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On-Line Model Parameter Estimations for Time-Delay Systems

Jung Hun PARK†, Soohee HAN††, and Bokyu KWON†††a), Members

SUMMARY This paper concerns a problem of on-line model parameter
estimations for multiple time-delay systems. In order to estimate unknown
model parameters from measured state variables, we propose two schemes
using Lyapunov’s direct method, called parallel and series-parallel model
estimators. It is shown through a numerical example that the proposed par-
allel and series-parallel model estimators can be effective when sufficiently
rich inputs are applied.
key words: model parameter estimation, time-delay system, Lyapunov’s
direct method

1. Introduction

Over the past several decades, a great deal of attention has
been given to the research area of system identification for
a model with unknown parameters [1], [2]. In many real
plants, some of their model parameters are not available,
and thus they should be estimated from known measur-
able values. Since unknown model parameters to be es-
timated may be time-varying due to changes in operating
conditions, aging of plant equipment, and so on, it is gen-
erally known that on-line model parameter estimation tech-
niques are more effective than off-line ones. Specially, an
on-line model parameter estimation is essential in many
adaptive control schemes. How on-line model parameter
estimations and adaptive controls work together has been
widely researched for many applications including mecha-
tronics, aerospace, transportation, traffic, chemical process,
and network communication [3]–[12]. Since time-delays on
states and/or control inputs are often encountered in ma-
terial transportation delays, data transmission delays, sen-
sor delays, and so on, many real plants can be modeled as
time-delay systems [13], [14]. It would be meaningful to de-
velop estimation algorithms for unknown model parameters
in such time-delay systems. Even though there are many
unknown model parameter estimation algorithms for MIMO
ordinary systems [15]–[17] and SISO single time-delay sys-
tems [18]–[20], MIMO multiple time-delay systems with
unknown parameters have not been considered for a model
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parameter estimation problem.
In this paper, we propose two on-line model param-

eter estimation algorithms for multiple time-delay systems
under the assumption that the system matrix is stable and
all state variables are available. The proposed algorithms
are developed with Lyapunov’s direct method, which are
well-known for non-time-delay systems as the parallel and
series-parallel model estimators. Their stability is guaran-
teed if some linear matrix inequality (LMI) conditions are
met. It is shown through a numerical example that two pro-
posed methods can effectively estimate unknown model pa-
rameters, and are they compared for several cases. In the
presence of noise, the series-parallel model estimator is also
shown to be more sensitive than the parallel one.

The rest of this paper is organized as follows. In Sect. 2,
the parallel and series-parallel model estimators for multiple
time-delay systems with unknown parameters are proposed.
Section 3 provides a numerical example to illustrate the per-
formances of two proposed algorithms and compare their
performance. Finally, conclusions are given in Sect. 4.

2. Two On-line Model Parameter Estimations

2.1 Parallel Model Estimators

Let us consider the following linear time-invariant system
with multiple fixed state delays:

ẋ(t) = Apx(t) +
k∑

i=1

Api x(t − hi) + Bpu(t), (1)

where x(t) ∈ �n, u(t) ∈ �r, k, and hi are the state, the input,
the number of delayed states, and the delay sizes, respec-
tively. Here, k and hi are assumed to be known. The system
matrices Ap ∈ �n×n, Api ∈ �n×n, and Bp ∈ �n×r are un-
known and thus should be estimated from known states and
inputs. It is also assumed that the system (1) is stable and
u(t) ∈ L∞ so that x(t) ∈ L∞.

In order to obtain a parallel model estimator, we first
take the following parallel model:

˙̂x(t) = Âp(t)x̂(t) +
k∑

i=1

Âpi (t)x̂(t − hi) + B̂p(t)u(t), (2)

where x̂(t) is the estimate of x(t) and Âp(t), Âpi (t), and B̂p(t)
are the estimates of Ap, Api , and Bp at time t, respectively.
How to choose Âp(t), Âpi (t), and B̂p(t) will be discussed later
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on.
If the state estimation error and model parameter esti-

mation errors are defined as

e(t)
�
= x(t) − x̂(t), Ãp(t)

�
= Âp(t) − Ap,

B̃p(t)
�
= B̂p(t) − Bp, Ãpi (t)

�
= Âpi (t) − Api ,

then the error dynamics is given as

ė(t) = Ape(t) +
k∑

i=1

Api e(t − hi)

− Ãp(t)x̂(t) −
k∑

i=1

Ãpi (t)x̂(t − hi) − B̃p(t)u(t), (3)

for the parallel model (2).
In order to derive the adaptive laws of Âp(t), Âpi (t), and

B̂p(t), we start off by considering the following Lyapunov
function candidate:

V
(
e(t), Ãp(t), Ãpi (t), B̃p(t)

)
= eT (t)Pe(t)

+tr

⎛⎜⎜⎜⎜⎜⎝ ÃT
p (t)PÃp(t)

γ1

⎞⎟⎟⎟⎟⎟⎠ + tr

⎛⎜⎜⎜⎜⎜⎝ B̃T
p (t)PB̃p(t)

γ2

⎞⎟⎟⎟⎟⎟⎠

+

k∑
i=1

tr

⎛⎜⎜⎜⎜⎜⎝ ÃT
pi

(t)PÃpi (t)

δi

⎞⎟⎟⎟⎟⎟⎠ +
k∑

i=1

∫ t

t−hi

eT (τ)Qe(τ)dτ, (4)

where tr(A) denotes the trace of a matrix A, γ1, γ2, and δi
are positive constants, and P = PT > 0 and Q = QT > 0
will be chosen to satisfy some condition for the Lyapunov
stability later in this paper. The time derivative V̇ of V in (4)
can be represented as

V̇ = ėT (t)Pe(t) + eT (t)Pė(t)

+ tr

⎛⎜⎜⎜⎜⎜⎜⎝
˙̃AT

p (t)PÃp(t)

γ1
+

ÃT
p (t)P ˙̃Ap(t)

γ1

⎞⎟⎟⎟⎟⎟⎟⎠

+ tr

⎛⎜⎜⎜⎜⎜⎜⎝
˙̃BT

p (t)PB̃p(t)

γ2
+

B̃T
p (t)P ˙̃Bp(t)

γ2

⎞⎟⎟⎟⎟⎟⎟⎠

+

k∑
i=1

tr

⎛⎜⎜⎜⎜⎜⎜⎝
˙̃AT

pi
(t)PÃpi (t)

δi
+

ÃT
pi

(t)P ˙̃Api (t)

δi

⎞⎟⎟⎟⎟⎟⎟⎠

+

k∑
i=1

{
eT (t)Qe(t) − eT (t − hi)Qe(t − hi)

}
. (5)

In order to guarantee the stability of the error dynamic (3),
that is, to make V̇ in (5) along the trajectory of (3) negative,
the obvious choices for ˙̃Ap(t), ˙̃Api (t), and ˙̃Bp(t) are intuitively
given as follows:

˙̃Ap(t) = ˙̂Ap(t) = γ1e(t)x̂T (t), (6)
˙̃Bp(t) = ˙̂Bp(t) = γ2e(t)uT (t), (7)
˙̃Api (t) =

˙̂Api (t) = δie(t)x̂T (t − hi), (8)

and then V̇ can be represented as

V̇ = ΨTΛΨ < 0, (9)

where Ψ and Λ are defined by

ΨT �=
[

eT (t) eT (t − h1) · · · eT (t − hk)
]
,

Λ
�
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AT
p P + PAp + kQ PAp1 · · · PApk

AT
p1

P −Q · · · 0
...

...
. . .

...
AT

pk
P 0 · · · −Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is noted that Âp(t), Âpi (t), and B̂p(t) can be computed
by using the measured state x(t), the measured input u(t),
and the estimated state x̂(t) from the parallel model (2).

2.2 Series-Parallel Model Estimators

In order to obtain a series-parallel model estimator, we
choose arbitrary stable matrices, Am ∈ �n×n and Ami ∈
�n×n, and then adding and subtracting the terms Amx(t) and∑k

i=1 Ami x(t − hi) in the left-hand side of (1) yield

ẋ(t) = Amx(t) + (Ap − Am)x(t) +
k∑

i=1

Ami x(t − hi)

+

k∑
i=1

(Api − Ami )x(t − hi) + Bpu(t), (10)

and we have the following series-parallel model:

˙̂x(t) = Amx̂(t) + (Âp(t) − Am)x(t) +
k∑

i=1

Ami x̂(t − hi)

+

k∑
i=1

(Âpi (t) − Ami )x(t − hi) + B̂p(t)u(t). (11)

The error dynamic for the series-parallel model (11) is given
as

ė(t) = Ame(t) −
k∑

i=1

Ami e(t − hi)

− Ãp(t)x(t) −
k∑

i=1

Ãpi (t)x(t − hi) − B̃p(t)u(t). (12)

As in the case of parallel model estimators, make V̇ in
(5) along the trajectory of (12) negative for guaranteeing the
stability of the series-parallel model estimator, ˙̃Ap(t), ˙̃Api (t),

and ˙̃Bp(t) are easily determined as follows:

˙̃Ap(t) = ˙̂Ap(t) = γ1e(t)xT (t), (13)
˙̃Bp(t) = ˙̂Bp(t) = γ2e(t)uT (t), (14)
˙̃Api (t) =

˙̂Api (t) = δie(t)xT (t − hi), (15)

and then V̇ is given as

V̇ = ΨTΓΨ < 0, (16)

where Γ is defined by
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Γ
�
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AT
mP + PAm + kQ −PAm1 · · · −PAmn

−AT
m1

P −Q · · · 0
...

...
. . .

...
−AT

mn
P 0 · · · −Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

2.3 Properties and Stabilities for Two Estimators

It is noted that Λ in (9) depends on the unknown parameters
Ap and Api , whereas Γ in (16) depends on the known de-
sign parameters Am and Ami . Furthermore, the considerable
difference between the parallel and series-parallel model es-
timators comes from their performance in the presence of
noise. If the measurement x(t) is corrupted by some noise v,
the estimated results for the series-parallel model estimator
will depend on v2 and v, whereas for the parallel one only on
v. The quality of estimation for the parallel model estimator
may be less sensitive for a noise.

From now on, let us consider the convergence of two
proposed algorithms. For some positive or negative definite
matrix Ω, the following property satisfies

λmin(Ω)‖x‖2 ≤ xTΩx ≤ λmax(Ω)‖x‖2, (17)

where λmin(Ω) and λmax(Ω) stand for the minimum and max-
imum eigenvalues of a matrixΩ, respectively. Using this in-
equality (17) and taking integration on both sides of (9) with
(6)–(8) or (16) with (13)–(15) yield

∫ ∞

0
ΨTΨdt ≤

(
V∞ − V0

λmax(Λ)
or

V∞ − V0

λmax(Γ)

)
< ∞,

where V∞ and V0 are defined by

lim
t→∞V

(
e(t), Ãp(t), Ãpi (t), B̃p(t)

)
= V∞ < ∞,

V(t = 0) = V0,

therefore, we have

∫ ∞

0
ΨTΨdt =

∫ ∞

0

⎛⎜⎜⎜⎜⎜⎜⎝‖e(t)‖2 +
k∑

i=1

‖e(t − hi)‖2
⎞⎟⎟⎟⎟⎟⎟⎠ dt < ∞,

which implies that e(t) ∈ L2. Because e(t) = x(t) − x̂(t)
and x(t), x̂(t) ∈ L∞, we have that e(t) ∈ L∞. From (3) or
(12) and x(t), u(t) ∈ L∞ or x̂(t), u(t) ∈ L∞, it also follows
that ė(t) ∈ L∞ because of the Lyapunov stability proper-
ties. With e(t), ė(t) ∈ L∞ and e(t) ∈ L2, it can be inferred
by Barbălat’s Lemma that limt→∞ e(t) = 0, which, in turn,
implies that ˙̂Ap(t), ˙̂Api (t),

˙̂Bp(t)→ 0 as t → ∞.
It is worth noting that the convergence properties of

Âp(t), Âpi (t), and B̂p(t) to their true values Ap, Api , and Bp,
respectively, entirely depend on the properties of the input
u(t). If u(t) belongs to the class of sufficiently rich inputs,
i.e., u(t) has enough frequencies to excite all the modes of
the system, then it is persistently exciting (PE) and guaran-
tees that Âp(t), Âpi (t), and B̂p(t) exponentially fast converge
to Ap, Apk , and Bp, respectively.

3. Numerical Example

In this section, a numerical example is presented to illustrate
the performance of the proposed parallel and series-parallel
model estimators. Consider the following time-delay sys-
tem:

ẋ(t) =

[ −1 0
0 −2

]
x(t) +

[ −0.5 −1
0.5 0

]
x(t − 2)

+

[ −0.5
1.5

]
u(t). (18)

For the series-parallel model estimator, stable design matri-
ces Am and Am1 are given by

Am =

[ −1 0
0 −1.5

]
, Am1 =

[ −0.5 0
0 0

]
.

The positive definite matrices P and Q guaranteeing the sta-
bility of two proposed algorithms are obtained by solving
the LMIs [21], Λ < 0 and Γ < 0,

P=

[
61.3673 5.1815
5.1815 51.0960

]
, Q=

[
53.3413 15.3883
15.3883 109.8872

]
,

for the parallel model estimator and

P=

[
60.7507 0

0 49.3106

]
, Q=

[
63.5121 0

0 72.3222

]
,

for the series-parallel one.
The performance of two proposed algorithms is shown

in Fig. 1 and 2 (Note that the different time-scales are
adopted on two figures). Plots (a) and (b) in Fig. 1 and 2 give
the results when the input u(t) = sin t+sin 2t+sin 3t, and the
adaptive gain γ1 = γ2 = δ1 = 5 for (a) and γ1 = γ2 = δ1 = 1
for (b). It is clear that a larger adaptive gain leads to a faster
convergence to true parameters. In each plot (c) of Fig. 1 and

(a) γ1 = γ2 = δ1 = 5 (b) γ1 = γ2 = δ1 = 1

(c) u(t) = sin t (d) x(t) with white noise

Fig. 1 Results of parallel model estimators.
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(a) γ1 = γ2 = δ1 = 5 (b) γ1 = γ2 = δ1 = 1

(c) u(t) = sin t (d) x(t) with white noise

Fig. 2 Results of series-parallel model estimators.

2, the parameter convergence to true values is not achieved
due to the use of a non-PE input. Each plot (d) of Fig. 1 and
2 shows that two proposed schemes can estimate the true pa-
rameters although the measurement is corrupted by 0.05n(t),
where n(t) is a normally distributed white noise. Also, two
plots tell us that that the estimates of the parallel model es-
timator converge to true parameters much faster than that of
series-parallel model estimator.

4. Conclusion

This paper discussed the design of two on-line model pa-
rameter estimation algorithms for multiple time-delay sys-
tems under the assumption that their system matrix is stable
and the state variables are measurable. We proposed the par-
allel and series-parallel model estimators with Lyapunov’s
direct method. It was shown that their stability is guaranteed
under some LMI condition. It was also verified through a
numerical example that two proposed schemes can estimate
the true parameters for multiple state-delayed systems with
unknown system matrices correctly, even in the presence of
measurement noise.
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