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Computationally Efficient Multi-Label Classification
by Least-Squares Probabilistic Classifiers

Hyunha NAM†a), Hirotaka HACHIYA†, and Masashi SUGIYAMA†b), Members

SUMMARY Multi-label classification allows a sample to belong to
multiple classes simultaneously, which is often the case in real-world ap-
plications such as text categorization and image annotation. In multi-label
scenarios, taking into account correlations among multiple labels can boost
the classification accuracy. However, this makes classifier training more
challenging because handling multiple labels induces a high-dimensional
optimization problem. In this paper, we propose a scalable multi-label
method based on the least-squares probabilistic classifier. Through experi-
ments, we show the usefulness of our proposed method.
key words: multi-label classification, least-squares probabilistic classifier

1. Introduction

In some recent applications of pattern recognition, a sample
can belong to more than one category at the same time. For
example, in text mining, a news article about Transformer
can be categorized into the “car”, “robot”, and “movie” cat-
egories. The classification problem where a single sample
can belong to multiple classes is called multi-label classi-
fication, and it has attracted a great deal of attention re-
cently [5].

However, multi-label classification is computationally
expensive, and overcoming the computational bottleneck
is a common challenge. In this paper, we thus propose
a novel multi-label method. Our approach is to extend
the computationally efficient multi-task method [3] based on
the least-squares probabilistic classifier (LSPC) [4], [6] to
multi-label scenarios, and to achieve a method to compute
its solution efficiently.

2. Probabilistic Classification by LSPC

In this section, we review the least-squares probabilistic
classifier (LSPC) for single-label classification [4], [6].

Suppose that we are given a set of training samples
{(xn, yn)}Nn=1 drawn independently from a joint probability
distribution with density p(x, y), where xn ∈ RD is a fea-
ture vector, D is the dimensionality of feature vector x,
yn ∈ {1, . . . ,Y} is a class label, and Y is the number of
classes. The objective of probabilistic classification is to
learn the class-posterior probability p(y|x) from the train-
ing samples. Based on the class-posterior probability, clas-
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sification of a new sample x can be carried out by ŷ :=
argmax y∈{1,...,Y} p(y|x), with confidence p(y = ŷ|x).

For each y ∈ {1, . . . ,Y}, we model p(y|x) by
q(y|x; θy) :=

∑B
b=1 θy,bφb(x) = θ�y φ(x), where B denotes the

number of parameters, θy = (θy,1, . . . , θy,B)� ∈ RB is the
parameter vector, and φ(x) = (φ1(x), . . . , φB(x))� ∈ RB is
the basis function vector. In practice, we may use a ker-
nel model, i.e., we set B = N and φb(x) = K(x, xb), where
K(x, x′) is a kernel function.

We fit the above model to the true class-posterior prob-
ability p(y|x) under the following squared loss:

Jy(θy) :=
1
2

∫ (
q(y|x; θy) − p(y|x)

)2
p(x)dx

=
1
2

∫
q(y|x; θy)2 p(x)dx−

∫
q(y|x; θy)p(x|y)p(y)dx+C,

where p(x) denotes the marginal density of feature vector
x and C is a constant independent of θy. Approximating
the expectations over x by sample averages and the class-
prior probability p(y) by sample ratios, ignoring constant C
and factor 1/N, and including an �2-regularizer, we have the
following training criterion:

Ĵy(θy) :=
1
2

N∑
n=1

q(y|xn; θy)2−
∑

n:yn=y

q(y|xn; θy) +
ρ

2
‖θy‖2

=
1
2
θ�yΦ

�Φθy − θ�yΦ�πy +
ρ

2
‖θy‖2,

where ρ > 0 is the regularization parameter, Φ =

(φ(x1), . . . ,φ(xN))� ∈ RN×B is the design matrix, and πy is
the N-dimensional class-indicator vector, i.e., πy,n = 1 if
yn = y and πy,n = 0 otherwise. We can obtain the minimizer
θ̂y of Ĵy analytically as θ̂y =

(
Φ�Φ + ρIB

)−1
Φ�πy, where

IB denotes the B-dimensional identity matrix.
As the number of training samples, N, increases, the

solution q(y|x; θ̂y) was shown to converge to the true class-
posterior probability p(y|x) with the optimal convergence
rate [4]. For a finite sample size, we obtain the final solution
by rounding up a negative output to zero and normalization
as follows [6]:

p̂(y|x) =
max(0, q(y|x; θ̂y))∑Y

y′=1 max(0, q(y′|x; θ̂y′ ))
.

3. Multi-Task LSPC

When multiple related learning tasks exist, solving them si-
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multaneously by sharing some common information behind
the tasks is expected to be more promising than solving them
separately. This is the idea of multi-task learning. A compu-
tationally efficient multi-task learning method can be devel-
oped by combining multiple LSPCs. Here, we review multi-
task LSPC (MT-LSPC) [3] in a slightly generalized way.

Suppose that we are given a set of training samples
{(xn, yn, tn)}Nn=1, where tn ∈ {1, . . . ,T } denotes the task index.
We assume that {(xn, yn)}Nn=1 are drawn independently from
a joint probability distribution with density ptn (x, y). The
objective of multi-task probabilistic classification is to learn
the class-posterior probabilities pt(y|x) for t ∈ {1, . . . ,T }.

Let us model pt(y|x) for each t ∈ {1, . . . ,T } and
y ∈ {1, . . . ,Y} as q(y|x; θy,t) :=

∑B
b=1 θy,b,tφb(x) = θ�y,tφ(x),

where φ(x) = (φ1(x), . . . , φB(x))� ∈ RB and θy,t :=
(θy,1,t, . . . , θy,B,t)� ∈ RB. The basic idea of MT-LSPC is that
solutions of all tasks are imposed to be close to each other in
terms of the �2-norm. More specifically, let us decompose
θy,t as θy,t = βy,0 + βy,t, where βy,0 is the common part of so-
lutions for all tasks and βy,t is the individual part of solutions

for task t. Then, for βy :=
(
β�y,0,β

�
y,1, . . . ,β

�
y,T

)� ∈ RB(T+1),
the training criterion of MT-LSPC is given by

ĴMT
y (βy) :=

1
2

N∑
n=1

q(y|xn;βy,0 + βy,tn )2 −
∑

n:yn=y

q(y|xn;βy,0 + βy,tn ) +
ω0

2
‖βy,0‖2 +

1
2

T∑
t=1

ωt‖βy,t‖2,

where ω0 > 0 is the regularization parameter for the task-
independent part and ωt > 0 (t = 1, . . . ,T ) is the regulariza-
tion parameter for the task-dependent parts.

For 0B denoting the B-dimensional zero vector, let

ξt(x) :=
(
φ(x)�, 0�B(t−1),φ(x)�, 0�B(T−t)

)�∈ RB(T+1),

Ξ := (ξt1 (x1), . . . , ξtN
(xN))� ∈ RN×B(T+1),

Ω := diag (ω0, ω1, . . . , ωT ) ∈ R(T+1)×(T+1).

Then the MT-LSPC training criterion can be compactly ex-
pressed as

ĴMT
y (βy) =

1
2
β�y Ξ

�Ξβy−β�y Ξ�πy+
1
2
β�y (Ω ⊗ IB)βy,

where ⊗ denotes the Kronecker product. Because the above
ĴMT

y (βy) is essentially the same form as the original single-
task LSPC training criterion, we can similarly obtain the
minimizer β̂y analytically as β̂y =

(
Ξ�Ξ +Ω ⊗ IB

)−1
Ξ�πy.

Suppose that we use a kernel model (i.e., B = N).
Then, the size of the matrix to be inverted in the above equa-
tion is N(T + 1) × N(T + 1). Thus, the computational com-
plexity for naively computing the solution β̂y is O(N3T 3),
which can be expensive. However, because the rank of Ξ�Ξ
is at most N, the solution can be computed more efficiently.
More specifically, q(y|x; θ̂y,t) can be expressed as follows:

q(y|x; θ̂y,t) = θ̂
�
y,tφ(x) = β̂

�
y ξt(x) = π�y A−1bt,

where A is the N × N matrix and bt is the N-dimensional
vector defined as

An,n′ := [Ξ(Ω−1 ⊗ IB)Ξ� + IN]n,n′

=

(
1
ω0
+
δtn,tn′

ωtn

)
φ(xn)�φ(xn′ ) + δn,n′ ,

bt,n := [Ξ(Ω−1⊗IB)ξt(x)]n=

(
1
ω0
+
δt,tn
ωt

)
φ(xn)

�φ(x).

Here δt,t′ denotes the Kronecker delta. The computational
complexity for computing the solution in this way is reduced
to O(N3), which is independent of T .

4. Reformulation of MT-LSPC

In this paper, we develop a multi-label method based on MT-
LSPC. However, the original MT-LSPC imposes all solu-
tions to be close to each other via the common part, which
is not necessarily appropriate in the multi-label scenario.
Here, we derive an extention of MT-LSPC that imposes a
multi-task penalty via pairwise similarities between tasks.
This pairwise version will be used for developing a multi-
label method later.

For θy := (θ�y,1, . . . , θ
�
y,T )� ∈ RBT , let us consider the

following training criterion:

ĴMT′
y (θy) :=

1
2

N∑
n=1

q(y|xn; θy,tn )2−
∑

n:yn=y

q(y|xn; θy,tn )

+
1
2

T∑
t=1

λt‖θy,t‖2 + 1
4

T∑
t,t′=1

γt,t′ ‖θy,t − θy,t′ ‖2,

where λt > 0 is the regularization parameter for task t and
γt,t′ > 0 is the similarity between tasks t and t′ (large γt,t′

corresponds to similar tasks). Let

ψt(x) :=
(
0�B(t−1),φ(x)�, 0�B(T−t)

)� ∈ RBT ,

Ψ := (ψt1 (x1), . . . ,ψtN
(xN))� ∈ RN×BT .

Then ĴMT′
y can be compactly expressed as

ĴMT′
y (θy) =

1
2
θ�y Ψ

�Ψθy − θ�y Ψ�πy +
1
2
θ�y (C ⊗ IB)θy,

where C is the T × T matrix defined as Ct,t′ :=
δt,t′

(
λt +

∑T
t′′=1 γt,t′′

)
− γt,t′ .

Taking the derivative of J̃MT
y with respect to θy and

setting it to zero, we have the minimizer θ̂y analytically as
θ̂y =

(
Ψ�Ψ + C ⊗ IB

)−1
Ψ�πy. Using the same trick as MT-

LSPC, q(y|x; θ̂y,t) can be efficiently computed based on the
following expression:

q(y|x; θ̂y,t) = θ̂
�
y,tφ(x) = θ̂

�
y ψt(x) = π�y A′−1b′t ,

where A′ is the N × N matrix and b′t is the N-dimensional
vector defined as

A′n,n′ := [Ψ(C−1 ⊗ IB)Ψ� + IN]n,n′

= [C−1]tn,tn′φ(xn)�φ(xn′ ) + δn,n′ ,
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b′t,n := [Ψ(C−1 ⊗ IB)ψt(x)]n = [C−1]t,tnφ(xn)�φ(x).

The computational complexity for computing the solution in
this way is reduced to O(N3 + T 3). Note that the factor T 3

comes from the computation of C−1; if the task similarity
matrix Γ (with Γt,t′ = γt,t′ ) enjoys nice structure such as be-
ing low-rank or sparse, it may be computed more efficiently.

5. Multi-Label LSPC

In this section, we propose a computationally efficient multi-
task classifier based on the pairwise MT-LSPC called multi-
label LSPC (ML-LSPC).

Suppose that we are given a set of training samples
{(xn, yn)}Nn=1, where yn = (yn,1, . . . , yn,T )� ∈ {1, . . . ,Y}T is
the class-label vector for the n-th sample and T is the num-
ber of labels. Input vector x is assumed to be drawn indepen-
dently from p(x), and the t-th element yt of y = (y1, . . . , yt)�
is assumed to be drawn from pt(y|x). The objective of
multi-label probabilistic classification is to learn the class-
posterior probabilities pt(y|x) for t ∈ {1, . . . ,T }.

Requiring that similar labels should have similar clas-
sification solutions, we can employ a multi-task learning
method to solve the multi-label learning problem. Indeed,
from the MT-LSPC training criterion, we immediately have
the training criterion for ML-LSPC:

ĴML
y (θy) :=

T∑
t=1

⎛⎜⎜⎜⎜⎜⎝1
2

N∑
n=1

q(y|xn; θy,t)
2−
∑

n:yn,t=y

q(y|xn; θy,t)

+
1
2
λt‖θy,t‖2

⎞⎟⎟⎟⎟⎟⎠ + 1
4

T∑
t,t′=1

γt,t′ ‖θy,t − θy,t′ ‖2.

However, a notable difference between multi-task and multi-
label formulations is that the number of training samples is
N in the multi-task formulation, whereas that in the multi-
label formulation is essentially NT . Thus, if we naively ap-
ply MT-LSPC to the multi-label problem, the computational
complexity is O(N3T 3) for a kernel model (i.e., B = N),
which is prohibitively expensive. Below, we explain how to
mitigate this problem.

Let Θy := (θy,1, . . . , θy,T ) ∈ RB×T , and let πy,t be
the N-dimensional class-indicator vector for the t-th label,
i.e., πy,t,n = 1 if yn,t = y, and πy,t,n = 0 otherwise. Let
Πy := (πy,1, . . . ,πy,T ) ∈ RN×T . Then ĴML

y can be compactly
expressed as

ĴML
y (θy)=

1
2

tr(Θ�yΦ
�ΦΘy)−tr(Θ�yΦ

�Πy)+
1
2

tr(ΘyCΘ�y).

Taking the derivative of the above equation with respect to
Θy and setting it to zero, we obtain

Φ�ΦΘy +ΘyC = Φ�Πy. (1)

This is called the continuous Sylvester equation with respect
to Θy, which often arises in control theory [2].

Various algorithms for solving the Sylvester equation
have been developed. One of the simplest methods is based

on the eigenvalue decompositions of Φ�Φ and C as fol-
lows: Let f 1, . . . , f B be eigenvectors of Φ�Φ associated
with eigenvalues f1, . . . , fB, and let g1, . . . , gT be eigen-
vectors of C associated with eigenvalues g1, . . . , gT . Then
the solution Θ̂y to Eq. (1) is given analytically as Θ̂y =

( f 1, . . . , f B)Q(g1, . . . , gT )�, where Q is the B × T matrix

defined as Qb,t := f�bΦ
�Πy gt

fb+gt
. If a kernel model is used (i.e.,

B = N), the computational complexity for solving Eq. (1) in
this way is O(N3+N2T +NT 2+T 3). Note that the terms N3

and T 3 come from the eigenvalue decompositions of Φ�Φ
and C, which can be performed more efficiently if they enjoy
nice structure such as being low-rank or sparse.

For large-scale data, Eq. (1) may be solved more
efficiently by numerical optimization. Let θy :=
(θ�y,1, . . . , θ

�
y,T )� ∈ RBT . Then Eq. (1) can be expressed as

Hθy = hy, where

H := IT ⊗ (Φ�Φ) + C ⊗ IB ∈ RBT×BT ,

hy := ((Φ�πy,1)�, . . . , (Φ�πy,T )�)� ∈ RBT .

If a kernel model is used (i.e., B = N), naively solving
Hθy = hy takes O(N3T 3) time. Here, we take into account
the Kronecker structure of H, and solve the equation numer-
ically by the conjugate gradient method. More specifically,
we can compute the matrix-vector product Hθy as [Hθy]t =

Φ�Φθy,t +
∑T

t′=1 Ct,t′θy,t′ . Although the computational com-
plexity for naively computing Hθy is O(N3 + N2T 2) includ-
ing the computation ofΦ�Φ, that for computing Hθy based
on the above expression is reduced to O(N2T + NT 2). Note
that the term N2T comes from the computationΦ�Φθy,t and
the term NT 2 comes from the computation

∑T
t′=1 Ct,t′θy,t′ . If

Φ�Φ is approximated by a low-rank matrix and the task
similarity matrix Γ enjoys nice structure such as being ap-
proximately low-rank or sparse, Hθy may be approximately
computed even more efficiently.

6. Experiments

In this section, we experimentally evaluate the performance
of the proposed ML-LSPC.

6.1 Toy Dataset

Let the feature dimension be D = 300, and we consider
T binary classification tasks. Training samples of the t-th
task is created as follows: xn = (x1,n, . . . , xD,n)� is indepen-
dently drawn from the standard normal distribution and yt,n

is determined by linear decision boundary cos(2πt/T )x1,n +

sin(2πt/T )x2,n (i.e., the decision boundaries are rotated in
the subspace spanned by the first two dimensions). We set
the number of training samples to N = 2000. The label sim-
ilarity Wt,t′ is set to max(0, ρt,t′ ), where ρt,t′ is the Pearson
correlation coefficient between {yt,n}Nn=1 and {yt′,n}Nn=1. We
use the Gaussian kernel model in LSPCs.

As functions of the number of tasks, we compare the
classification performance of the plain LSPC (i.e., each task
is solved separately), the proposed ML-LSPC, the k-nearest
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(a) Misclassification rate (b) Computation time

Fig. 1 Toy dataset.

neighbor classifier for multi-label learning (ML-kNN) [7]
which treats a multi-label problem as a set of single-label
problems, and the instance differentiation method (Ins-
Dif) [8] which utilizes a multi-instance formulation in multi-
label problems.

All tuning parameters were optimized based on 5-fold
cross-validation in terms of the misclassification rate. Fig-
ure 1 (a) plots the average misclassification rate over 50
runs, showing that ML-LSPC and InsDif perform well.
Plain LSPC and ML-kNN performed poorly because they
did not explicitly take label correlations into account. Fig-
ure 1 (b) plots the computation time of ML-LSPC with
naive implementation (we used the left-division function
‘mldivide’ in MATLAB R©), the proposed optimization
method (we used the conjugate gradient function ‘pcg’
in MATLAB R©), InsDif, and ML-kNN. This shows that
the proposed optimization method is computationally much
more efficient than the naive implementation of ML-LSPC.
InsDif is slow because it includes clustering of a bag of sam-
ples.

6.2 Enron Email Dataset

Finally, we test the performance of the proposed method
on the Enron Email Dataset, which consists of 1702 real-
world email messages [1]. Each email message is repre-
sented as a 1001-dimensional feature vector, accompanied
with 53 labels. We randomly chose N = 1000 samples
for training, and used the remaining 702 samples for per-
formance evaluation. Because the presence and absence
of labels were highly imbalanced in this dataset, we de-
cided to evaluate the test performance in terms of the F-
measure. The average F-scores (and computation time) for
plain LSPC, ML-LSPC, ML-kNN, and InsDif over 150 runs

were 0.556 (3.3 sec.), 0.561 (5.5), 0.372 (9.6), and 0.526
(470.7), where ML-LSPC was significantly better than oth-
ers according to the t-test at the significance level 5%.

7. Conclusions

Multi-label classification is useful in various real-world
problems such as audio tagging, image annotation, video
search, and text mining. However, because the essential
number of training samples for T -dimensional label vectors
of size N is NT , naive implementation of multi-label clas-
sification is computationally expensive when N and T are
large. To overcome this computational bottleneck, we de-
veloped a multi-label method based on LSPC [4], [6]. Our
key idea was to utilize the block structure of the system
of linear equations to improve the computational efficiency.
Through experiments, we showed that the proposed method,
ML-LSPC, is promising.
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