
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013
1685

PAPER

High Throughput Parallelization of AES-CTR Algorithm

Nhat-Phuong TRAN†, Nonmember, Myungho LEE†a), Member, Sugwon HONG†,
and Seung-Jae LEE††, Nonmembers

SUMMARY Data encryption and decryption are common operations
in network-based application programs that must offer security. In order to
keep pace with the high data input rate of network-based applications such
as the multimedia data streaming, real-time processing of the data encryp-
tion/decryption is crucial. In this paper, we propose a new parallelization
approach to improve the throughput performance for the de-facto standard
data encryption and decryption algorithm, AES-CTR (Counter mode of
AES). The new approach extends the size of the block encrypted at one
time across the unit block boundaries, thus effectively encrypting multi-
ple unit blocks at the same time. This reduces the associated paralleliza-
tion overheads such as the number of procedure calls, the scheduling and
the synchronizations compared with previous approaches. Therefore, this
leads to significant throughput performance improvements on a computing
platform with a general-purpose multi-core processor and a Graphic Pro-
cessing Unit (GPU).
key words: AES, multi-core, GPU, parallelization

1. Introduction

Recently, with the widespread use of the Internet in com-
mercial applications, network-based programs are becom-
ing increasingly popular. In order to protect the copyright
to the contents of such applications, data encryption and de-
cryption are essential. Among many encryption/decryption
standards, Advanced Encryption Standard (AES) is a rep-
resentative one. AES is a symmetric cryptographic algo-
rithm published by NIST [4] and is widely used recently be-
cause of its high security and the low cost. AES algorithm is
carried out by applying a number of transformation rounds
that convert the input plain text into the final cipher text.
The output of each round is fed back to the next round as
the input. Each round includes several computation steps
such as XOR operations, byte substitutions, shift rows, mix
columns which require matrix computation operations and
table lookups. In each round, a new key is generated and
used for the above computation steps. For the encryption
and decryption of multiple blocks, AES has several modes
of operations [6]. In this paper, we use the Counter (CTR)
mode of AES which is parallel in nature and secure by using
different keys in blocks.

Manuscript received May 11, 2012.
Manuscript revised February 17, 2013.
†The authors are with the Dept. of Computer Science and En-

gineering, Myongji University, 38–2 San Namdong, Cheo-In Gu
Yong In, Kyung Ki Do, 449–728 Korea.
††The author is with the Dept. of Electrical Engineering, My-

ongji University, Korea.
a) E-mail: myunghol@mju.ac.kr (Corresponding author)

DOI: 10.1587/transinf.E96.D.1685

Since mid-2000, incorporating multiple CPU cores on
a single chip (or multi-core processor) has become a main
stream microprocessor design trend. As a Chip Multi-
Processor (CMP), a multi-core processor can execute multi-
ple software threads on a single chip at the same time. Thus
it can provide higher computing power per chip for a given
time interval (or throughput) [19]. The multi-core design
trend has also appeared in the recent Graphic Processing
Unit (GPU) by incorporating Shader, Vertex, Pixel units—
separate processing units in the earlier GPUs—into uniform
programmable processing units or cores [15]. These pro-
cessing units or cores can be programmed and executed
in parallel. This architectural innovation led to the excel-
lent floating-point performance (flops) for the GPU. In ad-
dition to the architectural changes, user friendly parallel
programming environments have been recently developed
(e.g., Nvidia’s CUDA, Khronos Group’s OpenCL) which
provide programmers with more direct control of the GPU
pipeline and the memory hierarchy. Using these environ-
ments along with the flexible multi-core GPU architecture
has led to innovative performance improvements in many
application areas besides the graphics and many more are
still to come [15].

In a network-based application program that must offer
security, the data is received continuously with a high input
rate. In order to keep pace with the high rate of the data in-
put, a real-time processing of the data encryption/decryption
is crucial. In this paper, we develop a new paralleliza-
tion technique to improve the throughput performance of
the standard encryption/decryption algorithm, AES-CTR,
which needs real-time processing. The new approach par-
allelizes the AES-CTR by extending the block size across
the unit block boundaries where the data encryption is orig-
inally applied. Thus this approach effectively encrypts mul-
tiple unit blocks at the same time. This reduces the associ-
ated parallelization overheads such as the number of proce-
dure calls and the job scheduling, and the synchronizations
compared with the previous approaches. By implement-
ing the proposed approach on a computing platform with
a general-purpose multi-core processor (2.2 Ghz 4-core In-
tel processor) and a GPU (Nvidia GeForce 8800 GT), we’ve
observed significant throughput performance improvements
compared with previous parallelization approaches. In fact,
our approach leads to the 7.25-times speedup and the higher
throughput performance compared with the previous coarse-
grain parallelization approach. The resulting throughput

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



1686
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

performance reaches up to 87 Gbps on Nvidia GeForce
8800 GT GPU.

The rest of the paper is organized as follows: Section 2
gives an overview of the AES algorithm and its modes of
operations including the CTR mode. Section 3 shows the
architecture of the latest general-purpose multi-core proces-
sors and multi-core GPUs, and their programming models.
Section 4 describes previous research employing the fine-
grain and the coarse-grain parallelization. Section 5 ex-
plains our approach compared with the previous approaches.
Section 6 shows the results of experiments of the new ap-
proach compared with the previous approach on a 4-core In-
tel processor and Nvidia GeForce 8800 GT GPU. Section 7
wraps up the paper with conclusions.

2. Overview of AES Algorithm

The Advanced Encryption Standard (AES) is a symmet-
ric cryptographic algorithm published by NIST [13] which
had replaced the previous Data Encryption Standard (DES).
AES is the most widely used block cipher algorithm in re-
cent years because of its high security and low cost. In order
to encrypt and decrypt a sequence of blocks, modes of op-
eration have been developed. In this section, we describe
the main computation steps for AES block cipher algorithm
first and then describe its modes of operation.

2.1 Computation Steps

AES algorithm is carried out by applying a number of repe-
titions of transformation rounds that convert the input plain
text into the final cipher text. AES has a fixed block size
of 128 bits with three key lengths of 128 bits, 192 bits, and
256 bits, thus comprises three block ciphers AES-128, AES-
192, and AES-256. Depending on the key and the block
lengths, the number of rounds of AES is varied: 10 for
128 bits, 12 for 192 bits, and 14 for 256 bits. Each round
includes several steps. The output of each round is fed back
as the input of the next round. Each round consists of the
same steps, except for the first round where an extra addi-
tion of a round key is performed and for the last round where
the step for the mixing columns is skipped [3], [4], [6].

Figure 1 below shows the steps of the AES-128 algo-
rithm which is iterative with 10 rounds. The input to the
algorithm is a block of 128 bits plain text which is repre-
sented by a 4 × 4 byte matrix called “State”. The operations
performed for each step are as follows:

• KeyExpansion is used to generate the RoundKeys from
the original key for rounds.
• The four round steps are AddRoundKey (XOR each col-

umn of the State with a word from the key schedule),
SubBytes (process the State with non-linear byte sub-
stitution table, S-box, that operates on each of the State
bytes independently.), ShiftRows (cyclically shifts the
last three rows in the State by different offsets), Mix-
Columns (takes all of the columns of the State and

Fig. 1 Computation steps for AES-128 algorithm.

mixes their data to produce new columns).
• Operations performed in each round are as follows:

– In the initial round, perform the AddRound-
Key operation and the SubBytes, ShiftRows, Mix-
Columns, and AddRoundKey. Thus the Ad-
dRoundKey operation is performed an extra time.

– In the next N–1 rounds, perform four opera-
tions SubBytes, ShiftRows, MixColumns, and Ad-
dRoundKey.

– In the last round, perform the same operations of
the previous N–1 rounds except the MixColumns
operation.

More detailed description on the above operations can
be found in [3].

Besides the matrix computation operations used for
AddRoundKey, SubBytes, ShiftRows, and MixColumns ap-
plied in each round, the table lookup is another important
operation. With the table lookup, the different steps of the
round can be combined in a single set of table lookups as
the following formula shows:

e j = T0[a0, j] ⊕ T1[a1, j−1] ⊕ T2[a2, j−2] ⊕ T3[a3, j−3] ⊕ k j

where ai, j refers to the input matrix variable, e j refers to
the output matrix in each round transformation, k j is the j-
th word of the expanded key. T0, T1, T2, and T3 refer to
the lookup tables which have 256 32-bit word entries each
and are made up of 4 KB of the storage space and obtained
through combinations as follows:

T0[ai, j] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S [ai, j] · 02
S [ai, j]
S [ai, j]

S [ai, j] · 03

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T1[ai, j] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S [ai, j] · 03
S [ai, j] · 02

S [ai, j]
S [ai, j]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



TRAN et al.: HIGH THROUGHPUT PARALLELIZATION OF AES-CTR ALGORITHM
1687

Fig. 2 Example applications of AES-CTR algorithm.

T2[ai, j] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S [ai, j]
S [ai, j] · 03
S [ai, j] · 02

S [ai, j]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T4[ai, j] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S [ai, j]
S [ai, j]

S [ai, j] · 03
S [ai, j] · 02

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where · is a GF(28) finite field multiplication [3].

2.2 Modes of Operation

In order to encrypt and decrypt a sequence of blocks in
the AES, a number of modes of operation have been devel-
oped [6]. In the Electronic CodeBook (ECB) mode, a given
plain text is divided into multiple unit-sized blocks, which
are then encrypted or decrypted independently. Thus this
mode is parallel in nature, but not secure because the same
plain text can be encrypted into the same cipher text. In
the Cipher Block Chaining (CBC) mode, in order to encrypt
a unit-sized block k, the cipher text for the previous block
k − 1 is used. Thus it is working in a chained fashion and
cannot be parallelized. Cipher FeedBack (CFB) mode and
Output FeedBack (OFB) mode are close relatives of CBC
mode. Thus these modes cannot be parallelized either.

In this paper, we use Counter (CTR) mode because it
is parallel in nature and secure by using different keys in
blocks. In this mode, we denote the length of plain text
blocks to be m. A keystream, denoted by zi, is produced
by choosing counters, denoted by cter, whose length is
also m bits. Then we produce counter Ti by Ti = (cter +
i − 1) mod 2m. Then encrypt the plain text blocks by
ci = pi ⊕ Ek(Ti). Figure 2 shows an example encryption
and decryption of AES-CTR algorithm.

3. Overview of Architectures

In this section, we first describe the architecture of a general-
purpose multi-core microprocessor. Then we describe the
architecture of a Graphic Processing Unit (GPU) and the
programming model we use for our experiments in the pa-
per.

3.1 Multi-Core Processor Architecture

Recently, microprocessor designers have been considering

Fig. 3 Architecture of an advanced multi-core processor.

many design choices to efficiently utilize the ever increasing
effective silicon area with the increase of transistor densities.
Instead of employing a complicated processor pipeline on a
chip with an emphasis on improving single software thread’s
performance, incorporating multiple processor cores on a
single chip (or multi-core processor) has become a main
stream microprocessor design trend. As a Chip Multi-
Processor (CMP), it can execute multiple software threads
on a single chip at the same time. Thus a multi-core pro-
cessor provides a larger capacity of computations performed
per chip for a given time interval (or throughput) [19]. All of
the CPU vendors including Intel, AMD, IBM, Oracle/Sun,
among others have introduced the multi-core processors to
the market. The multi-core design is also adopted in embed-
ded systems such as ARM11 MPcore (quad-core) processor
based systems introduced lately.

In addition to the CMP based multi-core design, some
recent designs go one step further to incorporate the Simul-
taneous MultiThreading (SMT) or similar technologies such
as the Hyper-Threading on a processor core to increase the
on-chip thread-level parallelism. Examples are Intel Ne-
halem and Oracle/Sun UltraSPARC T2/T3 microprocessor.
Figure 3 shows the architecture of an advanced multi-core
processor. On each processor chip, there are N-processor
cores, with each core having its own level-1 on-chip cache.
The N-cores share a larger level-2 cache on the processor
chip. Each core also has M hardware threads performing
SMT or similar functions. Thus it supports two levels of
parallelism. For example, the UltraSPARC T2 from Sun in-
cludes 8 cores on a chip, with each core supporting 8 hard-
ware threads. In total, 64 (= 8 × 8) threads can execute on
a chip at the same time. Each core has 8 KB private data
cache. The level-2 unified cache is 4 MB in size.

Although multi-core processors promise to deliver
higher chip-level throughput performance than the tradi-
tional single-core processors, it is not quite straightforward
to exploit its full performance potential. Resources on the
multi-core processors such as cache(s), cache/memory bus,
functional units, etc., are shared among the cores/threads on
the same chip. Software processes or threads running on the
cores/threads of the same processor chip compete for the
shared resources, which can cause conflicts and hurt perfor-



1688
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

mance. Thus efficiently utilizing the multi-core processors
is a challenging task [19].

3.2 GPU Architecture and Programming

The Graphic Processing Unit (GPU) was introduced in the
late 1990s as a co-processor for accelerating the simulation
and visualization of 3D images commonly used in appli-
cations such as game programs. Since then the GPU has
become widespread and these days it is commonly incorpo-
rated in many computing platforms including desktop PCs,
high performance computing servers, and even in mobile de-
vices such as smart phones.

In the latest GPU, the clock rate has ramped up signif-
icantly compared with the earlier GPUs. Furthermore, the
processing units for Shader, Vertex, Pixel which were de-
signed as separate processing units in the earlier GPUs are
incorporated into multiple uniform programmable process-
ing units or thread processors [14]. Thus, the recent GPU
architecture reflects the multi-core design appearing in the
multi-core microprocessors. It is suitable for SIMD (Sin-
gle Instruction Multiple Data) processing by having multi-
ple threads assigned to each thread block executing the same
instructions managed by the Instruction Unit with respect to
different portions of data streaming from the global mem-
ory to the on-chip memories (shared memory, registers, etc.)
on the same thread block (see Fig. 4). The increase in the
clock rate and the new design made possible the impressive
floating-point performance of the GPU in flops, far exceed-
ing that of the latest CPUs.

In order to utilize the advanced flexible architecture
of the GPU, more user friendly programming environ-
ments have been recently developed. CUDA from Nvidia
and OpenCL from Khronos Group are good examples of
such software environments [15], [16]. Using those envi-
ronments, programmers can have more direct control over
the GPU pipeline and the memory hierarchy. The flexi-
ble GPU architecture and the user friendly software devel-
opment environments have led to a number of innovative
performance improvements in many applications and many
more improvements are still to come [15], [20].

In the experiments conducted in the paper, we use
Nvidia’s GPU and CUDA. For executing CUDA programs,
a hierarchy of memories is used on the Nvidia’s GPU. They
are registers and local memories belonging to each thread, a
shared memory used in a thread block and shared by threads
belonging to the block, and the global memory accessed
from all the thread blocks [15], [16]:

• Global memory is an area in the off-chip device mem-
ory. (The typical size of the device memory ranges
from 256 MB to 6 GB. In the GPU that we use for
our experiments, Nvidia 8800 GT, the device memory
is 512 MB in size.) Through the global memory GPU
can communicate with the host CPU.
• Shared memory sits within each thread block and

shared amongst the threads running on the multiple

Fig. 4 General architecture of a GPU [15].

thread processors. The management of the shared
memory is under the programmer’s control. The typ-
ical size of the shared memory is 16 KB. The access
time closely matches with the register access time, thus
it is a very fast memory.
• On a high-end Nvidia GPU such as the Tesla, there is

a level-1 (L1) data cache per each thread block. Un-
like the shared memory, L1 data cache is a hardware-
managed cache. The typical size of the L1 data cache
is 48 KB. Or the user can freely set the size of L1 data
cache and the shared memory out of 64 KB combined
total size of the on-chip memory embedded on a thread
block. In Nvidia 8800 GT, there is no L1 data cache.
Thus we use the shared-memory only as the fast on-
chip memory.
• Registers are used for temporarily storing the data used

for computations for each thread, similar to CPU reg-
isters.
• Also each thread has its own local memory area in the

device memory to load and store the data needed for
the computations. For example, when the registers spill
during the computations. Since the local memory is an
area in the device memory, it is also a slow memory.
• Besides the above memories, there are constant mem-

ory and texture memory in the device memory. Data
in constant/texture memory are read-only. They can be
cached in the on-chip constant cache and the texture
cache respectively.

In CUDA programs, data needed for computations on
the GPU is transferred from the host memory to the global
memory, optionally placed in the shared memory by the pro-
grammer, and used by thread blocks and thread processors



TRAN et al.: HIGH THROUGHPUT PARALLELIZATION OF AES-CTR ALGORITHM
1689

through the registers. The multiple threads assigned to each
thread block executes in the SIMD mode by having the same
instruction managed by the Instruction Unit on different por-
tions of data as explained earlier in this section. When a
running thread encounters a cache miss, for example, the
context is switched to a new thread while the cache miss is
serviced for the next 200 hundred cycles or more. Thus the
GPU is executing in a multithreaded fashion.

4. Previous Research

In a typical network-based application that must of-
fer security, data encryption and decryption are inten-
sively performed with respect to the large amounts of
data continuously received from and forwarded to other
senders/receivers. In such an environment, the demand for
parallel execution of the AES is high. There have been a
number of previous attempts to parallelize the AES. We de-
scribe them below.

J.W. Bo, et al. [2] presented a software speed record
for both the encryption and the decryption using AES on
8-bit microcontroller, Nvidia GPUs, and the Cell Broad-
band Engine. Harrison and Waldron [9] proposed a study
of AES implementation on the GPU hardware, using Nvidia
GeForce 6 and 7 series. This implementation is based on
the OpenGL library which is not geared towards a general
purpose computing. In [1], Harrison and Waldron also pre-
sented another implementation of AES with an application
oriented approach on GPUs. In their implementation on
Nvidia G80, they achieved 4∼10 times speedup over a CPU
implementation. Manacski [12] implemented CUDA-AES
which runs up to 20 times faster than the implementation of
OpenSSL on a general-purpose CPU.

Besides the above previous work, there also has been
a previous research on parallelization for the CTR mode of
AES (AES-CTR). Andrea D. Biagio, et al. [1] proposed a
coarse-grain parallelization approach and a fine-grain ap-
proach for the AES-CTR on Nvidia GeForce 8400 GS and
8800 GT GPUs using CUDA. They used the shared memory
and the constant memory alternatively to store the lookup
tables. In order to maximize the performance of the shared
memory approach, they carefully arranged the data place-
ment to avoid the bank conflicts.

Since our parallelization approach enhances upon the
coarse-grain and the fine-grain approaches used in [1], we
describe those approaches in detail. As explained in Sect. 2,
the data encryption in AES-CTR goes through a number
of computation rounds with respect to a unit sized block.
Within each round, four computation steps involving XORs,
byte substitutions, shift rows, and mix columns are per-
formed with respect to each block. Figure 5 shows the two
main computation routines in the AES-CTR:

• The encrypt block function is used to encrypt one 16-
byte unit block. This function consists of 3 steps: 1)
create a new key from an initial key and an initial vec-
tor; 2) execute a number of rounds to encrypt a 16-

Fig. 5 Main routines in AES-CTR using 16-byte unit block size.

Fig. 6 Fine-grain parallel encryption of 16-byte blocks using 4-threads.

byte data block consisting of AddRoundKey, SubBytes,
ShiftRows, MixColumn; 3) copy the encryption result
back to a result array.
• The aes ctr function contains a for-loop which is used

to call the encrypt block function a number of times
until all the given 16-byte blocks are encrypted. For
example, given 1 KB of data, aes ctr function calls en-
crypt block function 64 (= 1024/16) times.

The fine-grain parallelization approach parallelizes the
computation steps 1, 2, and 3 in encrypt block function in
Fig. 5. Thus each computation step is divided into multi-
ple chunks and assigned to multiple threads for the paral-
lel execution (see Fig. 6). The coarse-grain parallelization
approach attempts to parallelize the AES-CTR algorithm
at the level of 16-byte blocks. A large amount of data is
typically received at a computing node in a network-based
application. The data consists of multiple 16-byte blocks.
The data encryption is applied to the multiple blocks us-
ing multiple threads at the same time [1]. In order to im-



1690
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

plement the coarse-grain parallelization, the for-loop in the
procedure aes ctr in Fig. 5 is parallelized. Figure 7 illus-
trates the coarse-grain parallelization approach. For exam-
ple, Block-1, Block-(N/4 + 1), Block-(N/4 × 2 + 1), and
Block-(N/4 × 3 + 1) are encrypted at the same time by
4 different threads. Then move on to the next 4 blocks
(Block-2, Block-(N/4+ 2), Block-(N/4× 2+ 2), and Block-
(N/4 × 3 + 2)), and so on.

5. Our Parallelization Approach Using Extended
Block Size

The fine-grain approach of the previous research parallelizes
the encryption of each 16-byte unit size block. The time to
execute computation steps is relatively small compared with
the time for forking and joining threads. Therefore, it in-
curs large synchronization overheads. On the other hand,
the coarse-grain approach in the previous research does not
attempt to parallelize the encryption of single block. In-
stead, it attempts to parallelize and speed-up the encryption
of the total number of blocks in the given data using multi-
ple threads. This approach may lead to a longer run time to
encrypt a single block, but incurs significantly lower par-
allelization overheads such as synchronizations compared
with the fine-grain approach. Furthermore, the scheduling
overhead is lower in the coarse-grain approach as the num-
ber of the parallel task invocations is reduced. In fact, the
coarse-grain approach gives better throughput performance
overall than the fine-grain approach in encrypting multiple
blocks of the given data [1]. In our new parallelization ap-
proach, we improve the previous coarse-grain approach by
further reducing the overheads associated with the paral-
lelization.

First, we analyze the performance of the previous
coarse-grain approach. Given a data consisting of N 16-byte
blocks for encryption (for example, if the given data size is
1 KB, then there are N = 1024/16 = 64 blocks), the coarse-
grain approach distributes N/P-blocks to each core where P
is the number of cores available for the parallel execution.
Each core encrypts the assigned 16-byte blocks sequentially
N/P-times as the Figure 7 shows. (In Fig. 7, P is assumed to
be 4.) Each of the N/P repetitions also involves procedure
calls for encrypting a block, and the parallel job scheduling
and the synchronization overheads. Thus, the parallel time
to encrypt N 16-byte blocks can be formulated as

Tparallel =
N
P
× Tcomp +

N
P
× (Tsync +Tsched +Tovhd)

Comparing the computation time and the parallelization
overhead in the above formula the former is relatively small,
because the unit block size (16-bytes) assigned to each core
for encryption at one time is small compared with the com-
puting capability of each CPU core.

In order to exploit the computing power of each CPU
core more efficiently, we need to increase the granularity of
the computation involved in the data encryption so that the
associated parallelization overheads can be reduced. To this

Fig. 7 Coarse-grain parallel encryption of 16-byte blocks using 4-
threads.

Fig. 8 New approach to parallelize AES-CTR using an extended block.

end, we propose to extend the block size across the 16-bytes
unit block boundaries to create a larger block. For instance,
we coalesce E-unit blocks (in Fig. 8, E = N/4) to create a
larger extended block.

Now, we analyze the performance of the proposed ap-
proach. Let the computation time for encrypting an ex-
tended block (E × 16-byte) be Tcomp new. The computing
time for the new approach can be computed as (N/E)/P ×
Tcomp new. In the new approach, the cost for distributing
blocks to each core and the number of procedure calls for the
encryption and the synchronizations at the end decreases by
a factor of E compared with the coarse-grain approach for a
given data size. The formula below summarizes the time for
the new approach:

Tparallel =
N/E

P
× Tcomp new

+
N/E

P
× (Tsync + Tsched + Tovhd)

Comparing Tcomp new and Tcomp, we may assume, without
loss of generality, that Tcomp new ≤ E ×Tcomp, thus N/E/P×
Tcomp new ≤ N/P × Tcomp by multiplying both sides with
N/E/P. As mention above, the parallelization overhead de-
creases by a factor of E (the degree of block coalescing).
Therefore, our proposed approach improves the total time
to encrypt a given data consisting of N 16-byte blocks. Fig-
ure 9 describes the new approach in the pseudo-code.

The new approach incurs some overheads also:

• In order to apply the same key to the extended block,
we need to extend the key size also. Thus we first al-
locate E × 16-byte memory for the extended key. Then
we replicate the 16-byte (size of the unit block) key E-



TRAN et al.: HIGH THROUGHPUT PARALLELIZATION OF AES-CTR ALGORITHM
1691

Fig. 9 Parallelization of AES-CTR using an extended block.

times to fill the allocated memory to be used for the
steps afterwards.
• Also, this approach increases the time to encrypt unit-

sized (16-byte) block, since the encryption is now per-
formed at the level of the extended block (E×16-bytes).
Thus it improves the throughput performance at the
cost of the increased latency for encrypting a unit-sized
block, because the unit block is now encrypted as part
of encrypting E-unit blocks.

6. Experimental Results

We’ve conducted experiments to measure the performance
of our new parallel approach using the extended block. We
also measure the performance of the previous parallelization
approaches to compare with our approach. The experiments
were conducted on both a general-purpose multi-core pro-
cessor and on a GPU. We present the results in the following
subsections.

6.1 Results on General-Purpose Multi-Core Processor

We’ve parallelized the AES-CTR code for both the coarse-
grain approach of the previous research and our new ap-
proach using OpenMP [17]. Experiments were conducted
on 2.2 Ghz, 4-core Intel Core 2 Duo processor with 2 GB
DRAM, running Centos 5.5 OS.

We’ve also implemented the fine-grain parallelization
approach of the previous research. However, it generated

Table 1 Performance results in seconds on 4-core Intel processor.

Fig. 10 Run time comparisons of the coarse-grain approach and the new
approach using 4-threads and various extended block sizes.

a large number of false-sharing of the cache blocks, be-
cause multiple threads participate in encrypting single 16-
byte block leads to multiple concurrent accesses to the same
16-bytes in the same cache block (at least one of the accesses
is a write access). The false-sharing led to prohibitively
large run times, at least 10-times slower than the serial ex-
ecution time. Thus we are not showing the results for the
fine-grain approach here.

Table 1 compares the run times of the coarse-grain ap-
proach and the new approach, using 1-,4-,8-threads on 4
CPU cores. Thus 4-, 8-threads runs used all of the 4 CPU
cores.

Figure 10 compares the run times of the coarse-grain
approach (16-bytes) and the new approach (1 KB, 2 KB,
4 KB, 512 B) using 4-threads:

• Both the coarse-grain approach and the new approach
show good scalability when comparing the run times
using 1-thread and 4-threads.
• Using 1 KB extended block size, extended from 16-

byte by 64-times, the new approach shows 1.25∼1.28x
speedup compared with the coarse-grain approach us-
ing 4-threads as Fig. 10 shows. The performance im-
provements are almost uniform for different data sizes
(4 MB, 16 MB, 32 MB).
• 1 KB block size turns out to be the best. 512-bytes,



1692
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

2 KB and 4 KB block sizes also show some improve-
ments for large data sizes such as 16 MB and 32 MB.
This is somewhat out of our expectation, because it is
speculated that the larger the block the smaller the par-
allelization overhead and the better the performance in
our new approach. According to our analyses, 2 KB
and 4 KB blocks show some cache thrashing overheads
due to the cache line mapping. Thus finding a good
block size is important.
• Using 8-threads, it shows further improvements com-

pared with the 4-threads run in many cases and does not
show any major drawbacks. (Even the previous coarse-
grain approach shows a small improvement using 8-
threads compared with 4-threads as Table 1 shows.)
Using 1-KB block, the performance improvement is
furthered to 1.27∼1.43-times speedup compared with
the coarse-grain approach using 8-threads. This is be-
cause the cache misses appearing in block encryptions
are masked off by the useful computations generated
from 4 overloaded cores with 2 threads each.
• In the 8-threads run, the best throughput performance

obtained for the previous coarse-grain approach and
our new approach are 503.9 Mbps and 719.1 Mbps re-
spectively (using 1 KB extended block size). The data
size used is 16 MB. The new approach results in 1.43-
times better throughput performance than the previous
approach.

6.2 Results on GPU

We also conducted the same experiments on a GPU. We
used Nvidia GeForce 8800 GT with 600 Mhz graphics
clock, 1500 Mhz processor clock. It consists of 112 thread
processors organized in 16 thread blocks. It has 16 KB
shared memory per thread block. It doesn’t have L1 data
cache. The size of the device memory is 512 MB.

In the parallel implementation of our approach, we
used CUDA. As explained earlier in Sect. 3.2, the CUDA
model reflects the complicated memory hierarchy of the
GPU. Depending on where the data is placed in the mem-
ory hierarchy, the resulting performance of the application
varies significantly. The data placement is mostly under the
programmer’s control in CUDA. In the AES-CTR code,
a significant portion of the run time is spent in the table
lookup. Thus we store the 4 lookup tables in the shared
memory in order to reduce the access overheads. Unlike the
lookup tables, the plain text is stored in the global memory.
Thus it is fetched from the global memory to the registers
when a thread needs to encrypt the plain text into the ci-
pher text. The pain text is read only once, thus we choose
to store them in the global memory instead of the shared
memory. Then we rely on the GPU’s multithreading to hide
the global memory access latency of threads with the useful
computation cycles of other threads.

In order to compare our approach with the previous
one, we first implemented the fine-grain and the coarse-

Fig. 11 Performance comparison of fine-grain approach and coarse-
grain approach on Nvidia GeForce 8800 GT.

Fig. 12 Run time comparisons of new approach on GeForce 8800 GT
with previous coarse-grain approach (16-byte).

grain parallelization approaches of the previous research [1].
Note that, on the GPU, the false-sharing effect of the cache
block on a multi-core processor doesn’t occur. Therefore,
we implemented the fine-grain approach also. We use the
shared-memory to store the lookup tables as in [1]. Fig-
ure 11 shows the performance results. In fact, the experi-
ments closely reproduce the performance results in [1] when
the shared memory is used to store the lookup tables. (In [1],
they alternatively stored the lookup tables in the constant
memory. The performance of the constant memory, how-
ever, is lower than the shared memory.) For small data sizes
(≤ 256 KB) the fine-grain approach performs better. As the
data size increases, the coarse-grain approach outperforms
the fine-grain approach. From this point on, we will use the
coarse-grain results only to compare with our new approach.

Figure 12 shows the results of the new approach com-
pared with the previous coarse-grain approach using 16-byte
block size. The new approach shows significant perfor-
mance improvements. Using the run times we compute the
speedups of the new approach compared with the coarse-
grain one. The speedups range 4.58∼7.25 for different ex-
tended block sizes as Fig. 13 shows. In fact, on a GPU,
the larger the block size, the larger the performance gain
in general as expected in our new parallelization approach.



TRAN et al.: HIGH THROUGHPUT PARALLELIZATION OF AES-CTR ALGORITHM
1693

Fig. 13 Speedup of the new approach using various extended block sizes
compared over the previous coarse-grain approach (16-bytes).

Fig. 14 Throughput of the new approach using various extended block
sizes compared with the previous coarse-grain approach (16-bytes).

This is true for block sizes up to 4 KB. Considering that the
speedup in Sect. 6.1 on a 4-core processor was in the range
of 1.27∼1.43 using up to 8-threads, the speedup on a GPU
for the new approach is huge.

Figure 14 shows the throughput performance of the
new approach compared with the previous approach. Using
16-bytes block of the previous approach, 12 Gbps through-
put is achieved. Using the new approach, significantly
higher throughput was achieved: 53 Gbps∼87 Gbps. The
highest throughput, 87 Gbps, is obtained when 32 MB data
size was encrypted using 4 KB extended block. This is 7.25-
times higher than the throughput of the previous approach
(12 Gbps).

In presenting our performance results, we do not con-
sider the data transfer time from the host (or CPU) memory
to the device memory. In [1] with which we compared the
performance of our approach, they do not include the data
transfer time either. If we include the transfer time, the over-
all throughput performance will drop. The data transfer can
be fully or partially overlapped with the computations (data
encryptions). However, we couldn’t implement the over-
lapping of the data transfer with the computations in our
experiments, because the GPU we used (Nvidia GeForce
8800 GT) has a low CUDA Compute Capability (1.1) where

Table 2 Data transfer time for different block sizes.

Fig. 15 Performance effects of multithreading.

the overlapping is not available. Table 2 shows the data
transfer time for different block sizes.

6.3 Effects of Extended Block Size on GPU Performance

The new approach using the extended block size signifi-
cantly improves the performance as expected. This effect
is more distinguished in the GPU results. Compared with
the results on 4-core Intel processors, the observed speedup
on the GPU is much larger (7.25-times vs. 1.43-times). The
extended block size in our approach has the following pos-
itive performance effects on the GPU architecture and the
memory system:

• As explained in Sect. 3.2, the GPU is executing in both
the SIMD mode and the multithreaded mode. Having
multiple threads available for execution can theoreti-
cally tolerate the long global memory access latencies
which take a long time (≥ 200 cycles).
• The bandwidth to the global memory, however, has a

limit. If there are too many threads accessing the global
memory concurrently, it can lead to congestions in the
global memory access paths and further lengthen the
global memory access latencies [18].
• Figure 15 (a) depicts the case where an appropriate

number of threads are used to effectively mask off the
global memory access latencies by multi-threaded exe-
cution of the GPU. Figure 15 (b) depicts the case where



1694
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.8 AUGUST 2013

Fig. 16 Performance trends between the block size and the number of
threads for 32 MB data size.

an excessive number of threads are generated which re-
sults in the lengthened global memory access latencies
due to the conflicts on the global memory access paths
by the generated threads.
• Finding an optimal number of threads to effectively

hide the global memory access latency while efficiently
utilizing the bandwidth is crucial for high performance.
The number of threads is directly related to the block
size for a given data size: the larger the number of
threads, the smaller the block size as the total data size
is fixed.
• Compared with the coarse-grain approach using 16-

byte unit block, our approach results in a smaller num-
ber of threads by extending the block size for the given
data. Figure 16 shows the performance trend between
the run time and the number of threads for the 32 MB
data using different block sizes 16-bytes, 512-bytes,
1 KB, 2 KB, 4 KB. As we extend the block size, the
number of threads decreases and the performance im-
proves for block sizes up to 4 KB. 8 KB block gives
worse performance than 4 KB. (4 MB and 16 MB data
sizes show similar trends, too, although they are not
shown here.) Therefore, our extended block size ap-
proach efficiently utilizes the GPU’s multithreading ca-
pability and leads to significant performance improve-
ments.

7. Conclusion

In this paper, we proposed a new parallelization approach
for a standard data encryption/decryption algorithm, AES-
CTR. The proposed approach parallelizes the AES-CTR by
extending the data block size encrypted at one time, thus
significantly reducing the overheads incurred with the par-
allelization such as the number of procedure calls, and the
parallel job scheduling and the synchronization overheads.
Experimental results on a 4-core, 2.2 Ghz Intel processor
with 2 GB DRAM, running Centos 5.5 OS shows that the

new approach achieves up to 1.43-times speedup compared
with the original coarse-grain approach where a sequence
of 16-byte unit blocks are encrypted independently by mul-
tiple threads. The same experiments were also conducted
on the Nvidia GeForce 8800 GT GPU with the code par-
allelized using CUDA. The new approach leads to 7.25-
times speedup and the throughput performance improve-
ment compared with the previous coarse-grain paralleliza-
tion approach on the same GPU. The resulting through-
put performance reaches up to 87 Gbps. Compared with
the previous coarse-grain approach the new approach using
the extended block leads to a more efficient use of the mul-
tithreading capability of the GPU and the global memory
bandwidth. Thus it significantly improves the performance
and the degree of the performance improvement on the GPU
is much larger than the improvement on the multi-core pro-
cessor.

Acknowledgements

This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the ministry of Education, Science, and
Technology (Grant No: 2009-0089793 and 2012-042267).

References

[1] A.D. Biagio, A. Barenghi, G. Agosta, and G. Pelosi, “Design of
a parallel AES for graphics hardware using the CUDA framework,”
Proc. 2009 IEEE International Symposium on Parallel & Distributed
Processing, May 2009.

[2] J.W. Bo, D.A. Osvik, and D. Stefan, “Fast implementation of AES
on various platforms.” Cryptology ePrint Archive, Report 2009/501,
Nov. 2009, http://eprint.iacr.org/.

[3] J. Daemen and V. Rijmen, The Design of Rijndael: AES The Ad-
vanced Encryption Standard, Springer-Verlag, 2002.

[4] J. Daemen and V. Rijmen, “AES proposal rijndael [EB OL],”
http://www.daimi.au.dk/˜ivan/rijndael.pdf, Oct. 2010.

[5] L. Deri, “nCap: Wire-speed packet capture and transmission,”
IEEE/IFIP Workshop on End-to-End Monitoring Techniques and
Services, 2005.

[6] M. Dworkin, “Recommendation for block cipher modes of opera-
tion,” NIST Special Publication 800-38A, 2001.

[7] F. Fusco and L. Deri, “High-speed network traffic analysis with com-
modity multi-core system,” http://svn.ntop.org/imc2010.pdf

[8] K. Fatahalian and M. Houston, “A closer look at GPUs,” Commun.
ACM, Oct. 2008.

[9] Harrison and J. Waldron, “AES encryption implementation and anal-
ysis on commodity graphics processing units,” CHES, ser. Lect.
Nodes Comput. Sci., pp.209–226, 2007.

[10] O. Harrison and J. Waldron, “Practical symmetric key cryptographic
on modern graphics hardware,” 17th USENIX Security Symposium.
San Jose, CA, Aug. 2008.

[11] B. He, N. Govindaraju, Q. Luo, and B. Smith, “Efficient Gather and
Scatter Operations on Graphics Processors,” Proc. SuperComputing
07, pp.175–186, Nov. 2007.

[12] S.A. Manacski, “CUDA Compatible GPU as an Efficient Hardware
Accelerator for AES Cryptography,” IEEE International Conference
on Signal Processing and Communication, Nov. 2007.

[13] National Institute of Standards and Technology (NIST), “FIPS-197:
Advanced Encryption Standard,” http://www.itl.nist.gov/fipspubs/,
Nov. 2001.



TRAN et al.: HIGH THROUGHPUT PARALLELIZATION OF AES-CTR ALGORITHM
1695

[14] “Nvidia gtx280”, http://kr.nvidia.com/object/geforce family kr.html
[15] “Nvidia CUDA”, http://developer.nvidia.com/object/cuda.html
[16] M. Pharr and R. Fernando, GPU Gems 2, Addison Wesley, 2004.
[17] M. Quinn, Parallel Programming in C with MPI and OpenMP, Mc-

Graw Hill, 2004.
[18] R.H. Saavedra-Barrera, D.E. Culler, and T. von Eicken, “Analysis of

multithreaded architectures for parallel computing,” ACM Sympo-
sium on Parallel Algorithms and Architectures - SPAA, pp.169–178,
1990

[19] L. Spracklen and S. Abraham, “Chip MultiThreading: Opportu-
nities and challenges,” 11th International Symposium on High-
Performance Computer Architecture (HPCA-11), pp.248–252,
2005.

[20] V. Volkov and J.W. Demmel, “Benchmarking GPUs to tune dense
linear algebra,” Proc. SuperComputing 08, pp.Art. 31:1–11, Nov.
2008.

Nhat-Phuong Tran received the B.S. in
Information Technology from Natural Science
University, Vietnam in 2004, M.S. in Computer
Science and Engineering, Myongji University,
Republic of Korea, in 2012. He is now a Ph.D.
student in the Dept of Computer Science and
Engineering, Myongji University. His research
interests are computer network and high perfor-
mance computing.

Myungho Lee received his B.S. in Com-
puter Science and Statistics from Seoul National
University, Korea, M.S. in Computer Science,
Ph.D. in Computer Engineering from University
of Southern California, USA. He was a Staff En-
gineer in the Scalable Systems Group at Sun Mi-
crosystems, Inc, Sunnyvale, California, USA.
He is currently an Associate Professor in the
Dept of Computer Science and Engineering at
Myongji University. His research interests are
high performance computing architecture, com-

piler, and applications, with special interest in GPU computing.

Sugwon Hong earned BS in physics at
Seoul National University, MS and Ph.D. in
computer Science at North Carolina State Uni-
versity respectively. His professional experi-
ences include Korea Institute of Science and
Technology (KIST), Energy Economics Insti-
tute (KEEI), SK Energy Ltd. and Electronic and
Telecommunication Research Institute (ETRI),
all in Korea. Currently he is a professor at Dept.
of Computer Science and Engineering, Myongji
University since 1995. His major research fields

are network protocol and architecture, network security.

Seung-Jae Lee received his B.S. and M.S.
degrees in Electrical Engineering from Seoul
National University, Korea and Ph.D. from the
University of Washington, Seattle, USA. Cur-
rently, he is a professor at Myongji University
and also a director of Next-generation Power
Technology Center (NPTC). His primary re-
search areas are protective relaying, distribution
automation and substation automation.


