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Spectral Subtraction Based on Non-extensive Statistics for Speech

Recognition
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SUMMARY  Spectral subtraction (SS) is an additive noise removal
method which is derived in an extensive framework. In spectral subtrac-
tion, it is assumed that speech and noise spectra follow Gaussian distribu-
tions and are independent with each other. Hence, noisy speech also fol-
lows a Gaussian distribution. Spectral subtraction formula is obtained by
maximizing the likelihood of noisy speech distribution with respect to its
variance. However, it is well known that noisy speech observed in real situ-
ations often follows a heavy-tailed distribution, not a Gaussian distribution.
In this paper, we introduce a g-Gaussian distribution in the non-extensive
statistics to represent the distribution of noisy speech and derive a new spec-
tral subtraction method based on it. We found that the g-Gaussian distribu-
tion fits the noisy speech distribution better than the Gaussian distribution
does. Our speech recognition experiments using the Aurora-2 database
showed that the proposed method, g-spectral subtraction (¢-SS), outper-
formed the conventional SS method.

key words: robust speech recognition, spectral subtraction, Gaussian dis-
tribution, q-Gaussian, maximum likelihood

1. Introduction

The performance of speech recognition degrades signifi-
cantly in the presence of background noise. Spectral sub-
traction (SS) is often implemented to remove the additive
background noise [1]. Spectral subtraction (SS) is one pop-
ular method to remove additive noise [2]. It is basically a
variance estimator which is derived in the extensive frame-
work. In this framework, speech and noise spectra are as-
sumed to follow Gaussian distributions and are uncorrelated
with each other. Hence, the noisy speech spectra also follow
Gaussian distributions. The spectral subtraction formula is
derived by maximizing the likelihood of the noisy speech
distribution [3].

Even though the distribution of the speech spectrum
may approximate a Gaussian distribution when a very long
window is employed, it does not follow the Gaussian dis-
tribution for short-time window [4] but show a heavy-tailed
distributions instead. Therefore, it is not surprising that
spectral subtraction has limitations and may not give suffi-
ciently high performance [5]. A weighting factor is often in-
troduced to improve its performance as in nonlinear spectral
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subtraction (NSS) [6],[7]. However, this factor is decided
heuristically. Several other distributions such as Laplace [8]
and Gamma [9], [10] distributions have been used instead of
Gaussian distributions.

Recently, a theory of non-extensive statistics has been
introduced to explain several phenomena in complex sys-
tems [11]. This framework uses Tsallis entropy, which is
a generalization of Shannon entropy. By maximizing Tsal-
lis entropy, a g-Gaussian distribution can be obtained. This
distribution can represent a heavy-tailed distribution. It has
successfully represented many phenomena in complex sys-
tems in statistical mechanics, economics, finance, biology,
astronomy and machine learning.

In this paper, we propose g-spectral subtraction (g-
SS)[12], which is a spectral subtraction method derived
in the non-extensive statistics. In this method, we assume
noisy speech spectrum follows a g-Gaussian distribution and
derive ¢-SS in a similar way as spectral subtraction is de-
rived. We further analyze the performance of g-SS under
various conditions in more detail and derive a way to opti-
mize the parameter in ¢-SS in this paper.

The remainder of this paper is organized as follows. In
Sect. 2, we explain how the spectral subtraction is derived.
We briefly describe the g-Gaussian distribution in Sect. 3. In
Sect. 4, our proposed method, g-spectral subtraction, is ex-
plained. The experimental setup and results are described
and discussed in Sects. 5 and 6 respectively. Section 7 con-
cludes this paper.

2. Spectral Subtraction
2.1 Derivation

Spectral subtraction is perhaps one of the most popular
methods to remove additive background noise. In spectral
subtraction, the estimate of the clean speech spectrum is ob-
tained by simply subtracting the noisy spectrum with the
estimate of the noise spectrum. From the statistical point
of view, SS is a variance estimator assuming noisy speech
spectrum follows a Gaussian distribution [3].

Spectral subtraction is derived as follows. Let y(f) de-
note noisy speech consisting of clean speech x(¢) and addi-
tive noise n(f). By taking the short-time fourier transform
of the signals, we obtain their spectral representation. Con-
sider a spectral component at frequency f. We assume a
spectral component, Xy, of clean speech is a complex ran-
dom variable that follows a Gaussian distribution with zero
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mean and variance o(f). Similarly, a spectral component of
noise signal, Ny, is also a complex random variable that has
a Gaussian distribution with zero mean and variance 7(f).
We also assume that Xy and Ny are statistically indepen-
dent, and hence, noisy speech, Yy, also follows a zero mean
Gaussian distribution with the probability density of Yy is
given by:

Y 2
e ) )

1
P = e"p( )

where v(f) is the variance of noisy speech. Since speech
and noise are independent, v(f) = o (f) + 7(f). We would
like to find the estimate of the clean speech variance from
an observation of |Y/|* assuming 7(f) is known. By differ-
entiating P(Yy) with respect to o(f) and equating it to zero,
we obtain &(f), the maximum likelihood estimation of o(f)
as the following:

G(f) = 1Y = 7(f). (2)

Let [X f|2 and |N f|2 be the observed power spectra of clean
speech and noise respectively. For zero mean distributions,
the variance of a distribution is the average of the squared
of the spectrum. Therefore |X/[> = o(f) and IN/> = 7(f).
Equation (2) becomes:

IX(AHIF = Y = INgP 3)

Equation (3) is the power spectral subtraction formula. It
maintains a linear relation between noisy speech, noise and
clean speech. Therefore, it is also called linear spectral sub-
traction (LSS).

2.2 Nonlinear Spectral Subtraction

The simplicity of spectral subtraction comes with a price.
The inaccuracy of noise estimation causes distortions and
information losts in speech. There have been many vari-
ants of spectral subtraction proposed to improve its perfor-
mance. One popular variant of spectral subtraction is the
one proposed by Berouti et al. [6]. They introduce an over-
subtraction factor, @, and the spectral subtraction formula
becomes:

IX P = 1Y/ = alNgI~ 4)

Since the introduction of @ makes the subtraction nonlinear,
it is called nonlinear spectral subtraction (NSS). Zhu and
Alwan [13] reported that the use of « also compensates for
nonlinear relation between noise and speech. Even though
NSS has shown to improve the robustness of ASR better
than LSS, the parameter « is determined heuristically. There
exists no consistent ways to optimize a.

Many variants of NSS have been proposed [7], [14],
[15]. They are basically modifications of the Eq.(4). In
this paper, we determine « for each frequency bin, denoting
«ay, using the following relation [6]:

1 if ®; > 20dB,
ar =3 ay— 5P, if-5dB <@, <20dB, 6)
4.75 if &y < —5dB.
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Parameter o is the desired value of @ at 0dB SNR. It is
usually set between 4 and 6. In this paper we use g = 4. Oy
is the noisy signal to noise ratio (in dB), i.e. the a posteriori
SNR. In this paper, we calculated it for each frequency bin
using the following formula:

@, = 10logyy, (6)
where:
Y /I?
Y= . @)
INg?

In this paper, we denote NSS of which a; is determined
using Eq. (5) as NSS_n. When a single and constant a/ is
used for all spectra, we denote it as NSS_c.

3. Q-Gaussian Distribution

Recently, Tsallis has introduced a theory of non-extensive
statistics in the field of statistical mechanics [11]. This the-
ory generalizes Boltzmann-Gibbs statistics by utilizing g-
exponential function:

exp,(x) = (1 + (1 - 0™, ®)
and its inverse, g-logarithmic function:
- _ |
l1-g °
These functions asymptotically approach exponential and
natural logarithmic functions respectively as g approaches

1. They are non-extensive when ¢ # 1[16]. In the non-
extensive framework, entropy is redefined:

log,(x) = )

Sq=—k f pi(x) log, pi(x). (10)

This entropy is called Tsallis entropy. It is a generalization
of Shannon entropy.

A g-Gaussian distribution can be obtained by maximiz-
ing the Tsallis entropy in a similar way as a Gaussian dis-
tribution can be derived from Shannon entropy. The density
function for a g-Gaussian distribution with zero mean and
variance A, is defined by:

P = 22 exp (— ngqz} (11
N D
where A, is a normalization term and defined as:
% % -0 <g<1
Ag={ g=1 (12)
M) =l 1< q <3,

M%) ¥ 7
and B, is a scaling factor and in a normalized distribution

B, = L_ . Figure 1 shows the probability distributions
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Fig.1 ¢-Gaussian distribution for several g.

of g-Gaussian for several g-values. The g-Gaussian distri-
bution is a compact support distribution when g < 1 and a
heavy-tailed distribution when 1 < g < 3. It is identical with
the Gaussian distribution when g = 1.

In this non-extensive framework, the g-value is used to
represent the degree of complexity [17] of a system. How-
ever, up to our knowledge, an automatic method to optimize
q does not yet exist. In the implementation, it is usually
chosen empirically.

4. (@Q-Spectral Subtraction
4.1 Derivation

When speech and noise are Gaussian random variables,
noisy speech can still be a Gaussian even when speech and
noise are correlated [18]. However, the short-time speech
spectra are not likely to follow Gaussian distributions [4],
[19]. Therefore, the distribution of noisy speech is likely
not a Gaussian, even when speech and noise are indepen-
dent. For this reason, we assume that noisy speech fol-
lows the g-Gaussian distribution, which has heavy-tailed.
Theoretically, the g-Gaussian distributions can emerge from
either the sum of correlated random variables [20]-[22] or
the sum of independent N g-Gaussian random variables for
small number of N [23]. It has also been shown that the long
term behavior of a locally stationary system that follows a
Gamma distribution exhibits a g-Gaussian distribution [24],
[25].

The g-spectral subtraction (¢g-SS) formula is derived
as follows. Consider a spectral component at frequency
f- We assume speech and noise to be g-Gaussian and
independent. Therefore, the spectral component of noisy
speech follows the g-Gaussian distribution with variance
ve() = oy(f) + 74(f), where o,(f) and 7,(f) is the vari-
ance of speech and noise respectively. Let Yz = Re(Yy)
and Y; = Im(Yy) be the real and imaginary parts of the
speech spectrum respectively. Assuming both Yk and Y; fol-
low g-Gaussian and are identically distributed with variance
v4(f)/2. Then, the probability density functions for Yz and
Y, are as follow:

V2A,B, [ ZBﬁlYRIZ]
—exp,|— s
voH L v

Py(Yr) = (13)
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Pq(YI) =

\2A,B 2B2|Y,?
20 exp, |- |. (14)

V() ve(f)

We assume that the real and imaginary part of each Y,
are independent since it was reported that their dependency
was small in average [10]. Then, the distribution for noisy
speech is formulated as follows:

2A%B; [ 2B§1|Yf|2]
X - .
ve(f) T ve()

Equation (15) is identical with Eq. (1) when ¢ = 1. By dif-
ferentiating P,(Y) with respect to o4(f), and equating to
zero, we obtain the maximum likelihood estimate, 6,(f), as
the following:

Py(Yy) = 5)

202 -
oo = 25D -y (16)
-q
Since o (f) = IX¢|* and 7,(f) = |Ns[*, Eq. (16) becomes:
cn_22-9 0 _ 2
|X7l" = e [Yrl® = INgI7. (17)

Equation (17) is the g-spectral subtraction (g-SS) formula.
It is the same as LSS when g = 1.

4.2 Relation to Nonlinear Spectral Subtraction

In this section, we relate g-SS with NSS in Eq. (4). Denoting
u(q) = %_qq), we can rewrite Eq. (17) as follows:

X = v(@I Y4 = INgIP. (18)
By dividing Eq. (18) with v(g), we obtain:
1 1

R = Y=
o =W =3

NI 19)
Since scaling does not affect the performance of speech
recognition, we can relate « in Eq. (4) with Eq. (19) as fol-
lows:

Lo
~u(g)’
3-¢q
= . 20
22-q) 20

Based on Eq.(20), « is positive when ¢ < 2. It is infinity
when ¢ = 2. By this way, our method becomes identical
with NSS. Our ¢-SS formulation also gives a consistent way
to estimate the control parameter « in NSS.

4.3 O-SS Based on the Optimum g-Gaussian Distribution

In this section, we derive another way to determine g. The
optimum ¢ is estimated by finding the value of g of the g-
Gaussian distribution that fits best the distribution of noisy
speech based on the minimum mean square error (MMSE)
criterion.

To estimate g, we first find the g-Gaussian distribution
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Fig.2  The scatter plot between g, the g-value that fits the empirical dis-
tribution of noisy speech based on the MMSE criterion, and the SNR con-
dition. The solid line is the relation between g and the SNR based on linear
regression method.

that fits the empirical distribution S(Yz) of noisy speech,
where Yy, is the real part of DFT coefficients of Y and S (Yy)
is the normalized histogram of Yi whose total area is 1. We
use the first 10 utterances from the test set A of the Aurora-2
database to obtain S (Yz). We estimate S (Y) for each SNR
conditions. It should be noted that the Aurora-2 database
provides the a priori database, i.e. the ratio between clean
speech and noise. This is different from @ in Eq. (6) which
is the a posteriori SNR. Based on the data, we obtain its
variance and S;(Yg) where i = 1,2,...,n are the center
point of each histogram bin. The g-value that minimizes
the sum of the mean squared error between the normalized
histogram, S ;(Yg) and the corresponding g-Gaussian distri-
bution, P,,(Yr), which we denote as g, is selected using the
following formula:

n

4 = argmin - > (S k)~ Py(¥R)) @1)

n
4q i=1

After obtaining g for every SNR, we find the relation be-
tween SNR and § using linear regression.

Figure 2 shows the scatter plot between the estimated g
and the SNR conditions and the result of linear regression.
We limit g = 1.88 when the SNR is low (lower than —5 dB)
and g = 1 when the SNR is high (higher than 20 dB). These
are the same limits used in NSS. The relation between the
SNR and § is formulated as:

1 if W,(m) > 20dB,

G=1{-0.038%,(m)+1.8 if-5dB < ¥(m) < 20dB,
1.88 if W, < -5dB,

(22)

where W¢(m) is the clean speech signal-to-noise ratio (in
dB), i.e. the a priori SNR. It is different from @, of Eq. (7),
which is the ratio between noisy speech and noise. It is cal-
culated using the following formula:

Y r(m) = 10log &7(m), (23)
where:
X 2
£y = 1L 24)

INA?
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In practice, &p(m) is unknown and needs to be es-
timated. =~ We obtain éf(m), the estimate of &7, us-
ing the maximum likelihood method [26]. In the maxi-
mum likelihood method, &;(m) is estimated based on L
past observations of the noisy speech spectra Y (m) =
{Yf(m), Yi(im—1),....,Ys(m— L+ 1)}, assuming the noise
variance, 7(f) is known. By assuming the statistical inde-
pendence of the L observations and using Gaussian model,
we obtain the likelihood function:

L-1

1
p(Y sm)lo(f), (/) = | | ———
' 1_01 ¢ (o(f) +7(f)

Ym i)
exp [" a(f) + T(f)) ’

where o(f) is the clean speech variance. By maximizing
Eq. (25) with respect to o(f), we obtain:

. 15 .
6(f) = max [z ; Y}(m = j)—Tr(m), O] . (26)
By dividing both side of Eq. (26) by 77(m), we obtain:
=
ff(M)=maXIZiZ;7f(m—j)— 1,0}, (27)

where yy(m) is the a posteriori SNR given in Eq. (7). In
practice, Eq. (27) is replaced by recursive operation:

&/m) = max [7,0m) - 1,0, (28)
where:
7f0n)::a7f0n——1)+-<1—-a>1fgfz, (29)

In this paper, we apply a = 0.725 and b = 2. We denote
g-SS that use the relation in Eq. (22) as ¢g-SS_m.

4.4 Noise Estimation

In spectral subtraction, it is assumed that the noise power
spectra known. However, they are unknown in practice and
need to be estimated. In this paper, we applied the minima
tracking algorithm [27] to estimate noise. In this method, the
noise power spectrum is pre-estimated using the following
formula:

INs(m)* = yIN(m — 1)

1=y . .
T Z (177 = 17, m)?). (30)

where |Y(m, k)]? is the smoothed noisy power spectrum
which is obtain using the following formula:

[Yr(m)l* = 6Y p(m = DI* + (1 = ) |Yp(m). 31

We use the values y = 0.998, 4 = 0.96 and 6 = 0.9 in this

paper.
Since noise is usually nonstationary, it is important to
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keep updating the noise spectrum. We implement a voice
activity detector (VAD) algorithm proposed by [28]. In this
method, the ratio of the noisy spectrum and the noise spec-
trum is used to determine when to update the noise spectra.
It is calculated as follows:

Zpm) = {7 (m)

rel — i , 32
G = ey = o) G2
where {;(m) = 'll;lff((—:)):: The value of (}“i"(m) and 7 (m)

are determined from 20 previous successive frames. The
updating rules are:

. s [N m—=1)P if &8 (m) < T,
IN(m, k)" = {Wf(m)'z lse, (33)

where T is a threshold. We set T to 0.15.
4.5 Flooring

Due to inaccuracies in the estimation of noise spectrum, the
power spectrum estimate of clean speech, |X f|2, could be
negative. To avoid this, a flooring rule is usually applied.

X7 = BIY I if X < BIYeP. (34)

We set 8 = 0.01 in this paper. It is applied for the three
spectral subtraction methods, LSS, NSS and ¢-SS.

5. Experimental Setup

Our proposed method was evaluated in speech recogni-
tion experiments using the Aurora-2 database [29]. In this
database, eight types of noise: subway, babble, car, exhi-
bition hall, restaurant, street, airport and train station, were
added to clean speech artificially. It has two training condi-
tions: clean-condition and multi-condition. In this paper, we
used the clean condition training data for training the acous-
tic model. For testing, this database provides three test sets:
A, B and C where noise is added at SNRs of 20dB, 15dB,
5dB, 0dB and -5 dB.

We used 38 dimensional MFCC features: 12 static fea-
tures, their 1¥-order and 2"-order derivatives, A log en-
ergy and AA log energy. An HMM-based decoder is used
for speech recognition. Each digit is modeled by an HMM
with 16 states, left-to-right, with three Gaussian mixtures
for each state.

For evaluation measure, we used a word accuracy rate.
For the Aurora-2 database, the average accuracy denotes the
average over SNR 0dB to 20dB.

6. Experiment Results and Discussions
6.1 (O-Gaussian Representation of Noisy Speech
We investigated the g-Gaussianity of noisy speech in a sim-

ilar way explained in Sect.4.3. The difference was the
amount of utterances we used to build the histograms. In this
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Fig.3  The optimal g-values for different SNR conditions.
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Fig.4  Gaussian and g-Gaussian distributions fitted to the histogram of
the speech data corrupted with subway noise at 0 dB SNR.

section, we used 200 utterances of female speakers for each
SNR condition from Test Set A of the Aurora-2 database.
We only considered a single DFT coefficient (50-th coeffi-
cient) from a total of 256 coefficients.

Figure 3 shows the estimated g-value for each noise
conditions and for each SNR condition. As we can see, the
optimum g-value is higher when the SNR is lower. Figure 4
shows that the g-Gaussian distribution with g = 1.9 better
fits the noisy speech than a Gaussian distribution (g = 1)
does.

6.2 Performance of ¢g-SS

We first conducted several experiments to evaluate the per-
formance of ¢g-SS_c. We varied ¢ from 1 to 2. We varied ¢
with increments 0.1 from ¢ = 1.0 to ¢ = 1.8. Since there
was an abrupt changes from ¢ = 1.8 to ¢ = 2, we varied
g with increment 0.01 in this region. Figure 5 shows the
performance of ¢-SS_c for different SNR conditions on the
Aurora-2 database. The best accuracy was obtained when
g = 1.88, with 18.1% error reduction rate from the case
when g = 1, i.e the case when ¢-SS_c was the same as LSS.

We noticed that the word accuracies drastically de-
graded when ¢ was from 1.9 to 2.0. This occurred for all
SNR conditions except for 20 dB SNR. When g approaches
2, the weight factor in g¢-SS, i.e. v(g), approaches zero.
Therefore, it is very likely that v(¢)|Y/* < |Ny/*. In this con-
dition, the clean speech estimate, X2, equals to the flooring,
BlY f|2, and hence the recognition accuracy drops to the con-
dition where no spectral subtraction method is applied.

We found that g-SS was significantly effective when
the SNR conditions are between 0 to 10 dB. It was not sig-
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Table 1  Performance comparison (Word Accuracy (%)) of ¢g-SS_c (¢ = 1.88) and ¢-SS_m for differ-
ent types of noise and SNR conditions of the of Aurora-2 database.
. SNR (dB)

Methods Noise Types 0 | T3 | 10 | 3 | 0 | =
q-SS_c (q=1.88) Subway 97.5 | 95.0 | 904 | 754 | 442 | 203
g-SS_m 96.6 | 944 | 89.7 | 76.1 | 45.0 | 20.3
q-SS_c (q=1.88) Babble 91.0 | 87.5 | 81.6 | 65.6 | 38.1 | 17.0
q-SS_m 91.3 | 89.2 | 824 | 67.8 | 39.3 | 16.1
q-SS_c (q=1.88) Car 979 | 97.0 | 923 | 75.8 | 38.0 | 15.7
q-SS_m 973 | 96.5 | 92.0 | 757 | 37.6 | 153
q-SS_c (¢q=1.88) Exhibition 957 | 93.2 | 87.7 | 69.6 | 349 | 144
g-SS_m 957 | 929 | 87.7 | 72.6 | 39.1 | 15.7
q-SS—c (q=1.88) Restaurant 889 | 844 | 773 | 622 | 385 | 15.2
q-SS_m 89.1 | 85.6 | 79.1 | 64.0 | 39.6 | 16.1
q-SS_c (q=1.88) Street 97.2 | 952 | 893 | 722 | 402 | 17.6
g-SS_m 96.7 | 94.7 | 89.0 | 73.2 | 40.8 | 17.5
q-SS_c (q=1.88) Airport 914 | 89.0 | 84.9 | 71.6 | 45.7 | 20.1
g-SS_m 922 | 904 | 852 | 72.1 | 46.3 | 20.3
q-SS—c (q=1.88) Station 954 | 934 | 888 | 74.0 | 43.1 | 183
q-SS_m 945 | 929 | 887 | 73.6 | 422 | 18.1

—20dB = =—15dB Table 2 Performance comparison (Word Accuracy (%)) of g-SS—c (g =

====10dB ===:5dB —e—0dB —+—-5dB

S
oy
©
5
3
<
el
S
=
%11 12 13 14 15 16 17 18 19 2
q
Fig.5 Word Accuracy of ¢-SS_c for different SNR conditions. The av-

eraged values over all the noise types are shown.

nificantly effective under the higher SNR conditions. We no-
ticed some inconsistencies of our experimental results with
the results in Sects. 4.3 and 6.1. When the SNR > 5 dB, the
performance was better when a higher ¢ was applied. We
did not expect these results. These results suggest that the
SNR may not be the only factors that can affect g or the
relation between the SNR and g may not be linear. In the
previous sections, we used the variance from the data to find
the optimum distribution. It should be noted that the vari-
ance of a g-Gaussian distribution depends on g. The vari-
ance of the g-Gaussian distribution is larger when the g is
higher. In other words, we could fit the distribution of the
clean spectra into the g-Gaussian distributions at a higher ¢
if the variance is optimized. In high SNR conditions, where
speech is more dominant than noise, the distribution of the
noisy speech spectra was heavily influenced by the distribu-
tion of the clean speech spectra. This could affect the opti-
mum g-value for recognition task. Further study is needed to
investigate whether we could relate the distribution of noisy
speech and clean speech.

We also conducted the experiments using an adaptive
g-value, i.e. ¢-SS_m. Tables 1 and 2 summarize the com-
parison of ¢g-SS_m and ¢-SS_c (¢ = 1.88) for eight types
of noise in Aurora-2. The best performances for each noise

1.88) and ¢-SS_m for each test set in Aurora-2. The averaged values over
all the noise types are shown.

[ Algoritm | TestA [ TestB | TestC | Ave. |
g-SS_c (g = 1.88) 77.4 76.1 753 | 76.5
g-SS_m 77.9 76.5 76.6 | 77.1

o
77 1.96 1.‘13 1A‘21 1.‘33 1‘5 1.75 2.‘2 ? 55

N 0N NN
@ & o o

Word Accuracy (%)

~
N

o

Fig.6  Performance comparison of ¢-SS_c and NSS_c for 1 < ¢ <2 and
its equivalent @ value.

type and SNR were printed in bold. We found that ¢g-SS_m
was better in average than that of ¢g-SS_c. We found that
g-SS_m was better especially in the lower SNR conditions.
These results suggest that the SNR could be used as a pa-
rameter to control q.

6.3 Comparison with NSS

In this section, we compared the performance of ¢-SS and
NSS. First, we compared NSS_c and ¢-SS_c, for 1 < g <
1.9, 1 < @ <5.5. The results are shown in Fig. 6. We found
that the performance of ¢-SS was better than that of NSS for
each pair of ¢ and «.

To analyze these results, we compared the attenuation
curves of ¢-SS and NSS. The attenuation curve tells us
about how much a signal is suppressed (in dB) when we
apply NSS and ¢-SS for each SNR condition. To obtain the
attenuation curve, we first find the transfer function of ¢-SS
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Table 3  Performance comparison (Word accuracy (%)) of ¢g-SS_m for each noise type and SNR

condition.
Noise Types
SNR (dB) Subway | Babble [ Car [ Exhibition | Restaurant | Street [ Airport | Station
Clean 98.2 98.1 | 98.0 98.4 98.2 98.1 98.0 98.4
20 96.6 913 | 97.3 95.7 89.1 96.7 92.2 94.5
15 94.4 89.2 | 96.5 92.9 85.6 94.7 90.4 92.7
10 89.7 824 | 92.0 87.7 79.1 89.0 85.2 88.7
5 76.1 67.8 | 75.7 72.6 64.0 73.2 72.1 73.6
0 45.0 393 | 37.6 39.1 39.6 40.8 46.3 42.2
-5 20.3 16.1 | 153 15.7 16.1 17.5 20.3 18.1

Table 4  Performance comparison (Word accuracy (%)) of LSS for each noise type and SNR condi-

tion.

Noise Types

SNR (dB) Subway [ Babble [ Car [ Exhibition | Restaurant | Street [ Airport | Station
Clean 97.9 98.3 | 98.4 98.3 97.9 98.3 98.4 98.3
20 96.3 92.0 | 96.1 95.8 914 95.6 91.9 95.0
15 93.3 88.5 | 93.7 92.6 88.6 92.7 89.8 92.7

10 83.0 81.0 | 83.3 82.6 80.0 81.9 83.5 84.9

5 62.1 62.3 | 56.6 56.1 63.1 58.7 66.4 63.6

0 31.6 34.6 | 26.1 25.9 36.0 32.5 39.9 329

-5 16.6 14.1 12.5 12.3 15.2 14.2 17.7 15.2

filter. It is formulated as follows: 1\”
Hyss = (—) H,ss (42)
v(q)

X/ = Hyss(F)IYl, (35)

where H,.ss(f) can be seen as a time-varying filter given by:

0.5
B (v(q)|Yf|2 - |Nf|2)
SS = |

H,
|Yf[?

q

(36)

Equation (36) can be expressed in term of the a posteriori
SNR, vy, as follows:

u(q)yy -1 )‘)‘"
-

Hyss = ( 37)

The attenuation (dB) is then calculated using the following
formula:
Attenuation = 201log,, H,-ss. (38)

Meanwhile, the transfer function of NSS filter is formulated
as:

2 _ 2,0.5
B (|Yf| a|Ny| ) (39)

Hyss = G

Equation (39) can be expressed in term of the a posteriori
SNR, vy, as follows:

0.5
Yr—a
Hyss = ( : ) . (40)
We can rewrite Eq. (40) as follows:
o (%f B 1) (0.5)
Hynss = | —— (41)
Yr

Since a = %q), we can write Eq. (41) as follows:

We can see that, g-SS is basically NSS with more attenua-
tion.

Figure 7 compares the attenuation curve of NSS and g-
SS as functions of the SNR. We noticed that g-SS applied
more attenuation than that of NSS at high SNR condition.
For instance, for @ = 2, i.e. ¢ = 1.67, if the SNR was 5 dB,
the attenuation was —2.22 dB with NSS and —5.23 dB with
g-SS. As we can see from Eq. (42), the transfer function
of ¢-SS was the transfer function of NSS attenuated with a
factor v(g)®>. In speech recognition, scaling down (attenua-
tion) of the signals did not affect its performance. Therefore,
the performance of speech recognition would not be affected
much by the attenuation at the high SNR conditions. How-
ever, flooring occurred at a higher SNR for ¢-SS than for
NSS. For instance, for @ = 3, i.e. ¢ = 1.8, flooring occurred
at 2dB SNR for NSS and 3 dB for ¢-SS. Since it was more
difficult to estimate noise when the SNR was low, it is very
likely that the clean speech estimate had more distortions
in this region. Thus, flooring these regions may minimized
the distortions. Tables 3, 4, and 5 show the performance of
LSS, NSS_n, and ¢g-SS_m respectively for each combination
of noise type and SNR. The best performance for each type
of noise and each SNR was printed in bold. We found that
g-SS_m was the best among them in average.

Table 6 summarizes the performance of several spectral
subtraction methods for each SNR conditions. The perfor-
mance of g-SS_m was better than NSS for both constant «
(NSS_c) and adaptive @ (NSS_n). Using adaptive g-value,
i.e. ¢-SS_m achieved the best performance in average com-
pared to the other spectral subtraction methods. These re-
sults also confirmed that the parameter g can be controlled
using the SNR information.
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Table S  Performance comparison (Word accuracy (%)) of NSS_n for each noise type and SNR con-
dition.
Noise Types
SNR (dB) Subway | Babble [ Car [ Exhibition | Restaurant | Street [ Airport | Station
Clean 98.0 98.2 | 98.2 98.1 98.0 98.2 98.2 98.1
20 96.1 91.5 | 96.5 95.3 89.6 95.8 91.0 94.4
15 93.4 87.8 | 95.0 91.7 85.9 93.6 89.2 92.8
10 86.3 79.6 | 88.7 85.5 77.0 85.9 82.9 86.7
5 70.8 629 | 69.3 65.0 61.7 66.4 67.8 71.4
0 39.1 35.0 | 33.3 31.6 36.6 36.2 415 38.7
-5 17.4 145 | 132 13.7 15.5 15.1 18.3 16.2
Table 6  The performance comparison (Word accuracy (%)) of several spectral subtraction methods

for each SNR conditions. The average values over all noise types are shown.

SNR Average
Methods 20] 15] 10] 5] 0] =5] (0-20dB)
No Compensation | 959 | 91.0 | 73.7 | 43.5 | 242 | 134 65.7
LSS 945 | 913 | 81.1 | 58.7 | 31.0 | 144 71.3
NSS_c (@ =5.5) 944 | 919 | 86.1 | 70.1 | 38.8 | 16.7 76.2
NSS_n 941 | 914 | 83.7 | 655 | 351 | 154 74.0
q-SSc(qg=188) | 95.1 | 925 | 86.6 | 69.7 | 38.3 | 17.0 76.4
g-SS_m 946 | 925 | 868 | 71.3 | 40.1 | 17.3 77.1
° ‘ ———=======777 q before and after speech are contaminated by noise also
an interesting direction. It would also be interesting to ap-
@ -5 =] ply the g-Gaussian assumption to other techniques for esti-
Tc:: """"""""""" mating spectrum such as the minimum mean squared error
5107 i - (MMSE)-based methods.
E Y —-SS ¢ (¢=1.67)
15 A — = NSS.c (a=3)
Z 15 i : = = ¢-55_¢ (¢=1.80) References
:" ----- NSS_c (a=4)
5 e 4SS ¢ (¢=1.86) . PR .
1 [1] D.V. Compernolle, “Noise adaptation in a hidden Markov model
-20; 1 5 10 15 speech recognition system,” Computer Speech and Language, vol.3,
SNR (dB) no.2, pp.151-167, 1989.
Fig.7  The comparison of the attenuation curve of g-SS_c and NSS_c for (2] S.E. Boll, "Suppression of acoustic noise in speech using spec-

several values of g and their respective « value.

7. Conclusions

We derive a nonlinear spectral subtraction method based
on the g-Gaussian distribution assumption for noisy speech.
We call it ¢g-SS. The g-Gaussian distribution is a heavy tailed
distribution which can arise from the sum of correlated ran-
dom variables. In our analysis, the g-Gaussian distributions
fit noisy speech better than Gaussian distributions do.

Our approach gives a consistent way to estimate the
control parameter « in NSS from the spectra of observed
noisy speech. Our speech recognition results on the Aurora-
2 database showed that g-SS was better than the conven-
tional spectral subtraction and nonlinear spectral subtrac-
tion. Our experiments also confirmed that the SNR can be
used to control the parameter g.

Further investigation on the meaning of ¢ should be in-
vestigated in future. While in this research no assumption
was made on the clean speech distribution, it would be in-
teresting to model clean speech spectra using the g-Gaussian
distribution. Finding the relation between the change of
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