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SUMMARY Nowadays, the trend of developing micro-processor with
hundreds of cores brings a promising prospect for embedded systems. Re-
alizing a high performance and low power many-core processor is becom-
ing a primary technical challenge. Generally, three major issues required to
be resolved includes: 1) realizing efficient massively parallel processing, 2)
reducing dynamic power consumption, and 3) improving software produc-
tivity. To deal with these issues, we propose a solution to use many low-
performance but small and very low-power cores to obtain very high per-
formance, and develop a referential many-core architecture and a program
development environment. This paper introduces a many-core architecture
named SMYLEref and its prototype system with off-the-shelf FPGA evalu-
ation boards. The initial evaluation results of several SPLASH2 benchmark
programs conducted on our developed 128-core platform are also presented
and discussed in this paper.
key words: many-core processor, evaluation platform, prototyping, FPGA

1. Introduction

In recent years, the micro-processor organized with tens of
processor cores (also simply called cores) on a single chip
has been widely used in many fields. In the near future, a
prospect of many-core architecture which consists of hun-
dreds of cores is expected. Therefore, developing many-
core architectures and compiler techniques is becoming a
major technical challenge to realize a high performance and
low power many-core processor as well as to develop appli-
cations for embedded systems on it.

We are currently developing a high-performance and
low-power many-core processor architecture and compiler
technology for embedded systems as a part of the NEDO’s
project. In this research, we propose a solution to use many
low-performance but small and very low-power cores to ob-
tain very high performance with high parallel processing
efficiency. Based on research and development with these
concepts, we aim to realize a low-power cost effective em-
bedded processor as an alternative for the current system-
on-a-chip designs. Towards this goal, we focus on the fol-
lowing three major challenges required to be addressed.
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1. Realizing efficient massively parallel processing, espe-
cially focusing on embedded system applications.

2. Reducing dynamic power consumption.
3. Improving software productivity.

To deal with these issues, we have developed a refer-
ential many-core architecture and a program development
environment. The many-core processor is used as a plat-
form for the code accelerators. The key point of our re-
search is that, the concept of Virtual Accelerator on Many-
core (VAM), in which the many-core processor consisting
of many small cores, is utilized as a hardware platform for
realizing multiple virtual accelerators. In this platform, a
compiler or a user program first decides the configuration of
the virtual accelerator (the number of cores, L2 cache con-
figuration, etc.) according to the characteristic of a target
code, and then performs code generation suited for that con-
figuration. Since the decision of the hardware architecture
is partly granted to the software, higher parallel processing
efficiency can be achieved.

In order to increase the scalability of parallel perfor-
mance for multi-thread or multi-programmed applications,
multiple VAMs are enabled to be mapped simultaneously
to groups of cores as shown in Fig. 1. For the power effi-
ciency, each core is assumed to be operated with ultra-low
supply voltage, which will be realized by a recent improve-
ment of the near-threshold voltage computing technology.
In near-threshold voltage computing, the increased perfor-
mance variation is a big problem required to be resolved.
Plenty of hardware resources in many-cores can help reduce
the impact of the variation. For the software, we develop an
API and a programming environment for parallel program-
ming and optimization for VAM.

As a platform for research and development of a many-

Fig. 1 Concept of Virtual Accelerator on Many-core (VAM).
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core processor and VAM, we are developing a many-core
architecture called SMYLEref and its prototype system with
off-the-shelf FPGA evaluation boards. We use this proto-
type system for a software development environment and
evaluating proof of concept of the VAM. Usually, software
simulators are used for architecture researches. Though the
software simulators are flexible and easy to use, the scala-
bility is not sufficient. Simulation for a many-core processor
with hundreds of cores takes long time and is not realis-
tic. On the other hand, the emulation of many-core proces-
sor with FPGAs is fairly practical because of its evaluation
speed and scalability. In this paper, we introduce the archi-
tecture of SMYLEref and its prototype system developed on
FPGA boards. In addition, several initial experiments with
the prototype system are also presented.

The remainder of this paper is organized as follows.
Section 2 describes the detail of SMYLEref architecture.
The construction of evaluation platform developed on FPGA
is presented in Sect. 3. Several implementation and evalua-
tion results, and related works are discussed in Sect. 4, and
Sect. 5. Finally, Sect. 6 concludes the paper.

2. Many-core Architecture SMYLEref

The block diagram of SMYLEref is shown in Fig. 2. In
the SMYLEref architecture, multiple blocks called clusters
are arranged in a two-dimensional array and connected by a
two-dimensional mesh on-chip network (NoC). Each clus-
ter is composed of a number of scalar processor cores (for
example, 8 cores as in Fig. 2) which are combined by a bus
connection. Each core has a dedicated L1 instruction cache
(IL1) and an L1 data cache (DL1). An L2 cache is provided
for each cluster and is shared by all the cores in a chip.

2.1 Processor Core

In SMYLEref, we use a processor core named Geyser [2],
which is developed in a JST CREST research project called
“Innovative Power Control for Ultra Low-Power and High-
Performance System LSIs” [1] for creating clusters. Geyser
is a simple processor core based on the MIPS R3000 archi-
tecture. The design of Geyser core is verified in the real
LSI chip and the Linux operating system can be launched

Fig. 2 Architecture of SMYLEref.

on it. Therefore, it is adopted as a base processor core for
our platform. Note that Geyser is originally developed for
fine-grain power gating research and has capability of run-
time power-gating [4]. However, this function is not used in
SMYLEref.

Geyser core consists of a simple 5-stage pipeline, 8 KB
(2-way set associative, 64 B line size) L1 instruction and L1
data caches, and a 16-entry TLB (Translation Look-aside
Buffer) which can be controlled by instructions. The data
cache adopts the write-back policy.

2.2 Structure of Cluster and NoC

There are two types of clusters in SMYLEref: one is the core
cluster with Geyser processor cores and an L2 cache, and
the other is peripheral cluster which plays a role of an exter-
nal interface of the chip. In the core cluster, multiple Geyser
cores are connected through a cluster bus. The L2 cache and
a router for the network-on-chip are also connected to this
bus. A peripheral cluster consists of an SDRAM controller,
several I/O controllers, and a router. The access to the main
memory and I/O devices is ensured by packet-based data
transfer which is performed between the core cluster and
the peripheral cluster through an on-chip network.

Core clusters and peripheral clusters are connected by
a two-dimensional mesh network-on-chip which is formed
out of virtual channel routers. The packet-switching mech-
anism is utilized for data transfer in the network. By hier-
archically organizing processor cores, that is, multiple cores
with L2 cache in a cluster and using the network for con-
necting clusters, we intend to confine the communication
within a cluster as much as possible and avoid the perfor-
mance degradation caused by traffic congestion in the net-
work. Although multiple peripheral clusters can be con-
figured for SMYLEref architecture, in our prototype sys-
tem, only one peripheral cluster is used for simplicity of
implementation. If multiple peripheral clusters are imple-
mented, the destination cluster should be identified in the
source core cluster according to the accessed physical mem-
ory addresses. When the number of peripheral clusters used
for the system is smaller than the number of nodes necessary
to make a row (or a column) of a mesh network (for exam-
ple, four nodes in Fig. 2), a special node which has only a
router should be filled in for the deficient cluster location in
order to form the regular mesh connections. This ensures
the integrity of XY routing.

In SMYLEref, the two-dimensional mesh network is
adopted for connection between clusters because of its scal-
ability, effective communication locality, as well as extend-
ability. The XY routing algorithm is adopted for guaran-
teeing deadlock-free routing and the iSLIP scheduling algo-
rithm is employed for the switch allocation due to its high
performance, flexibility and no starvation property [5]. For
data transfer, the virtual-channel flow control [8] is used.
The packets are divided into multiple flits (flow control dig-
its) where the two-flit header (i.e. the header includes two
flits) contains all the necessary information for routing and
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Fig. 3 Format of the two-flit header.

memory accesses including a route for the next hop (the
channel selection signal for the succeeding router), cluster
and core IDs, and memory access controls (read/write, non-
burst/burst, etc.). The other flits of the packet carry payload
data. The format of two-flit header is illustrated in Fig. 3
where Flit/VC ID indicates the flit and virtual channel IDs.
As shown in the figure, each cluster is distinguished by a
unique cluster ID, and each core within a cluster can be
identified by core ID. To reduce network latency, we utilize
the look-ahead technique [8], in which the route for the next
hop is pre-computed one step ahead. This information is in-
cluded in the header (route). In the next router, the packet
can use it to directly proceed to the virtual channel allocation
stage for determining its output channel without waiting for
a routing computation. Because the pre-computation of the
route can be performed simultaneously with other pipeline
stages, it does not affect the critical path length of a router.
By performing all pipeline stages of the router in parallel,
the header is updated at the same time the packet is trans-
ferred to the next hop in only one clock cycle. Therefore, no
additional pipeline stage is needed for the header update.

To form the on-chip network, we utilize the On-the-
fly router [6], which is an enhanced design of the conven-
tional virtual channel (VC) router architecture. This router
can perform high performance data transfer with low hard-
ware cost which may contribute to energy-efficiency. Basi-
cally, an on-chip router forwards incoming packets through
a critical path of four pipeline stages including the routing
computation (RC), virtual channel allocation (VA), switch
allocation (SA) and switch traversal (ST). The delay of the
critical path at each node is one of the causes leading to
the network latency. Several proposed approaches allow to
speculatively perform VA and SA in parallel to cut down
the critical path [7], [8]. However, it leads to the degradation
of network throughput caused by the speculation. Different
from that, in the On-the-fly router, instead of speculatively
performing the VA in parallel with the SA, the router only
performs the VA for the packets which have won the switch
arbitration. A VC is allocated for a packet during the time
the packet is traversing the crossbar switch. With this con-
straint, the dependency between the VA and ST is removed,
and these stages can be concurrently performed without the
speculation. As a result, there is no impact of speculation
on throughput even in the heavy network loads, and the effi-
ciency of channel utilization is significantly enhanced.

The block diagram of the router used in SMYLEref
is shown in Fig. 4. The router has five bi-directional ports
named as North (N), South (S), East (E), West (W), and Lo-
cal (L) for communicating with the neighboring routers and
its cluster bus, with data bit-width of 32-bit and two virtual
channels in each port.

Fig. 4 Architecture of Router.

3. Evaluation Platform on FPGA

In development and verification of architectures and soft-
wares in many-core era, the evaluation platform plays a very
important role. Functional level or cycle level software sim-
ulators [9]–[11] have been widely used for architecture re-
search and exploration environment so far. Most of the soft-
ware simulators simulate the target programs sequentially,
even when the multi-threaded and/or concurrent programs
are simulated on a host machine with multiple processors.
When simulating many-core processors with tens to hun-
dreds of cores, a quite long simulation time is needed even
for evaluating only a part of the target program. Moreover,
if the OS code is also taken into account for evaluation, the
simulation time will be much longer.

One of the alternatives to the software simulators is the
real LSI implementation. This approach enables to reduce
the evaluation time significantly and ensures the accuracy of
evaluation results. However, it is not flexible and requires
very high cost of development. Also, it is not easy to ex-
tend for various evaluation models of different many-core
architectures.

Another solution with the use of FPGA is becoming
a reasonable alternative because of its scalability, accuracy
and flexibility. This solution allows to improve the speed of
evaluation considerably as compared to that of software sim-
ulators, while still maintaining an acceptable cost of devel-
opment. By implementing multiple actual cores operating in
parallel on FPGA, it is possible not only to reduce the neces-
sary time for evaluation, but also to allow the real execution
of an operating system for verification. In addition, it is not
difficult to develop additional hardware modules at register
transfer level to extend the evaluation environment. Multi-
ple FPGA devices can also be easily combined to create a
larger system. The comparison among evaluation platforms
of software simulator, LSI implementation, and FPGA pro-
totyping in terms of scalability, accuracy, flexibility, devel-
opment cost and evaluation speed is summarized in Table 1.

Due to mentioned-above remarkable advantages, we
chose the solution of developing evaluation platform using
FPGA for evaluating many-core architecture.
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Table 1 Comparison among evaluation platforms of software simulator, LSI implementation and
FPGA prototyping.

Scalability Accuracy Flexibility Development Cost Evaluation Speed
Software Simulator Low Medium Very High Low Low
LSI Implementation Medium Very High Low Very High Very High
FPGA Prototyping Very High Very High High High High

3.1 Hardware and Developing Environment

The Xilinx ML605 evaluation board which has a Virtex-6
FPGA device, an SDRAM, and several I/O interfaces such
as UART, SysACE, etc. is used as a basic component for
our platform. The specifications of the ML605 evaluation
board and the Virtex-6 device are summarized in Table 2.
We use Verilog-HDL for the circuit design and the Xilinx
ISE for the Verilog-HDL simulation and implementation to
the FPGA.

3.2 Implementation of Core and Peripheral Cluster

The overview of the core cluster is depicted in Fig. 5. Each
core cluster is formed from several Geyser cores (up to eight
cores) and an On-the-fly router as described in Sect. 2.2. In
addition, the L2 cache is also located on the core cluster.
The L1 data/instruction caches, the L2 caches, and router
buffers are implemented by using dedicated BlockRAMs
(BRAMs) of FPGA. The cluster bus is 32-bit width which
is the same as bit-width of the Geyser core bus. The packet
width in the router used for communicating with its neigh-
bors is 38-bit, in which 32-bit is dedicated for data and an-
other 2-bit is used for the flit identification of the packet and
the remainder is needed for buffer credits of the router. The
memory accesses caused by L1 cache misses are controlled
by a module named MEM Access Controller. If the address
of a memory access is of the cacheable property, the access
goes to the L2 cache and if the L2 cache miss happens, then
the access goes to the main memory via the router.

Originally, the Geyser processor core does not have
any floating-point arithmetic co-processor. To evaluate the
floating-point applications, FPU (Floating Point number
Unit) co-processor is also developed for our evaluation plat-
form. Note that, with the use of FPUs, the number of cores
in each core cluster should be scaled down. We also imple-
ment a coherence control mechanism within a core cluster
using a simple snoop-based protocol.

The peripheral cluster is composed of several con-
trollers of peripherals such as the SDRAM, the UART, and
the SysACE which are combined by Xilinx PLB (Processor
Local Bus). We use IP cores provided by Xilinx for those
controllers. Similar to the core cluster, a router is also as-
sociated with peripheral cluster, and linked to the PLB. By
this way, the peripherals will be connected to core clusters
via the on-chip network. As an enhancement, our prototype
system enables to set the additional memory access latency
arbitrarily, which contribute to the evaluations on the impact
of memory access latency.

Table 2 Specification of ML605 board and Virtex-6 chip.

ML605 evaluation board
FPGA device Virtex-6 XC6VLX240T
SDRAM DDR3 SO-DIMM
I/O ports GTX, UART, USB, DVI, SysACE, SMA, etc.
Clocks 200 MHz & 66 MHz oscillators

Virtex-6 (XC6VLX240T)
Technology 65 nm CMOS, 1.0 V
Logic Cells 241,152
CLB Slices 37,680
Block RAM 14,975 Kbit
User I/Os 720

Fig. 5 Configuration of a core cluster.

3.3 Inter-Cluster Communications

Since the hardware resource of the FPGA device (Virtex-
6 XC6VLX240T) used for our evaluation platform is ex-
hausted with only about eight Geyser cores, a many-core
processor with tens or hundreds of cores cannot be evalu-
ated on one ML605 board. Hence, our evaluation platform
is constructed by a combination of multiple ML605 boards
connected in a network, in which each core cluster is imple-
mented in a board and the communication between routers
is performed by a communication interface between boards.
Note that the peripheral cluster is a special case. Since the
hardware resource usage of the peripheral cluster is very
small, it is configured in the the same board in accordance
with one of the core clusters.

We use a high-speed serial communication interface
called rocket I/O for communication between boards. The
rocket I/O interface uses GTX transceivers for its data con-
version and transmission. A rocket I/O communication
module is developed as a wrapper for the router module.
When a router transfers some packets to a neighboring clus-
ter, the data is transmitted between boards via the rocket I/O
interface. This module uses a high-speed serial communica-
tion protocol called aurora provided as an IP core in Xilinx
ISE. The SMA (SubMiniature version A) standard interface
is used as a physical connection for serial communication
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between boards.
Although ML605 evaluation board has only two links

(bi-directional) of SMA connection, it is possible to increase
up to eight links for one board by using an add-in board of
FMC (FPGA Mezzanine Card). In case of two-dimensional
mesh network, if one cluster is configured in one board (as
shown in Fig. 5), a total of four links are sufficient for all di-
rections (bi-directional communication) to connect to neigh-
boring clusters, thereby a communication network can be
constructed by using these add-in boards in addition to the
main boards. As a result, it is theoretically possible to build
the evaluation platform for many-core with infinite number
of cores, by using the communication interface mentioned
above.

In this evaluation platform, the clock frequency of pro-
cessor core is assumed to be 10 MHz. Since the serial data
communication between routers based on rocket I/O can be
performed up to 5 Gbps, the bandwidth of data transmis-
sion is capable of ensuring sufficient bandwidth for the core
clock even with control information in each packet (cur-
rently, 32-bit data and 4-bit control). However, in an aurora
module it takes about 180 ns of communication latency for
serial synchronization. This indicates two additional pro-
cessor clock cycles in the communication latency as com-
pared to that of the case where routers are directly connected
within a board. Though this could lead to degrade the accu-
racy of the evaluation, the overall effect on the evaluation
cycle is trivial because the on-chip network is typically used
for the main memory and I/O accesses which need much
longer latency.

3.4 Prototype System

The photographic view of our developed evaluation plat-
form is shown in Fig. 6. Currently, sixteen ML605 boards
are connected for forming the 4 × 5 two-dimensional mesh
network where sixteen core clusters and one peripheral clus-
ter are provided. Because the peripheral cluster is located on
the same FPGA device implementing one of the core clus-
ters, the number of total clusters is seventeen even with six-
teen ML605 boards, and the network forms the structure of
4×5 mesh. Since the basic organization of a core cluster has

Fig. 6 Photographic view of our developed evaluation platform.

8 cores, there is a total of 128 processor cores in this eval-
uation platform. Thanks to symmetry of the mesh network,
the configuration of each core cluster is exactly the same,
and thereby, it is easy to extend the platform to a larger en-
vironment with more than 128 cores.

4. Evaluation

4.1 Experimental Settings

In order to evaluate SMYLEref architecture and to verify
its prototype, we conducted experiments on our developed
evaluation platform with several parallel programs. Because
the distributed shared L2 cache on multiple clusters is under
development, the L2 cache is disabled for evaluations with
multiple clusters. When the evaluation is conducted within
a cluster, the L2 cache is used. We will note whether the L2
cache is used or not in the paper for each evaluation.

The clock frequency for each functional block is set as
follows.

• Geyser core: 10 MHz
• Cluster internal bus, router, and peripheral bus (PLB):

5 MHz
• DDR3-SDRAM: 100 MHz

To verify the basic functionality and to perform prelim-
inary evaluation for SMYLEref, we use parallel applications
from a popular parallel benchmark suite SPLASH2 for our
initial experiment. FFT and LU programs are employed for
the experiment. We use the pthread version of those bench-
mark programs. For code generation, we use gcc 4.4.6 tar-
geted for MIPS processors.

FFT and LU contain floating-point operations. We
could not implement 8 cores on the FPGA device if an FPU
is integrated in each core as described in Sect. 3.2. There-
fore, we perform the evaluation in two cases; one is 8 cores
per cluster configuration without FPUs which can evaluate
up to 128 cores on 16 FPGA boards, and the other is 4 cores
per cluster with FPUs which can evaluate up to 64 cores.
For the case without the FPUs, we use gcc’s soft-float op-
tion in which floating-point arithmetic operations are done
by software emulation.

4.2 Parallel Processing API

As mentioned in the previous subsection, we use pthread
API for parallelizing the evaluated programs. We develop
the simple version of pthread library with a minimum set
of pthread functions for SMYLEref evaluation environment.
By using this pthread library, the evaluated programs are
compiled and executed without any code modifications ex-
cept for option parsing. The current developed pthread
functions include functions for creating and joining threads
(pthread create, pthread join, etc.), mutex lock opera-
tions (pthread mutex lock, pthread mutex unlock, etc.), and
functions for barrier synchronization (pthread barrier wait
etc.).
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Table 3 Area Overhead.

Slices (%) Flip-Flops (%) LUTs (%)
Core cluster

Geyser core 3,301 (8.76%) 7,089 (2.35%) 10,942 (7.26%)
L2 cache 2,853 (7.57%) 6,232 (2.07%) 8,813 (5.85%)
Router 1,170 (3.11%) 838 (0.28%) 3,400 (2.26%)
MEM access controller 201 (0.58%) 338 (0.11%) 533 (0.35%)
Board comm. controller 1,257 (3.33%) 3,059 (1.01%) 2,775 (1.84%)
FPU 3,703 (8.80%) 15,968 (5.21%) 15,526 (10.30%)

Peripheral cluster
I/O controller 1,596 (4.24%) 6,007 (1.99%) 2,577 (1.71%)
Router 1,170 (3.11%) 838 (0.28%) 3,400 (2.26%)
Packet controller 147 (0.39%) 168 (0.05%) 240 (0.16%)

The inter-cluster cache coherence control is outside of
the scope of SMYLEref as well as our evaluation environ-
ment. Besides, cache coherence is essentially required for
FFT and LU programs since SPLASH2 is a benchmark for
shared memory computer systems. Therefore, we use some
tricks to obtain the correct execution results in those pro-
grams. First, the dynamically allocated data region (heap
data) is allocated to the uncachable virtual address domain
which is not accessed through a cache. Second, L1 data
cache is flushed in each core every time the barrier synchro-
nization or the mutex lock function is called. By this way,
the consistency of the cached data can be guaranteed with-
out the need of modifying the program codes.

4.3 Implementation and Evaluation Results

The resource usage of the FPGA device for the major mod-
ules such as the Geyser core, the router, and the board com-
munication controller are listed in Table 3. The implementa-
tion results show that, the Geyser core consumes the largest
amount of hardware resources in comparison with that of
the other modules (except the FPU). It is approximately
three time larger than the router or board communication
controller. L2 cache takes 2,853 slices which are slightly
smaller than that of the Geyser core. The area overhead of
MEM access controller or packet controller is very small as
compared to the area overhead of the Geyser core. In the
case of configuring eight cores in a core cluster, most of
the hardware resources are used for the Geyser cores, and
area overhead of the other modules is not significant. This
indicates that clustering by several cores contributes to the
reduction of area overhead due to the router for NoC. If the
FPU is implemented in a core, it will become the largest
consumer of hardware resources.

The evaluation results of FFT and LU benchmark pro-
grams in terms of parallel processing efficiency are shown in
Fig. 7. In the figure, FFT and LU indicate the results without
FPUs (utilizing the soft-float function), whereas FFT fpu
and LU fpu express the results which are obtained by us-
ing the hardware FPUs. The results are normalized to the
performance of one core without FPUs for each program.
As seen from the figure, the performance increases in accor-
dance with the increase in the number of cores in FFT. The
performance is saturated at 64 cores. However, the speed-

Fig. 7 Evaluation results of parallel speedup.

up is not adequate as compared to the number of used cores.
This is mainly caused by memory access bottleneck. Since
the heap memory area is uncachable, most of the data ac-
cesses goes to the main memory which causes the cluster
bus and network congestions. The situation is worse in LU.
Very small performance improvement or even worse perfor-
mance degradation is observed with the increase in the num-
ber of cores. This is due to the memory access bottleneck
as well as cache flushing needed when the synchronization
and the mutex lock functions are called.

Specially in the case of LU fpu, a slight performance
degradation is observed in 4 cores compared with 2 cores
and 8 cores in Fig. 7. This is due to the traffic congestion
in the cluster bus. The data traffic of a cluster bus becomes
the heaviest in the case of 4 cores which is the maximum
number of available cores in a core cluster when hardware
FPUs are used. When 8 cores are used, the traffic load of a
cluster bus gets slightly smaller since another cluster joins
the computation.

Note that the final target of this research is using many-
cores as accelerators by a parallel programming model
which does not require the cache coherence mechanism such
as OpenCL. If parallel program written in that model is exe-
cuted on this environment, we will see much higher parallel
performance. The evaluation with such programing model
is our future work.

Typically, the main memory access speed is very slow
as compared to the processor speed. However, in our eval-
uation environment, clock frequency of the processor core
is 10 MHz, whereas frequency of main memory SDRAM
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is 100 MHz. The relative DRAM access time is much
faster than the realistic systems. Therefore, we implement a
DRAM access latency control mechanism by which we can
set an arbitrary DRAM access latency in the environment.
Figure 8 shows the performance results of FFT varying ad-
ditional DRAM access latency. FFT1, FFT5, FFT10, FFT50
in the figure indicate the results when the memory access is
delayed by 1, 5, 10 and 50 processor clock cycles, respec-
tively. As shown in the figure, performance is degraded as
memory access latency increases, resulting in worse paral-
lel processing efficiency. We should notice here that, we can
evaluate the performance of target programs with variable
important parameters such as main memory latency. This is
the benefit of our evaluation platform.

Generally, the parallel processing efficiency can be en-
hanced by the use of the L2 cache. Moreover, if a cache co-
herence mechanism is provided, data in heap memory region
can be accessed through the cache and no cache flush is nec-
essary, thereby better parallel processing efficiency can be
achieved. Figure 9 shows the performance of the evaluated
programs when an L2 cache and cache coherence mecha-
nism are used within a cluster. Note that because a cluster
has only 8 cores, we can evaluate up to the 8-core case in
this evaluation. FFT L2&Coh and LU L2&Coh represent
the evaluation results when enabling the L2 cache and the
cache coherence. As shown in this figure, a great improve-
ment of parallel speedup is observed in both programs. This

Fig. 8 Influence of memory access time on performance.

Fig. 9 Performance improvement with L2 cache and coherence.

indicates that making good use of caches is very important.
In our prototype system, the default L2 cache access

latency takes 7 processor clock cycles. In fact, it would be
much slower than 7 processor cycles. In order to provide a
capability to evaluate several cases for L2 cache access la-
tency, we also implement a L2 cache access latency control
mechanism. The evaluation results when the L2 cache ac-
cess latency is delayed by 1, 5, 10, and 20 processor clock
cycles for FFT with the cache coherence mechanism (indi-
cated by FFT L2&Coh1, FFT L2&Coh5, FFT L2&Coh10,
and FFT L2&Coh20, respectively) are shown in Fig. 10.
From the figure, no big performance difference is observed
among different cases of L2 cache access latency. In 8 cores,
the speedup difference between 7-cycle (FFT L2&Coh) and
27-cycle (FFT L2&Coh20) of L2 access latency is only
0.17%. Since all the data are accessed through the caches
and the L1 data cache captures most of the data accesses, L2
cache access is not so frequent. In fact, the ratio of total L2
cache access time to total execution time is about 1% even in
FFT L2&Coh20. Therefore, L2 cache access latency does
not affect the performance very much in this program.

As described in Sect. 3, the benefit of prototyping with
FPGA is evaluation speed and scalability. The comparison
of evaluation time (or simulation time) between our plat-
form and software simulator is presented in Fig. 11. We
used MARSS simulator [11] as the software simulator. The
MARSS simulator is know as one of the fastest cycle ac-
curate simulator with capability of full system simulation.
Though the architecture model of SMYLEref is different
from that used in MARSS, we set the architecture parame-
ters such as issue width and cache configuration for MARSS
to get a model, which is similar to our evaluation platform
as much as possible. The following is the specification of
the host machine which the MARSS simulator is performed
on.

• CPU: Intel core-i7 X980, 3.33 GHz.
• LLC (L3): 12 MB.
• Main Memory: DDR3-1066, 6 GB.

In the Fig. 11, FFT soft and LU soft indicate the simu-
lation time in software simulator. Because of the limitation
of the simulator, we can evaluate only up to 8 cores. The

Fig. 10 Influence of L2 cache access time on performance.
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Fig. 11 Evaluation time between our platform and software simulator.

results marked as FFT and LU are the evaluation time in
our platform. As shown in the figure, the simulation time
in the software simulator for 1-core is slightly longer than
our evaluation environment. Though in our evaluation envi-
ronment, the evaluation time gets shorter in the increase of
the number of used cores, the required time for simulation
in the software simulator becomes very longer. In the case
of 8-core, the evaluation time of software simulator is 20
times slower than that of our platform. This indicates that
the prototyping with FPGA has very good scalability. From
this result, we can conclude that the FPGA prototyping is a
very promising option for evaluating many-core processors
with hundreds of cores.

5. Related Work

In recent years, there have been many researches and devel-
opments of processor architecture and compiler for multi-
core and many-core. The OSCAR multi-core processor and
the automatic parallelization compiler are introduced in [13]
and [14]. Besides, an actual multi-core chip with the abil-
ity of reducing power consumption by an automatic paral-
lelizing compiler has also been developed [15]. A coherence
control mechanism by compiler for many-core processors is
proposed in [16]. These researches and the actual product
do not adopt an NoC based structure which will be essen-
tial aspect of many-core processors. Since the SMYLEref
evaluation platform can evaluate an NoC based many-core
processor with more than a hundred of cores, it is very ben-
eficial for evaluating future many-core processors.

As reported in [17], the authors introduce an emula-
tion environment named ScalableCore system for scalabil-
ity, flexible and high-speed many-core processor, which is
formed from multiple small-capacity FPGA boards. In ad-
dition, a number of evaluation platforms using FPGA, such
as RAMP [18] are also developed for research on multi-core
and many-core processors. The target of the SMYLEref
evaluation platform is shared memory many-core systems
with hundreds of cores. In this point, our work is differ from
those FPGA based platforms.

Nowadays, the experimental products as well as com-
mercial products of the many-core processor with several
tens cores are becoming practical. Intel Inc. introduces

a processor with 80 cores for experiment, which one tera
FLOPS or more can be attained at a chip [19]. The float-
ing point cores in this processor is built in the 8 × 10 two-
dimensional mesh network. ATAC processor [20] is a many-
core processor built from 1024 cores, that can provide a
high-speed global broadcasting network using an on-chip
optical network. A scalable directory-based cache coher-
ence protocol called ACKwise using the above-mentioned
optical network is implemented for ATAC processor. In ad-
dition, the TILE64 of Tilera Inc. [21] has been also provided
as a commercial many-core processor. TILE64 combines
8 × 8 homogeneous cores using a mesh on-chip network.

Since these processors are implemented in the real LSI
chips, they require very high cost of development and imple-
mentation. Moreover, once the actual chips are fabricated,
it is impossible to change the hardware parameters such as
the memory access latency. On the other hand, our platform
is very flexible so that some of the parameters are easy to
modify as well as wide variety of statistical information (the
number of cache misses etc.) is easy to observe. In this
point, the benefit of our evaluation platform is emphasized.

6. Conclusion

In this paper, we introduce SMYLEref, a many-core ar-
chitecture actualizing the concept of virtual accelerator on
many-core (VAM), to realize a high performance and low
power many-core processors for embedded systems. The
prototype system for SMYLEref with FPGA evaluation
boards is also presented. In addition, to evaluate SMYLEref
architecture and verify its prototype, the initial experiments
with the use of several SPLASH2 benchmark programs are
conducted on our developed 128-core evaluation platform.
The evaluation results are affirmed and the observations on
them are also discussed.

In the future, we consider implementing and develop-
ing the inter-cluster cache coherence mechanisms, practical
architectures for many-core, and the software development
environment. Besides, the evaluations of various realistic
applications for embedded systems are also taken into ac-
count in our future work.
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