without explicit illustrations), with a re-
duction of 3.67% over baseline in terms of AER, and we
attribute this improvement to the superiority of Bayesian in-
ference. Table 3 also compares the results between using
POS and using word clusters generated by mkcls, and POS
shows a better performance. We think this is due to the fact
that POS tagger can get a more reliable word class than un-
supervised word clustering, since the POS tagger is trained
on a large annotated corpus in a supervised way.

With the aid of some open source toolkits, includ-
ing Variational GIZA++ [23] which implements Variational
Bayes (henceforth VB), Berkeley aligner [24], PostCat [25]
and Mermer’s Perl code for Bayesian inference [22], we had
a comparison with state-of-the-art approaches in Table 4.
All the experiments are run on a computer with 16 Intel

Table 4 Comparison of performance in terms of AER.

Method AER Training Time
Proposed 12.45% 40h
GIZA++ & grow-diag-final 16.12% 23h
VB 13.90% 28h
SHMM 13.58% 12h
PR 13.21% 32h
Bayesian Model 1 17.34% 5h

Table 5 Translation performance in English-Chinese with varying σ.

σ 0.01 0.05 0.1 0.2
BLEU% 31.40 31.49 31.28 31.10

Xeon CPUs (dual-cores, 3.00 GHz) and 16G memory. Here
are some important configurations for the above toolkits.
As for VB, we also trained in the bootstrapping regimen of
15H53343 with hyper-parameter set to 0 and symmetrized
using the grow-diag-final heuristic. Line 3 is Berkeley’s
symmetric HMM (henceforth SHMM) [24], where we set
0.3 as the threshold for the posterior decoding. In line 4,
we use the Posterior Regularization (henceforth PR) with
symmetry constraint which is proved better than bijectivity
constraint [25]; we set 0.002 as the convergence stopping
criteria which determines the length of training time sensi-
tively, and set 0.3 as the threshold for soft union [26]. Line
5 is a fully Bayesian inference for Model 1, and we used the
default parameters configured in the Perl toolkit. We refer
the reader for the original papers for more detailed meanings
of these configurations.

As is shown in Table 4, we can see that our model out-
performs VB, joint HMM, PR and Bayesian Model 1. As
for the reason why our approach is better than VB, we think
Gibbs sampling is superior to Variational approach on in-
ferring word alignment, although it is proved not like this
for POS tagging [15]. As for the SHMM, PR and Bayesian
Model 1, our model shows the advantages of fertility-based
models over sequence-based models, and proves a similar
perspective that fertility is an inherent cross-language prop-
erty [9].

4.3 Evaluation for Translation

We used Moses as the decoder, SRI Language Model
Toolkit [19] to train a 4-grams model on the target side of
training corpus. We evaluated the translation quality using
BLEU metric [21], which is the most popular method for
automatic evaluation of machine translation.

Firstly, we configure our threshold values in our pro-
posed approach. We set σ1 = 0.3 and σ2 = 0.5. As for the
threshold of fractional count σ, we conducted the following
experiments as is shown in Table 5, which shows the optimal
value of σ is 0.05.

For the sake of comparison, we conducted 6 exper-
iments in Table 6. All the experiments incorporated the
default features in Moses: tran(ẽ| f̃ ), tran( f̃ |ẽ), lex(ẽ| f̃ ),
lex( f̃ |ẽ), language model feature, word penalty, phrase
penalty and linear distortion feature. Since lexicalized re-
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Table 6 Performance of final translation (BLEU%).

No. Method Description English-Chinese
Experiment 1 Proposed 31.49
Experiment 2 GIZA++ & Viterbi 30.46
Experiment 3 VB & Viterbi 30.70
Experiment 4 GIZA++ & WAM 30.79
Experiment 5 SHMM & WAM 30.98
Experiment 6 PR & WAM 31.16

Table 7 Translation evaluation on the second data set (BLEU%).

No. Method Description English-Chinese
Experiment 1 Proposed 24.93
Experiment 2 GIZA++ & Viterbi 23.78
Experiment 3 VB & Viterbi 24.21
Experiment 4 GIZA++ & WAM 24.19
Experiment 5 SHMM & WAM 24.52
Experiment 6 PR & WAM 24.98

ordering features are trained from Viterbi alignment, we
optionally added 6 lexicalized reordering features (in Ex-
periment 2 and 3). In experiment 1, we implemented the
whole framework introduced in this paper. Experiment 2-
3 used 1-best alignment to extract phrases satisfying con-
sistence constraint. Experiment 4 repeated the WAM ap-
proach [14] by using its accompanying toolkits. Experi-
ment 5 used symmetric HMM alignment and Experiment
6 used alignment generated by PostCat, and both of them
used toolkit Geppetto (http://code.google.com/p/geppetto/)
for phrase extraction. In all the above experiments, we set 6
as the maximal phrase length both for Chinese and English,
and phrase pairs whose difference in phrase length higher
than 4 are filtered. Although all the last 3 approaches are
called “WAM”, it is worth noting that they get the link’s
posterior in different ways. Experiment 4 used n-best align-
ments to calculate an approximate posterior, whereas 5 and
6 used forward-backward algorithm to get an exact posterior
estimation because HMM is tractable.

As is shown in Table 6, the improvement over Exper-
iment 2-5 is statistically significant at p < 0.05 by using
sign-test [27]. Although the improvements over Experiment
7 are not always statistically significant, our approach main-
tains consistent superiority in translation quality.

4.4 Evaluation on the Second Data Set

To further examine the effectiveness of our approach, we
evaluate the translation performance on the second data set.
We used FBIS newswire data (LDC2003E14), and selected
100K Chinese-English pairs as the training corpus, 1K as
the develop set and 1K as the test set. We reuse the same
configurations introduced in the last section, and evaluation
results are listed in Table 7. We get similar results with the
previous evaluation, a slight difference is that our approach
is a little inferior to PR based approach, but still has a decent
improvement over Experiment 2-5.

5. Related Work

The most prevailing method for inferring the parameters
of a probabilistic model is based on the principle of MLE,
and EM is a special case when there exist hidden variables.
However, there is a trend that research in NLP is turning
away from EM in favor of Bayesian methods, such as POS
tagging [15], PCFG [20], word alignment [22] and phrase
alignment [3].

Our approach to word alignment is similar to [22] in
spirit to Bayesian inference, where it places a prior for the
model parameters and adopts a collapsed sampler, but they
take Model 1 as the inference objective, which we suppose
somewhat simple and crude. [23] used variational Bayes
which closely resembles the normal form of EM algorithm
to improve the performance of GIZA++, as well as the
translation performance. Together with the approach in-
troduced in this paper, all these efforts aim to obviate the
“garbage collector effect” which increases the likelihood of
the training data [23] but obviously is unreasonable. Intu-
itively, this overfitting manifests as a high fertility value for
the rare word, but mathematically, this overfitting shows up
as a lexical distribution closer to uniform, i. e. the rare word
spreads its probability mass broadly over too many target
words. Whereas sparse prior can lead to a more skewed dis-
tribution to overcome the overfitting, which is the theoretical
advantage of Bayesian approach.

Contrary to the Bayesian trend, some works adhere to
the old-fashioned EM but in a modified way. Two typical
works are done by [24] and [25], both of which modify the
E-step. The former used the product of bidirectional poste-
rior distribution (normalization is necessary) to replace the
unidirectional posterior distribution for the latent alignment,
which made the model symmetric, the latter estimated the
posteriors in E-step with rich constraints. Their improve-
ments over baselines can be seen in Table 4.

Zhao [9] proposed a brief fertility based HMM model,
which also decreases the complexity of Model 4 but keeps
the fertility as a component of modeling. They didn’t place
any prior on the parameters, which can be viewed as a
stochastic EM, and they assumed fertility follows Poisson
distribution, whereas we took Poisson distribution as the
base distribution for fertility in the DP prior.

At the second phase of the two-staged training in SMT,
phrase table training is usually performed on the basis of
word alignment. The word aligner outputs multiple possible
alignments along with corresponding probabilities. How-
ever, the common practice is using only optimal alignment,
which obviously results in an information loss. Recent stud-
ies have shown phrase table training can benefit from multi-
ple alignments. As is shown in [14], to construct the matrix,
550 alignments were obtained from 50 × 50 bidirectional
alignment pairs for each sentence pair on average and renor-
malized to estimate the posterior probability. Nevertheless,
in our approach, we simply need collect samples since they
are generated from the posterior distribution, which is guar-



LI et al.: BAYESIAN WORD ALIGNMENT AND PHRASE TABLE TRAINING FOR STATISTICAL MACHINE TRANSLATION
1543

anteed by Gibbs sampling. Wang et al. [17] proposed a gen-
eral and extensible framework for phrase extraction, and
their main contribution is to provide a toolkit that can easily
experiment any combination between various word align-
ments and phrase extraction heuristics. They also paid spe-
cial attention to some heuristics related with punctuations
and Chinese particles, and produced an improvement in spo-
ken text.

6. Conclusions and Future Work

In this paper, we have proposed a Bayesian inference for
word alignment, which currently is a promising replacement
for EM and has already been broadly applied for various
tasks in the field of NLP. To the best of our knowledge, it
is the first attempt to adopt a fully Bayesian inference to a
fertility-based alignment model. We also proposed a novel
method for phrase table learning from Gibbs samples. Our
experiments show a decent improvement for word alignment
as well as a significant improvement on translation quality.
As for our future work, we are trying to extract discontin-
uous phrases from the alignment samples, and further im-
prove the translation quality.
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