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Spatially Adaptive Logarithmic Total Variation Model for Varying

Light Face Recognition

Biao WANG'®, Nonmember, Weifeng LI'®, Member, Zhimin LI"*®, and Qingmin LIAO'®, Nonmembers

SUMMARY In this letter, we propose an extension to the classical log-
arithmic total variation (LTV) model for face recognition under variant il-
Iumination conditions. LTV treats all facial areas with the same regulariza-
tion parameters, which inevitably results in the loss of useful facial details
and is harmful for recognition tasks. To address this problem, we propose
to assign the regularization parameters which balance the large-scale (illu-
mination) and small-scale (reflectance) components in a spatially adaptive
scheme. Face recognition experiments on both Extended Yale B and the
large-scale FERET databases demonstrate the effectiveness of the proposed
method.

key words: face recognition, illumination normalization, logarithmic total
variation (LTV) model

1. Introduction

Over the past few decades, face recognition has remained
a very active topic in computer vision communities. Al-
though lots of effective algorithms have been proposed, ro-
bust face recognition under variant illumination conditions,
which are common in real-world applications, is still chal-
lenging [1]. To address this problem, numerous illumination
normalization methods have been proposed. Most classical
methods take the assumption that the reflectance component
corresponds to relatively higher spatial frequencies, while
the illumination part corresponds to low spatial frequencies.
For example, in [2], the authors proposed to remove several
DCT coefficients corresponding to low frequencies. Log-
arithmic total variation (LTV) [3] proposed by Chen et al.
utilizes the edge-preserving capability of the total variation
model to remove the illumination component. Tan et al. [4]
proposed a simple and efficient method based on a pipeline
of image preprocessing (PP) operations, in which the ma-
jor component is the carefully designed bandpass filter (i.e.
difference of Gaussian (DOG)). The recently proposed We-
berFace by Wang et al. [5] argues that the relative gradient
in the form of a modified Weber contrast is illumination-
insensitive. In this letter, we point out the limitation of the
LTV model and address it by assigning the regularization
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parameters which balance the large-scale (illumination) and
small-scale (reflectance) components in a spatially adaptive
scheme. In the following, We denote the proposed method
as the Spatially Adaptive LTV (SA-LTV) model. Experi-
mental results on both Extended Yale B and FERET databse
demonstrate its effectiveness.

2. Limitation of LTV

Lambertian reflectance model implies that a face image
f(x,y) could be expressed by

G, y) = r(x, pilx, y), (D

in which f(x,y) is the image pixel value, r(x,y) is the re-
flectance and i(x, y) is the illuminance at each pixel (x, y).
i(x, y) depends on the lighting source, while r(x, y) depends
only on the albedo of the face, thus could be regarded as the
illumination-insensitive part.

By taking logarithmic transform to both side of Eq. (1),
we have:

log(f(x, ) = log(r(x, y)) + log(i(x, y)). 2)

The TV-L' model can decompose an input image
log(f(x,y)) into large-scale component u(x,y) and small-
scale component v(x,y). LTV model takes u(x,y),v(x,y)
as the approximation to log(#(x, y)) and log(i(x, y)), respec-
tively:

log(i(x,y))zmianVuldxdy
3)
2 [ THog(fx.p) = utr.piddy

log(r(-x9 y)) = U(-x9 y) = log(f(x’ y)) - log(i(-x9 .’/))’ (4)
where f |Vuldxdy is the total variation (TV) of u, which en-

sures that 1 is smooth (smoothness); and f [log(f(x,y)) —
u(x, Yldxdy = ||log(f(x,y)) — u(x,y)ll,, ensures that u is
close to log(f(x,y)) (fidelity). The regularization param-
eter A > 0 is a scalar balancing the smoothness and fi-
delity. The larger A is, the more facial details retains in u,
which is an approximation of the illumination component
log(i(x, y)) and will be discarded for robust face recognition.
Cast shadows usually appears on the flat areas like forehead
and cheeks, and to remove them, a larger A is required. Al-
though certain details on these areas will be lost, they are
relatively less important for face recognition. However, for
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Fig.1 Tllustration of the limitation of LTV. (a). Original face image, (b).
LTV outputs corresponding to different A.

non-flat areas such as eyes,eyebrows, mouth, and nose tips,
which are important for face recognition, a smaller A is de-
sired to avoid losing detail information. Figure 1 (a) illus-
trates an input face image under harsh illumination condi-
tions, and Fig. 1 (b) illustrates the corresponding decompo-
sition results of LTV model versus different regularization
parameters, from which we could see that a smaller A could
preserve the details in non-flat areas but could not remove
the cast shadows in flat area, while a larger A could well re-
move the cast shadows in flat area but will lose much details
in non-flat areas.

3. Spatially Adaptive LTV (SA-LTV) Model

From the aforementioned analysis, we could see that in or-
der to remove the illumination without the loss of facial de-
tails, different face areas should be assigned with different
regularization parameters according to the flatness of the
area. Therefore, we propose the following spatially adap-
tive LTV (SA-LTV) model:

log(i(x,y)) = minfquldxdy

+ f A, ) log(f (x, ) —uCr, pldxdy.  (5)

in which A(x, y) is no longer a constant, and varies for dif-
ferent pixel positions. We define it as following:

/l(x, y) = /lnon—flat +(1 _maSk(x’ y))(/lflat _Anon—flat)v (6)

where mask(x,y) € [0, 1] describes the flatness of pixel po-
sition (x, y): the closer mask(x,y) to 0, the more flat it is;
while the closer mask(x,y) to 1, the more non-flat it is.
As can be seen, LTV is a special case of SA-LTV when
/lnon—flat = /lflat'

To generate the mask(x, y), we adopt the algorithm de-
scribed in Table 1. Under harsh illumination conditions,
the initial mask calculated by Step 1 and 2 will cover the
facial areas corresponding to uneven illumination and cast
shadows, as illustrated in Fig.2 (a). To address this prob-
lem, the average mask calculated from all gallery samples
is taken as a reference to determine the intrinsic flatness
of these areas, just as illustrated in Fig. 2 (b) and Fig.2 (c).
The average flatness mask emphasizes the common non-flat
areas shared by all the normally illuminated galleries, and
will de-emphasize the “outliers” which are rarely present in
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Table1  Generation of mask(x, y) for a specific image.

Input: Image p(x, y) = log(f(x, ),
the set G of all N, gallery images.
Output: mask,(x, y) for p(x, y).
1. Calculate the initial mask by thresholding the gradient magnitudes
Gyewd

within a local window:
(5( hA(%,9) + h;(fc, 7 — thresh)),
(xy)

where W(‘i » denotes a local square window centered at (x, y) with size
dxd. hy(%,j) and hy(%, ) are the horizontal and vertical gradients at
(%, 1), respectively. 6(k) = 1 if k > 0 and 6(k) = O otherwise. thresh is
a threshold to determine whether a pixel is flat or not.

2. Normalize mask,(x, y) to [0, 1]. (See Fig. 2 (a))

3. For each gallery image g;(x, y) € G, calculate its flatness mask
masky,(x,y) according to step 1 and 2, and we get the average flatness
mask for galleries:

mask,(x,y) = >

Ny
maskz(x,y) = NLg 2., maskgy, (x,y).
i=1
4. Normalize maskz(x, y) to [0, 1]. (See Fig. 2 (b))
5. Get the final mask for image p(x, y):
maskpy(x,y) = mask,(x,y) - maskz(x,y),
where - denotes pixel-wise multiplication. (See Fig. 2 (c))

(a) (b) (© @ (e)

Fig.2  Tllustration of the proposed SA-LTV, and the input is the same as
that of Fig. 1. (a). Initial mask, (b). Average flatness mask for galleries, (c).
Final mask, (d) u, (e) v.

the galleries. That is why it can be utilized as a reference
to enhance the intrinsic discriminative details and reduce
the side-effect resulted from the cast shadows. Moreover,
in real-world applications, the calculation of maskz(x,y) in
Step 3 and 4 can be conducted off-line, and then can be
directly applied to the probes. The results of SA-LTV are
given in Fig. 2 (d) and Fig.2 (¢). By comparing them with
Fig. 1(b), we could clearly see that the proposed method
achieves the best illumination removal effect while preserv-
ing most of the useful facial details.

4. Experimental Results

Experiments are conducted on two publicly available face
databases with variant illumination variations, namely, Ex-
tended Yale Face Database B [6] and the illumination sub-
set of the FERET [7] database to illustrate the effectiveness
of the proposed SA-LTV algorithm. All face images from
the two databases are properly aligned, cropped and resized
to 128 x 128. We will also compare our method with sev-
eral state-of-the-art: DCT [2], LTV [3], Tan’s preprocessing
(PP) [4], and WeberFace [5]. The result of original images
without any preprocessing (ORI) is provided as the baseline.
The parameters of SA-LTV are empirically determined as
following: Auon—fiar = 0.1, Ap1es = 0.4,d = 7, thresh = 0.01.
For LTV, we report the best recognition results for variant
As.
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After both gallery and probe samples are pre-processed
by the aforementioned illumination normalization algo-
rithms, we adopt the recently proposed local binary pattern
(LBP) based face recognition scheme [8] for performance
evaluation. The LBP operator was originally defined by en-
coding each pixel with 8 bit code, and each bit is obtained
by thresholding the 33 neighborhood with the center pixel.
Formally, we can define it as follows:

7
LBP(xe,ye) = ) 2"s(ly = L), @)

n=0

in which (x.,y.) is the location of the center pixel, I, and
I, are the intensity of the central pixel and its n-th neigh-
bor, and s(u) is 1 for u > 0 and O otherwise. There are
two important extensions which makes LBP more powerful
and widely used. The first one extends LBP to multi-scale
by defining neighborhood of variant radii. For example, the
encoding process of LBP with radius 2 and 8 neighbors is
illustrated in Fig.3. The second extension defines the so-
called uniform patterns: a LBP code is ‘uniform’ if it con-
tains no more than two 0-1/1-0 transitions. For example,
the LBP code in Fig. 3 is non-uniform. It’s the pioneering
work of Ahonen et al. [8] that first successfully applied LBP
to face recognition. To encode both texture and structure
information for human face, the LBP coding map of a face
image is divided into several nonoverlapping blocks and the
histogram computed in each block is concatenated together.
As suggested in [8], in our experiments, we utilize LBP pat-
tern by thresholding 8 neighboring pixels in a circle of ra-
dius 2 and extracted the histograms in 8 x 8 blocks with 59
bins, each bin corresponding to a uniform pattern. Finally,
the similarity of two LBP histogram is measured by the his-
togram intersection:
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Fig.3  An intuitive illustration of the LBP encoding process.
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d(H, Hy) = " min(hi, i), ®)

where H; and H, are the LBP spatial histograms for the
gallery and probe sample respectively, and h’i, h’2 are the
corresponding i-th bin values. In summary, the overall face
recognition framework is illustrated in Fig. 4.

Extended Yale Face Database B includes 38 subjects
under 9 poses and 64 illumination conditions. Only the
frontal images were chosen in our experiments. Totally
there are 2,414 frontal images of 38 subjects under 64 il-
lumination conditions. They are divided into five subsets
according to the angle between the light source directions
and the central camera axis: subset 1 (0° to 12°, 263 im-
ages), subset 2 (13° to 25°, 456 images), subset 3 (26° to
50°, 455 images), subset 4 (51 ° to 77 °, 526 images), subset
5 (above 78 °, 714 images). In our experiments, the images
with the most neutral light condition (" A+00E+00’) were
used as the gallery, and images from subset 1-5 were used
as the probes.

The corresponding results of several sample images
from Extended Yale B processed by variant methods are
given in Fig.5. And the corresponding recognition rates of
each methods for the five subsets are illustrated in Table 2.

PP WeberFace LTV SA-LTV

@ ® (© @ @ O

Fig.5 Illumination normalization with different approaches on face im-
ages in the Extended Yale B database.
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Fig.4  The face recognition evaluation scheme based on variant illumination normalization methods.
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Table 2  Recognition rates (%) on Extended Yale B.
Methods S1 S2 S3 S4 S5 avg
ORI 100 | 100 | 97.6 | 62.0 | 35.0 | 72.0
DCT[2] 100 | 100 | 96.5 | 89.9 | 852 | 92.8
PP [4] 100 | 100 | 99.8 | 96.4 | 83.5 | 94.3
WeberFace [5] 100 | 100 | 100 | 96.8 | 86.6 | 953
LTV [3] 100 | 100 | 98.7 | 914 | 86.2 | 93.8
SA-LTV(Ours) | 100 | 100 | 100 | 95.1 | 944 | 973

Table 3  Recognition rates (%) on the illumination subset of FERET.

ORI | DCT[2] | PP[4] | WeberFace [5] | LTV [3] | SA-LTV(Ours)
81.4 91.8 95.9 96.3 94.3 96.3

Our SA-LTV improves the overall average recognition rate
from 72.0% to 97.3%. For subset 5, which is really chal-
lenging due to harsh illumination and shadows, SA-LTV
improves the recognition rate from 35.0% to 94.4%, signifi-
cantly better than the other approaches.

To further testify the proposed method on practical ap-
plications, we conduct experiment on the FERET database,
one of the most commonly used large-scale face database.
The gallery set Fa consists of 1,196 images of 1,196 sub-
jects. The probe sets for standard FERET database contain
four parts, each corresponding to variations of expression,
illumination, short-term aging and long-term aging. Since
we only focus on the illumination variations, experiments
are only conducted on the illumination subset Fc, which
contains 194 probe images under varying illumination con-
ditions. The corresponding recognition rates of each meth-
ods are illustrated in Table 3. As can be seen, the proposed
SA-LTV gives better result than LTV and is comparable to
the recently proposed PP and WeberFace.

5. Conclusion

We propose a novel illumination normalization approach,
SA-LTV, for face recognition under variant illumination
conditions. It’s an extension to the classical LTV model and
can retain more facial details by adapting the regularization
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parameters according to the flatness of different facial areas.
Experimental results on Extended Yale B and the illumina-
tion subset of the FERET database demonstrate the effec-
tiveness of the proposed method.

Acknowledgements

The authors would like to thank the anonymous reviewers
for their critical and constructive comments and sugges-
tions, which are helpful to improve both technical and the
literary quality of this paper. We also thanks the FERET
Technical Agent, the U.S. National Institute of Standards
and Technology for providing the FERET database. This
work was supported by the Shenzhen-Hongkong Innovation
Circle Project under grant No. ZYB200907070030A.

References

[1] J. Kittler, X. Zou, and K. Messer, “Illumination invariant face recog-
nition: A survey,” Int. Conf. Biometrics: Theory, Applications, and
Systems, pp.1-8, 2007.

[2] J.Jiang and G. Feng, “Robustness analysis on facial image description
in DCT domain,” Electron. Lett., vol.43, no.24, pp.1354—-1356, 2007.

[3] T. Chen, X.S. Zhou, D. Comaniciu, and T.S. Huang, “Total variation
models for variable lighting face recognition,” IEEE Trans. Pattern.
Anal. Mach. Intell., vol.28, no.9, pp.1519-1524, 2006.

[4] X. Tan and B. Triggs, “Enhanced local texture feature sets for face
recognition under difficult lighting conditions,” IEEE Trans. Image
Process., vol.19, no.6, pp.1635-1650, 2010.

[5] B. Wang, W. Li, W. Yang, and Q. Liao, “Illumination normalization
based on weber’s law with application to face recognition,” IEEE Sig-
nal Process. Lett., vol.18, no.9, pp.462—465, 2011.

[6] P.Belhumeur, A. Georghiades, and D. Kriegman, “From few to many:
Illumination cone models for face recognition under variable light-
ing and pose,” IEEE Trans. Pattern Anal. Mach. Intell., vol.23, no.6,
pp-643-660, 2001.

[7]1 PJ. Phillips, H. Moon, P. Rizvi, and P. Rauss, “The feret evalu- ation
method for face recognition algorithms,” IEEE Trans. Pattern. Anal.
Mach. Intell., vol.22, no.10, pp.1090-1104, 2000.

[8] T. Ahonen, A. Hadid, and M. Pietikdinen: “Face description with local
binary patterns: Application to face recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol.28, no.12, pp.2037-2041, 2010.




