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PAPER

Fast Single Image De-Hazing Using Characteristics of RGB
Channel of Foggy Image

Dubok PARK†, David K. HAN††, Changwon JEON†, Nonmembers, and Hanseok KO†a), Member

SUMMARY Images captured under foggy conditions often exhibit
poor contrast and color. This is primarily due to the air-light which de-
grades image quality exponentially with fog depth between the scene and
the camera. In this paper, we restore fog-degraded images by first esti-
mating depth using the physical model characterizing the RGB channels
in a single monocular image. The fog effects are then removed by sub-
tracting the estimated irradiance, which is empirically related to the scene
depth information obtained, from the total irradiance received by the sen-
sor. Effective restoration of color and contrast of images taken under foggy
conditions are demonstrated. In the experiments, we validate the effective-
ness of our method compared with conventional method.
key words: air-light, de-hazing, depth estimation, image restoration

1. Introduction

Images of objects in fog in general exhibit poor contrast and
corrupted colors. One source of the degradation is that the
light from the object is attenuated as it travels through the
fog, resulting less image radiance reaching the imaging sen-
sor. Ambient light scattered by fog particles, called “air-
light” [1]–[4], creates a significant source of degradation as
it gets added to the image, resulting poor contrast. The for-
mer effect can be viewed as reduction in signal strength
while the latter phenomenon adds noise to the weakened
signal.

Recently, a vehicle borne black-box system with
a video camera is receiving interests in auto industry for
its potential utility of analyzing and reconstructing auto ac-
cidents. However, under foggy condition, the system may
not yield images with sufficient clarity for post-accident
analyses.

It has been demonstrated, however, that foggy images
can be restored by physics-based methods with scene depth
(e.g., d) information [4]–[8]. From a monocular image,
however, estimating scene depth from the corresponding
2-dimentional image is not trivial. Saxena et al. proposed
an algorithm which estimates scene depth from monocular
images [9].

They used a Markov Random Field (MRF) for incor-
porating multi-scale features with a relational depth model
to estimate scene depth. However, the method requires
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complex computation related to extracting depth informa-
tion from image features at multiple scales.

Recently, there have been a number of studies aimed at
the restoration of monocular fog-degraded images. Tan et al.
proposed a fog-degraded image enhancement method using
color constancy [10]. They used a color invariant prop-
erty under foggy conditions. However, this method could
not successfully eliminate the actual air-light because scene
depth estimation was not employed. K. He et al. restored
a foggy image using the dark channel prior for estimating
the transmission map [11]. However, this method requires
large computation, thereby taking up a significant process-
ing time.

In this paper, we propose a physics-based method of
restoration that can be applied to foggy images by means
of scene depth estimation. Essentially, the proposed method
estimates scene depth using relative changes of RGB com-
ponents of light as it propagates through fog.

This paper is organized as follows. In Sect. 2, we de-
scribe the atmospheric scattering model that represents the
scene radiance and air-light irradiance. Section 3 describes
the proposed scene depth estimation algorithm. In Sect. 4,
we show how the scene radiance is restored. In Sect. 5, we
present the experimental results and validate the effective-
ness of our method. Finally, we present our concluding re-
marks in Sect. 6.

2. Atmospheric Scattering Model

Scattering of light by propagation media is the main reason
of image degradation in foggy scenes. Therefore, to remove
the fog effect in degraded images, it is necessary to analyze
scattering mechanisms of light. In general, the exact nature
of scattering is highly complex and depends on the types,
orientation, size and distributions of particles constituting
the media as well as wavelengths, polarization states and
direction of the incident light [12].

Narasimhan et al. summarized the aforementioned
degradation process of ‘Attenuation’ and ‘Air-light’ [13].
The attenuation of object radiance decreases exponentially
as its depth from the observer increases. The second factor
causes the atmosphere to behave like a source of light, and
is thus referred to as air-light. Ambient light scattered by
particles in the atmosphere causes this phenomenon. Based
on these two factors, the total irradiance received by the sen-
sor is usually described by the sum of the direct attenuated
irradiance and the air-light irradiance as depicted in Fig. 1.
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Fig. 1 Atmospheric scattering model.

Equation (1) is the atmospheric scattering model which
is widely used in foggy images [11], [14].

I(x) = J(x)e−βd(x) + A
(
1 − e−βd(x)

)
(1)

where, x is the spatial location in the image, I is the observed
intensity in the hazy image, J is the scene radiance, A is the
atmospheric light, which is assumed to be globally constant.
d is the depth of the scene point. β is called the scattering
coefficient of the atmosphere related to fog density. Again it
is assumed to be constant in foggy image. J(x)e−βd(x) is the
direct attenuation term and A(1−e−βd(x)) is the air-light term.
As the scene depth, d, increases, the air-light accumulates
and becomes more intense in the hazy images. Note that,
while the other parameters in the equation are scalar, I, J, A
are color vectors with RGB components.

If three parameters, β, d, A, are known, it is possible to
calculate J which represents the true intensity in a clear day.

3. Estimating the Parameters

3.1 Estimating the Scene Depth

As the scene depth increases, the air-light accumulates and
becomes more intense in foggy images as in Eq. (1). Fig-
ure 2 shows intensities of RGB channels measured on a cou-
ple of color test panels under different fog densities.

It is a well-known phenomenon whereby increase of
the fog density diminishes the differences of intensities
among RGB components. Our method extracts depth in-
formation by exploiting the relationship between the propa-
gation depth and the RGB component equalization.

We define the Euclidean norm of Z(x) to measure the
degree of differences between the RGB channels.

‖Z(x)‖2 =
⎛⎜⎜⎜⎜⎜⎝

3∑

i=1

|zi(x)|2
⎞⎟⎟⎟⎟⎟⎠

1/2

(2)

in which

z1(x) = R(x) −G(x) (3)

z2(x) = G(x) − B(x) (4)

z3(x) = B(x) − R(x) (5)

where, R, G, B denote the intensity of each RGB channels
respectively and x is the spatial location in an image.

Figure 3 shows the relationship between Z(x) and the
fog density which consists of 100 levels of fog densities.

Fig. 2 Intensity of each RGB channel at different fog density.

Z(x) decreases as the fog density increases except for grey
scale (black and white) as shown in Fig. 3. However, it is
noted that the 3 major color channels (R, G, B) are very
responsive to various levels of fog densities.

From Fig. 3, it can be inferred that Z(x) decreases as
the scene depth increases in foggy images. Figure 4 shows
the relationship between Z(x) and relative scene depth in
field images. Relative scene depth is determined manually
for comparison. From the calculated norm of Z(x), the scene
depth can be estimated for each pixel. However, computing
Z(x) for each pixel can make different depth region even
though pixels are in the same depth region. To avoid this
problem, we estimate the scene depth by combing a group
of pixels by a patch. We propose the scene depth estimation
of a patch of pixels by:

d(x) = 1 − α · max
y∈Ω(x)

‖Z(y)‖2 (6)

Here, α is a normalizing parameter to ensure the range of
d(x) remains from 0 to 1. x is the spatial location in an image
and Ω(x) is a local patch centered at x. From experiments,
we found a local patch size of 30×30 computationally expe-
dient with sufficient level of accuracy in the depth estimates
for reasonable images. However, since the depth obtained
from Eq. (6) is estimated for local patch, block artifacts may
occur as shown in Fig. 5 (b). To prevent the block artifact,
we refine the scene depth using a guided filter [15].

The guided filter performs as an edge-preserving
smoothing operator like the bilateral filter [16], but it de-
livers better performance near the edges. The process of
refining scene depth using the guided filter is a linear trans-
formation using coefficients of ak, bk defined by:

ak =

1
|w|
∑

i∈wk
Iidi − μkd̄k

σ2
k + ε

, ∀i ∈ wk (7)

bk = d̄k − akμk (8)

where |w| is the number of pixels in wk, I is a gray-scale
hazy image, and d is estimated depth from Eq. (6). wk is
a window centered at the k-th pixel. μk and σ2

k are the mean
and variance of I in wk. d̄k is the mean of d in wk. ε is
a regularization parameter preventing ak from becoming too
large. ε is set to 10−4 in the experiment. Refined depth using
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Fig. 3 Relationship with Z(x) and fog density in various colors.

Fig. 4 Relationship between Z(x) and Relative scene depth: (a) Foggy
image, (b) Relative scene depth, (c) Results of Z(x).

the coefficients (ak, bk) is obtained by

d̃i = āiIi + b̄i (9)

in which

āi =
1
|w|
∑

k∈wi

ak, b̄i =
1
|w|
∑

k∈wi

bk (10)

Figure 5 shows the scene depth estimating procedure.
Figure 5 (c) is refined scene depth using Eq. (9). Figure 5 (d)
is a relative scene depth made by manually to compare esti-
mated scene depth qualitatively.

3.2 Estimating the Atmospheric Light

Atmospheric light exists in most haze-opaque regions. In
the previous work, A is used as the sky brightness [4] or as
the largest intensity in the image [10]. However, the atmo-
spheric light chosen only by intensity or brightness is not al-
ways the most haze-opaque region. In this paper, we search
the atmospheric light as follows. We first pick the top 5% of
the highest pixels of refined depth experimentally as a trade-
off between the accuracy and the reliability. More specif-
ically, as the percentage becomes smaller, the atmospheric
lights can be estimated more accurately, but the estimated
information is less reliable since a smaller number of pixels
are employed. Among these pixels, the one with the highest
intensity is selected as the atmospheric light.

3.3 Estimating the Scattering Coefficient

The scattering coefficient is the degree of fog density. As fog
density increases, scattering coefficient is also increased.

Generally, a dense foggy image has a small standard
deviation because most of the intensity is concentrated near
the air-light term.

The variance of pixel values of the gray-scaled fog
image can be expressed as

I(x) = J(x)e−βd(x) + A
(
1 − e−βd(x)

)
(11)

σ2
I =

1
N

N∑

i=1

⎛⎜⎜⎜⎜⎜⎝I(i) − 1
N

N∑

j=1

I( j)

⎞⎟⎟⎟⎟⎟⎠
2

= e−2βd 1
N

N∑

i=1

⎛⎜⎜⎜⎜⎜⎝J(i) − 1
N

N∑

j=1

J( j)

⎞⎟⎟⎟⎟⎟⎠
2

(12)

where, Eq. (11) is the gray-scaled fog image and N repre-
sents the number of pixels in the image. We postulate that
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Fig. 5 Proposed method of the scene depth estimating procedure.

Fig. 6 Recovered images under different scattering coefficient values:
(a) Foggy image, (b) Recovered image (β = 0.4), (c) Recovered image
(β = 0.6), (d) Recovered image (β = 0.8), (e) Recovered image (β = 1)
(f) Recovered image by proposed method (β = 0.7822).

scene depth, d, is what is needed to show the relationship
with variance and the scattering coefficient.

The variance of the scene radiance, J(x), which has
zero scattering coefficient (β = 0) is expressed as

σ2
o =

1
N

N∑

i=1

⎛⎜⎜⎜⎜⎜⎝J(i) − 1
N

N∑

j=1

J( j)

⎞⎟⎟⎟⎟⎟⎠
2

(13)

From Eqs. (12) and (13), σ2
I is expressed as

σ2
I = e−2βσ2

o (14)

From Eq. (14), the scattering coefficient can be ex-
pressed as

β = lnσo − lnσI (15)

Since the σ is changed at each image, Eq. (15) can be
expressed using the first order Taylor Series approximation
at one

β = 1 + lnσo − σI (16)

Generally, the variance of the scene radiance approxi-
mates one. Therefore, Eq. (16) can be changed as

β = 1 − σI (17)

Therefore, we can estimate the scattering coefficient by
incorporating the standard deviation of dense foggy image
from Eq. (17).

As can be seen by this expression, the dense foggy
image should have large scattering coefficient, since the
standard deviation of the input image is small. Figure 6
shows the recovered images using scattering coefficient ac-
quired from Eq. (17) and under different scattering coeffi-
cient values.

4. Restoring the Scene Radiance

With the scene depth and the scattering coefficient, we can
restore the scene radiance using Eq. (1). The scene radiance
J(x) is restored by:

J(x) = A − (A − I(x))eβd(x) (18)

The restored images generally look dim because the scene
radiance was attenuated as the light propagates through the
fog. Examples of restored images are shown in Fig. 7.

5. Experimental Results

We implemented the proposed algorithm using MATLAB
2011b and desktop computer with a 2.67 GHz i7 processor.
We compared our method with Tan’s work [10] and He’s
work [11]. In Fig. 7, the proposed method restored foggy
regions in the input images and reconstructed fine details of
the input images. From Fig. 8 to Fig. 10, we compared our
method with that of Tan’s [10] and He’s work [11]. In Fig. 8
and Fig. 9, some fog regions are not removed effectively in
Tan’s work, because maximizing the contrast tends to over-
estimate the haze layer. Tan’s approach over-saturated and
over-stretched the contrast in Fig. 10. He’s approach shows
good results from Fig. 8 to Fig. 10. Our method restores
foggy image retaining color fidelity and removes haze.

We compared computational requirement of the pro-
posed method to the other methods. As the image size is
increased, processing time of the conventional approach in-
creased exponentially as shown in Table 1. For large images
such as 3456 × 2304, He’s approach could not be processed
due to a large memory requirement. Our method took about
132.5 sec to process the same image as shown in Table 1. We
also compared performance of the proposed method with
other conventional methods in terms of Global Contrast Fac-
tor (GCF) [17] measure to show the image quality quantita-
tively. GCF is an evaluation indicator capturing the degree
of contrast quality. As the contrast in the image is increased,
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Fig. 7 De-hazing procedure from foggy image: (a) Foggy images (b) Estimated scene depth from
d(x) (c) Refined scene depth images using guided filter (d) De-hazing results of our approach.

Fig. 8 Comparison of experimental result with conventional works (image size 720 × 480).

Fig. 9 Comparison of experimental result with conventional works (image size 800 × 600).
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Fig. 10 Comparison of experimental result with conventional works (image size 1600 × 1200).

Table 1 Processing time comparison with conventional works.

Table 2 Evaluation indicator score (GCF).

the GCF value becomes high. Table 2 shows the GCF score
of experimental results from Fig. 8 to Fig. 10.

Although arguably conventional methods yielded bet-
ter image quality as shown in Table 2, it requires a large
amount of computation and memory to restore image ef-
fectively. Clearly, He’s method may be impractical for
restoring large images or movie files. Our proposed method
demonstrated its performance in restoring foggy images at
reasonable quality with low computational cost. Further, it
may be most suitable for restoring movies with foggy im-
ages for its computational efficiency.

6. Conclusions

In this work, we proposed a foggy image de-hazing algo-
rithm using a physical model and characteristics of RGB
channels from single monocular image. The proposed
method first estimates the scene depth using Euclidean norm
of each RGB channel differences. Then, the proposed
method estimates the atmospheric light using the refined
scene depth and intensity. Finally, the proposed method esti-
mates the scattering coefficient using the standard deviation
of normalized input image. With estimated parameters, the
proposed method restores foggy image. From the limited
set of experiments, it successfully enhances image qualities
retaining color fidelity and processing time.

In conclusion, when applied to practical systems such
as a video based surveillance, the proposed algorithm is ex-
pected to successfully restore degraded contrast and color of
images caused by air-light.
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