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Optimal Trigger Time of Software Rejuvenation under
Probabilistic Opportunities
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SUMMARY This paper presents the opportunity-based software reju-
venation policy and the optimization problem of software rejuvenation trig-
ger time maximizing the system performance index. Our model is based on
a basic semi-Markov software rejuvenation model by Dohi et al. 2000 un-
der the environment where possible time, called opportunity, to execute
software rejuvenation is limited. In the paper, we consider two stochastic
point processes; renewal process and Markovian arrival process to repre-
sent the opportunity process. In particular, we derive the existence condi-
tion of the optimal trigger time under the two point processes analytically.
In numerical examples, we illustrate the optimal design of the rejuvenation
trigger schedule based on empirical data.
key words: software aging, software rejuvenation, time-triggered policy,
opportunity-based policy, renewal process, Markovian arrival process, op-
timization

1. Introduction

In highly dependable systems, preventive maintenance is
one of the most important key strategies to enhance system
reliability and availability in their operation phase. During
last several decades, the preventive maintenance was widely
researched for both hardware and software systems. Espe-
cially, in recent years, the preventive maintenance for soft-
ware system called software rejuvenation draws attention as
a low-cost fault-tolerant technique along with the concept of
software aging.

Software aging has already known as a cumbersome
problem in the operation of computer-aided system. The
software aging is caused by aging-related bugs [1] such as
memory leak, fragmentation and accumulating round-off er-
rors. The aging-related bugs gradually degrade the sys-
tem performance due to exhaustion of system resources and
eventually cause the system failure. Empirically, it is dif-
ficult to detect and remove aging-related bugs in testing
phase. In general, the software aging can be predicted by
monitoring system attributes such as operation time and
workload. That is, we can execute a proactive action to pre-
vent the system failure caused by the software aging. Such
proactive actions are called software rejuvenation. Typical
examples of the software rejuvenation are garbage collec-
tion, flushing operating system kernel tables, reinitializing
internal data structures and hardware reboot [2], [3].

The software rejuvenation is a significant technique for
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the system to run continuously for long periods of time.
One of the main issues of the software rejuvenation is when
to start the rejuvenation operation, because time overheads
are incurred by the rejuvenation operation. Two approaches
were discussed to determine when to start the software reju-
venation: model-based and measurement-based approaches.
In the model-based approach, we build a state-based model
such as a continuous-time Markov chain (CTMC) represent-
ing behavior of software aging and rejuvenation in order
to determine the optimal rejuvenation timing under a given
rejuvenation policy. On the other hand, the measurement-
based approach is to monitor system attributes to find a sig-
nificant sign of the software aging, and is to determine the
condition to trigger the software rejuvenation.

Rejuvenation policies are generally categorized to
time-triggered and condition-triggered policies. Under the
time-triggered policy, the system performs the rejuvenation
operation according to a certain time schedule. The ad-
vantage of time-triggered policy is a simple implementa-
tion of the rejuvenation. In fact, the time-triggered pol-
icy was adopted in many model-based approaches. For in-
stance, Garg et al. [4] introduced a periodic time-triggered
policy and represented the behavior of system by using a
Markov regenerative stochastic Petri net (MRSPN). Also,
Dohi et al. [5] and Suzuki et al. [6] developed semi-Markov
models and statistically non-parametric algorithms to de-
termine the optimal rejuvenation policy under the peri-
odic time-triggered rejuvenation. On the other hand, the
condition-triggered policy utilizes system attributes other
than the operation time to determine a rejuvenation sched-
ule. The measurement-based approach mainly adopts the
condition-triggered policy. Vaidyanathan et al. [7] treated
the measurement-based approach to estimate time to ex-
haustion of operating system resources. Alonso et al. [8] de-
veloped an on-line algorithm for the prediction of resource
exhaustion.

This paper focuses on an intermediate policy between
time-triggered and condition-triggered policies. The disad-
vantage of time-triggered policies is not to take account of
the operational condition of software system, namely, the
system is forced to perform the software rejuvenation at a
scheduled rejuvenation time, even if some tasks are still pro-
cessed. However, in practice, the possible chances to exe-
cute software rejuvenation are limited. In this paper, such
possible timing is called opportunity. Examples of oppor-
tunity are planned outage and completion of a task. That
is, trigger time of rejuvenation is not exactly same as the
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starting time of rejuvenation in practice.
Garg et al. [9] dealt with such problems by considering

two different rejuvenation policies in a stochastic model for
transaction-based system. They proposed the two rejuvena-
tion policies; the rejuvenation is immediately performed at
a scheduled time interval (Policy I) and the rejuvenation is
started at which a queue of arriving jobs is empty (Policy
II). Salfner and Wolter [10] considered three time-triggered
rejuvenation policies including policies with opportunities
in a queueing model. Avritzer et al. [11] also discussed
the opportunities of rejuvenation in MANETs from qual-
itative points of view. Okamura et al. [12] discussed the
optimality of the time-triggered rejuvenation in a similar
queueing system by using Markov decision process and pre-
sented that there are the cases where the opportunity-based
policies are needed. Apart from the software rejuvenation,
Dekker and Dijkstra [13] discussed the opportunity-based
age-replacement model, which is similar but different from
the software rejuvenation model.

This paper discusses the condition on the existence of
the optimal trigger time of rejuvenation under probabilis-
tic opportunities. More precisely, we consider two general
stochastic point processes; renewal process and Markovian
arrival process (MAP) to represent opportunity occurrences.
Under these opportunity processes, we find the existence
condition on the optimal trigger time of rejuvenation in an
existing software rejuvenation model proposed by [5]. Note
that the opportunity-based software rejuvenation policy is a
generalization of the rejuvenation policies discussed in [9]
and [10].

The paper is organized as follows. In Sect. 2, we de-
scribe a basic software rejuvenation model and introduce
the opportunity time-triggered software rejuvenation policy.
Section 3 formulates the expected reward rate in the steady
state as an optimization criterion. Furthermore, we derive
the sufficient condition for the existence of the optimal reju-
venation time under the opportunity time-triggered software
rejuvenation policy. In Sect. 4, we present a specific case of
the theoretical result in Sect. 3 as the maximization problem
by assuming the opportunity process as specific point pro-
cesses. Section 5 is devoted to numerical examples for the
opportunity time-triggered software rejuvenation policy. In
particular, we present an illustrative example for the optimal
design of rejuvenation trigger time from empirical data.

2. Model Description

Consider a software rejuvenation model proposed by Dohi
et al. [5]. They presented an extended model from Huang
et al. [14] by the semi-Markov modeling. The system is di-
vided into the following four states:

• State 0: highly robust state (normal operation state)
• State 1: failure probable state
• State 2: failure state
• State 3: software rejuvenation state

Suppose that the system starts in the normal operation state

at time t = 0. Let T0 be a random time duration when
the system is in the highly robust state, namely, the sys-
tem goes to the failure probable state at the time instance
T0 due to software aging. The cumulative distribution func-
tion (c.d.f.) of T0 is given by P(T0 ≤ t) = F0(t) with a
finite mean 0 < μ0 < ∞. Suzuki et al. [6] assumed that
T0 was unobservable and discussed the rejuvenation under
such situation. In contrast, this paper assumes that T0 is
observable. The accurate estimation of T0 is important to
determine the software rejuvenation strategy. The essential
difference between normal and failure probable states is the
difference of failure rates. Although the detection of such a
change of failure rate is difficult, Alonso et al. [8], for exam-
ple, succeeded detecting the change point of system failure
rate statistically by applying machine learning with observ-
able system attributes such as memory usage.

According to the assumption, we consider the ordinary
time-triggered software rejuvenation policy (TSRJ). Let t0
be a scheduled trigger time of software rejuvenation. That
is, if the sojourn time in the failure probable state reaches to
t0, the system executes the software rejuvenation operation
immediately. Otherwise, if the system failure occurs before
t0, the system executes the recovery operation. Let T f de-
note a failure time which is measured from the time instance
when the system becomes the failure probable state, and T f

has a c.d.f. P(T f ≤ t) = F f (t). Then the sojourn time of the
failure probable state is given by min(T f , t0). Moreover, we
define Ta and Tc be random variables representing recovery
and rejuvenation operation times, whose c.d.f.’s are given by
P(Ta ≤ t) = Fa(t) and P(Tc ≤ t) = Fc(t) with finite means
0 < μa < ∞ and 0 < μc < ∞, respectively. Figure 1 illus-
trates a state transition diagram of the semi-Markov model
under TSRJ policy.

Based on the above original semi-Markov rejuvenation
model, we consider an opportunity process. The opportunity
means the time instance when the software rejuvenation is
safely executed. For instance, the completion of the cur-
rent task and the planned outage are concrete opportunities
to execute the software rejuvenation without effect on the
system task. In this situation, the rejuvenation is performed
according to the following strategy:

• Opportunity time-triggered rejuvenation policy
(OTSRJ): The rejuvenation operation starts at the first
opportunity after the scheduled trigger time of rejuve-
nation t0.

Fig. 1 State transition diagram of the basic rejuvenation model.
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Fig. 2 State transition diagram of the opportunity-based rejuvenation
model.

The OTSRJ policy is similar to opportunity-based rejuvena-
tion policies discussed in [9] and [10], where the rejuvena-
tion is performed when all the buffered tasks are completed
in a transaction-based system. Under the OTSRJ policy, the
state transition diagram can be depicted as Fig. 2. The soft-
ware rejuvenation cannot be executed at which the sojourn
time of failure probable state reaches to the scheduled trig-
ger time of rejuvenation t0, but the system state becomes
State 1’ (failure probable state and waiting for an oppor-
tunity), which is a regenerative point. If a system failure
occurs in State 1’, the recovery operation is performed im-
mediately. Let Top denote the interval between the trigger
time and the first opportunity occurrence, which generally
has a c.d.f. depending on t0 namely Fop(t; t0).

3. Reward Analysis

Under OTSRJ policy, we consider the expected reward rate
in the steady state. Let ξi, i = 0, . . . , 3 be reward rates for re-
spective system states i = 0, . . . , 3, where the reward rate of
state 1′ is given by ξ1. Define a cycle between two succes-
sive time points when the system becomes the highly robust
state. Moreover, Rop(t0) and Lop(t0) are the expected total
reward during one cycle and the expected time length of one
cycle under OTSRJ policy with the rejuvenation trigger time
t0, respectively. Then we have

Rop(t0) = ξ0μ0 +

∫ ∞

0

(
ξ1

∫ t0+s

0
F f (t)dt

+ ξ2μaF f (t0 + s) + ξ3μcF f (t0 + s)
)
dFop(s; t0) (1)

and

Lop(t0) = μ0 +

∫ ∞

0

( ∫ t0+s

0
F f (t)dt

+ μaF f (t0 + s) + μcF f (t0 + s)
)
dFop(s; t0), (2)

where in general F(t) = 1 − F(t). Based on the renewal
reward theorem [15], we get the expected reward rate in the
steady state as follows.

RR(t0) = lim
t→∞

E[the cumulative reward during [0, t)]
t

=
Rop(t0)

Lop(t0)
. (3)

Suppose that the failure distribution F f (t) is differen-
tiable at any point, i.e., the probability density function
(p.d.f.) f f (t) = dF f (t)/dt exists. Define the following func-
tion:

q(t0) =
(
ξ1 + (ξ2μa − ξ3μc)ψop(t0)

)
Lop(t0)

+
(
1 + (μa − μc)ψop(t0)

)
Rop(t0), (4)

where

ψop(t0) =

∫ ∞
0

f f (t0 + s)dFop(s; t0)∫ ∞
0

F f (t0 + s)dFop(s; t0)
. (5)

Then the sign of the above function q(t0) equals the sign
of the first derivative of RR(t0) with respect to t0. By us-
ing the function q(t0), we obtain the theoretical result on the
existence of the optimal trigger time which maximizes the
expected reward rate under OTSRJ policy. Here we consider
two assumptions:

• A-1:

μa > μc, (6)

• A-2:

(ξ3 − RR(t0))μc > (ξ2 − RR(t0))μa (7)

for 0 ≤ t0 < ∞.
The assumption A-1 means that the expected execution time
of rejuvenation is less than the expected time of recovery
operation, and it holds in many practical situations. On
the other hand, the assumption A-2 indicates almost same
meaning as the expected reward earned by the rejuvenation
is greater than that by the recovery operation. The assump-
tion A-2 does not always hold in all the cases. However,
it is not difficult to prove that the assumption A-2 holds in
some specific cases [5]. Under these assumptions, we have
the following theorem:

Theorem 1: Suppose that the assumptions A-1 and A-2
hold.

• Case I: ψop(t0) is a strictly increasing function with re-
spect to t0.

– If q(0) > 0 and q(∞) < 0, then there exists the
finite and unique optimal trigger time of rejuve-
nation t∗0 such that q(t0) = 0, and the maximum
expected reward rate is given by

RR(t∗0) =
ξ1 + (ξ2μa − ξ3μc)ψop(t∗0)

1 + (μa − μc)ψop(t∗0)
. (8)

– If q(0) ≤ 0, then the optimal trigger time of reju-
venation is given by t∗0 = 0, namely, it is optimal
to start the rejuvenation whenever the system be-
comes the failure probable state.

– If q(∞) ≥ 0, then the optimal trigger time of reju-
venation is given by t∗0 → ∞, namely, it is optimal
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not to carry out the rejuvenation.

• Case II: ψop(t0) is a decreasing function with respect
to t0. The optimal trigger time of rejuvenation is given
by t∗0 = 0 or t∗0 → ∞.

The proof of Theorem 1 is given in Appendix.

4. Special Opportunity Processes

4.1 Renewal Process

In this section, we derive a sufficient condition for the exis-
tence of the optimal trigger time maximizing the expected
reward in the steady state under specific opportunity pro-
cesses. First we consider a renewal process. The renewal
process is a well-known point process where the time inter-
val of event occurrences follows a general distribution.

Let 0 = X0 < X1, < X2, . . . be an opportunity time se-
quence where Xi is the i-th opportunity occurrence. Suppose
that Xi − Xi−1, i = 1, 2, . . . are independent and identically
distributed (i.i.d.) random variables with the c.d.f. G(t). In
this paper, we consider the following two cases for the start-
ing time of the system:

• (i) Synchronized: The recovery and rejuvenation renew
the opportunity process. That is, the staring time of
system and opportunity process are synchronized.
• (ii) Independent: The system behavior is independent

to the opportunity process.

The synchronized case represents the situation where the op-
portunity is also refreshed (renewed) by rejuvenation and re-
covery operations. For these two cases, we obtain c.d.f.’s of
the first opportunity time as follows.

• Synchronized:

F(i)
op(s; t0) = G(t0 + s) −

∫ t0

0
G(t0 + s − t)dM(t),

(9)

• Independent:

F(ii)
op (s; t0) =

1
E[Xi − Xi−1]

∫ s

0
G(t)dt, (10)

where M(t) is a renewal function representing the expected
number of event occurrences during [0, t). In general, the
renewal function can be derived by solving the following
renewal equation:

M(t) = G(t) +
∫ t

0
M(t − s)dG(s). (11)

Eqs. (9) and (10) correspond to the c.d.f. of a residual life
time and the equilibrium distribution in the renewal process
theory [16]. In particular, the equilibrium distribution is a
limiting distribution from the residual life time distribution,
i.e.,

F(ii)
op (s; t0) = lim

t0→∞
F(i)

op(s; t0). (12)

It should be noted that the equilibrium distribution does not
include the parameter t0.

In the Independent case, we have the following result:

Proposition 1: Suppose that Fop(s; t0) is the equilibrium
distribution given in Eq. (10). If F f (t) has a strictly in-
creasing failure rate (IFR) property, then ψop(t0) becomes
a strictly increasing function.

The proof of Proposition 1 is given in Appendix. By comb-
ing Theorem 1 and Proposition 1, we find that there exists
the optimal trigger time of rejuvenation which maximizes
the expected reward if the failure time distribution has the
IFR property in the case where the opportunity process is
independent of the system behavior. In other words, the suf-
ficient condition for the existence of the optimal trigger time
under OTSRJ policy in the Independent case is essentially
same as the condition under TSRJ policy discussed in [5].

4.2 Markovian Arrival Process

Although the renewal process can represent the opportunity
occurrences whose time interval follows an identical gen-
eral distribution, we often encounter the situation where the
inter-arrival time of opportunities cannot be identical. For
example, if the opportunity is given as the time when apply-
ing patches or system updates, it is not clear that the time
intervals are identical. Then we also consider another point
process called Markovian arrival process (MAP) as an op-
portunity process.

MAP is a point process whose event occurrence rate
is dominated by a continuous-time Markov chain (CTMC).
The CTMC states correspond to internal states to determine
the event occurrence rates, and the CTMC state is called a
phase in this paper. Let D0 and D1 denote the m-by-m in-
finitesimal generators of the underlying CTMC without and
with opportunities. That is, D0 represents the phase tran-
sitions without opportunities in the CTMC, and D1 is the
phase transitions with opportunity occurrences. Concretely,
two infinitesimal generators are given by

D0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ1,1 μ1,2 · · · μ1,m

μ2,1 −μ2,2 · · · μ2,m
...

...
. . .

...
μm,1 μm,2 · · · −μm,m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

D1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1,1 λ1,2 · · · λ1,m

λ2,1 λ2,2 · · · λ2,m
...

...
. . .

...
λm,1 λm,2 · · · λm,m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (14)

where μi,i =
∑m

j=1, j�i μi, j +
∑m

j=1 λi, j. It should be noted
that the infinitesimal generator of the underlying CTMC
process (phase process) is given by D0 + D1. The initial
phase at t = 0 is determined by an initial probability vector
π = (π1, π2, . . . , πm) with πe = 1, where e is a column vector
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with all elements equal to 1.
The MAP includes several important point process

such as homogeneous Poisson process, Markov-modulated
Poisson process (MMPP) [17] and phase renewal process.
Also it is well known that the MAP can approximate any
point process with any precision if the number of phases is
unlimited [18].

Similar to the case of renewal process, we consider two
cases, Synchronized and Independent for the correlation be-
tween the system operation and opportunity process.

• (iii) Synchronized: The rejuvenation (recovery) opera-
tion resets the opportunity process.
• (iv) Independent: The opportunity process is indepen-

dent of the system behavior.

According to the argument of MAP, we have the first oppor-
tunity time distribution after the rejuvenation trigger time t0
in the MAP case:

• Synchronized:

F(iii)
op (s; t0) = 1 − π exp

(
(D0 + D1)t0

)
exp(D0s)e,

(15)

• Independent:

F(iv)
op (s; t0) = 1 − πs exp(D0s)e, (16)

where πs is a stationary distribution satisfying πs(D0+D1) =
0. It can be found that the relationship between Eq. (15) and
Eq. (16):

F(iv)
op (s; t0) = lim

t0→∞
F(iii)

op (s; t0). (17)

Although the inter-arrival time distribution of MAP is not an
identical distribution, the first opportunity time distribution
in the steady state has the similar property as the equilibrium
distribution. Here we obtain the following proposition:

Proposition 2: Suppose that Fop(s; t0) is given by Eq. (16).
If F f (t) has a strictly increasing failure rate (IFR) property,
then ψop(t0) becomes a strictly increasing function.

The proof of Proposition 2 is also given in Appendix. In the
case where the opportunity process follows an MAP and it is
independent of the system behavior, there exists the optimal
trigger time of rejuvenation if the failure time distribution
has the IFR property.

5. Numerical Examples

5.1 Renewal Process Case

We first investigate the effect of opportunity process on the
optimal rejuvenation trigger time. Consider the maximiza-
tion of system availability, i.e., the rewards are given by

ξ0 = ξ1 = 1 and ξ2 = ξ3 = 0. (18)

It is straightforward to see that the Assumption A-2 is re-
duced to the Assumption A-1 in this case. In addition, we

set μ0 = 10.0 (mean time to failure probable state), μa = 1.0
(mean time to recovery) and μc = 0.5 (mean time to reju-
venation). The failure time distribution is assumed to be the
following gamma distribution

F f (t) =
∫ t

0

β
α f

f sα f−1e−β f s

Γ(α f )
ds, (19)

where Γ(·) is the gamma function. Also α f and β f are shape
and rate (scale) parameters of the gamma distribution, re-
spectively, which are determined as α = 2.0 and β = 0.2 so
that the mean time to failure is 10.0 and the coefficient of
variation (CV) is 0.5. The CV represents the uncertainty of
distribution. As the CV is close to 0, the distribution gets
close to a constant, i.e., the uncertainty decreases. Also, the
CV of exponential distribution becomes 1 which is a suitable
guideline to evaluate the uncertainty of distribution. The op-
portunity process is assumed to be a renewal process whose
inter-arrival time distribution is given by the gamma func-
tion. The shape and scale parameters of inter-arrival time
distribution are determined so that the mean time of an in-
terval of opportunities is 2.0 and the CVs are 10.0, 2.0, 1.0,
0.5, 0.2 and 0.1.

Figure 3 illustrates the system availabilities with re-
spect to the rejuvenation trigger time. In the figure, we as-
sume that the renewal process is independent of the rejuve-
nation and recovery operations. Also, the line “no delay”
indicates that the system availability when the rejuvenation
can immediately be executed just after the rejuvenation trig-
ger. Since F f (t) is the gamma distribution with the shape
parameter α f = 2.0, the failure time distribution has an IFR
property. As shown in the figure, there exists the optimal
trigger time of rejuvenation which maximizes the system
availability in all the cases. Table 1 presents the optimal re-
juvenation trigger time and the maximum system availabil-
ity. From these results, we find that the maximum system
availability becomes greater as the CV is small. Since the
distribution gets to a constant as the CV becomes small, the
uncertainty of opportunity to execute rejuvenation strongly
affects the performance of system in terms of system avail-

Fig. 3 System availabilities with respect to rejuvenation trigger time un-
der OTSRJ.
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Table 1 Optimal rejuvenation trigger time and maximum system avail-
ability under OTSRJ.

Optimal rejuvenation maximum system
CV trigger time availability

10.0 1.6185 0.95566
2.0 2.2343 0.95755
1.0 2.4851 0.95794
0.5 2.6678 0.95814
0.2 2.8070 0.95824
0.1 2.8599 0.95828

no delay 3.8402 0.95837

Table 2 Patch release date of VMware ESXi 4.0.

Date Patch ID

2009/5/21 (VMware ESXi 4.0 release)
2009/7/9 ESXi400-200906001
2009/8/6 ESXi400-200907001

2009/9/24 ESXi400-200909001
2009/11/27 ESXi-4.0.0-update01

2010/1/5 ESXi400-200912001
2010/3/3 ESXi400-201002001
2010/4/1 ESXi400-201003001

2010/5/27 ESXi400-201005001
2010/6/10 upgrade-from-esxi4.0-4.0 update02
2010/9/30 ESXi400-201009001
2011/1/4 ESXi400-201101001
2011/3/7 ESXi400-201103001

2011/4/28 ESXi400-201104001
2011/5/5 update-from-esxi4.0-4.0 update03

2011/10/13 ESXi400-201110001
2011/11/17 update-from-esxi4.0-4.0 update04
2012/3/30 ESXi400-201203001
2012/5/3 ESXi400-201205001

2012/6/14 ESXi400-201206001
2012/9/14 ESXi400-201209001

ability. Moreover, as the CV increases, the optimal rejuve-
nation trigger time becomes earlier. This implies that the
rejuvenation policy is pessimistic in the case of the uncer-
tain opportunity.

5.2 MAP Case

Next we illustrate the optimal rejuvenation design under OT-
SRJ by using MAP-based opportunity process with empiri-
cal data. In this example, we consider the virtualized plat-
form that is commonly used in cloud computing. In the
common situation, the virtualized platform provides the vir-
tual environment where virtual machines run as continually
running servers such as Web sever. That is, there are not
many chances to perform the system rejuvenation because
the rejuvenation of virtualized platform stops all the virtual
machines on it. This example assumes that a candidate of
opportunities for the rejuvenation is the time to execute sys-
tem update or applying a patch.

Table 2 presents release date for security or critical
patches of VMware ESXi 4.0. VMware ESXi is a repre-
sentative system to provide the virtualized platform. The
average and standard deviation of interval time of two patch
releases are 60.6 (days) and 39.7 (days), respectively. Ac-
cording to [19], [20], we estimate MAP parameters from the

Fig. 4 The cumulative number of released patches.

Table 3 Model parameters of the virtualized platform [21].

Event Mean Time

System aging (mean time to failure probable state) 1 month
System failure after aging (mean time to failure) 1 week
Completion time of recovery 1 hour
Completion time of rejuvenation 2 minutes

Fig. 5 System availabilities for the virtualized platform.

patch release data. Also, the number of phases of MAP was
set as m = 10. Figure 4 draws the mean value of estimated
MAP and the observed data as the cumulative number of re-
leased patches. The mean and standard deviation of a patch
interval in the estimated MAP are given by 56.5 (days) and
52.0 (days), respectively.

Consider the maximization of system availability based
on the estimated MAP. Clearly, the software rejuvenation
of system does not affect the opportunity process defined
by the process of patch releases. The model parameters of
virtualized system are set as Table 3 which is cited from
[21].

Similar to the case of renewal process, the failure time
distribution is given by a gamma distribution with mean 1
week, and we vary the CV of failure time distribution. Fig-
ure 5 illustrates the system availabilities with respect to the
rejuvenation trigger time under OTSRJ. By comparison, we
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also draw the system availability when there is no delay be-
tween the rejuvenation trigger and operation (“no delay”).
As seen in the figure, for all the cases, the optimal rejuve-
nation trigger time is 0. That is the optimal policy is that
the rejuvenation is triggered at which the system goes to
the failure probable state. However, compared to the sys-
tem availability without opportunity, the system availabil-
ity with opportunity is further degraded. This is because
the patch release is relatively longer than the system aging.
In this situation, since the opportunity occurrence is a rare
event, the system has been failed in most cases though the
rejuvenation is triggered when the system is aging immedi-
ately. From this analysis, we find that patch release timing is
not appropriate opportunity for the rejuvenation and another
rejuvenation opportunity is required.

6. Conclusion

In this paper, we have considered an opportunity time-
triggered rejuvenation (OTSRJ) policy in the basic software
rejuvenation model under probabilistic opportunities. The
presented model and policy are a generalization of some ex-
isting condition-based rejuvenation policies. Based on the
stochastic model, we have derived the existence condition
for the optimal trigger time of rejuvenation under OTSRJ
policy analytically. Also we have discussed the two differ-
ent opportunity processes; renewal process and MAP. In
the result, the aging property of the failure time distribu-
tion dominates the existence of the optimal trigger time of
rejuvenation even in the environment where opportunities
randomly arise. Moreover, we have presented two numer-
ical examples for the optimal trigger time of rejuvenation
under OTSRJ. Lessons learned from the numerical exam-
ples are (i) the system availability is degraded when oppor-
tunities are uncertain, (ii) the rejuvenation policy should be
pessimistic when opportunities are uncertain, (iii) to find ap-
propriate opportunities is practically significant to enhance
the system availability under rejuvenation.

In future, we consider on-line estimation of the optimal
trigger time of rejuvenation based on the proposed model
and policies. In addition, we try to find the existence con-
dition of the optimal trigger time of rejuvenation in the case
where system behavior and opportunity process are synchro-
nized.
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Appendix A: Proof of Theorem 1

Consider the first derivative of q(t0):

d
dt0

q(t0) = ψ′op(t0)(μa − μc)Lop(t0)

×
(
ξ2μa − ξ3μc

μa − μc
− RR(t0)

)
, (A· 1)

where ψ′op(t0) is the first derivative of ψop(t0). Under the as-
sumptions A-1 and A-2, the sign of Eq. (A· 1) is dominated
by the sign of ψ′op(t0). Therefore, when ψ′op(t0) > 0, q(0) < 0
and q(∞) > 0, there exists a unique value such that q(t∗0) = 0.
Since the sign of q(t0) equals the sign of the first derivative
of RR(t0), t∗0 maximizes RR(t0). RR(t∗0) can be derived from
the equation q(t∗0) = 0 directly.

Appendix B: Proof of Proposition 1

From the integration by parts, we have
∫ ∞

0
f f (t0 + s)dFop(s; t0) = fop(0)F f (t0)

+

∫ ∞

0
F f (t0 + s)

d
ds

fop(s; t0)ds. (A· 2)

Since the equilibrium distribution is defined by Eq. (10), we
get

∫ ∞

0
f f (t0 + s)dFop(s; t0)

=
1

E[Ti − Ti−1]

(
F f (t0) −

∫ ∞

0
F f (t0 + s)dG(s)

)
.

(A· 3)

Then Eq. (5) is reduced to

ψop(t0) =
1 − ∫ ∞

0
F f (s | t0)dG(s)∫ ∞

0
F f (s | t0)dFop(s)

, (A· 4)

where F f (s | t0) = F f (t0 + s)/F f (t0). Since the equilibrium
distribution is independent of t0, we replace Fop(s; t0) with
Fop(s). From the result of Bryson and Siddiqui [23], when
F f (t) has a strictly IFR property, F f (s | t0) is a strictly de-
creasing function with respect to t0. Therefore, when F f (t)
has a strictly IFR property, ψop(t0) is a strictly increasing
function with respect to t0.

Appendix C: Proof of Proposition 2

From the proof of Proposition 1, it is only necessary to proof

that the p.d.f. of Eq. (16) is a decreasing function. The p.d.f.
of Eq. (16) is given by

fop(s) = πs(−D0) exp(D0s)e. (A· 5)

From πs(D0 + D1) = 0, we have πs = πs D1(−D0)−1. Then
Eq. (A· 5) is reduced to

fop(s) = πs D1(−D0)−1(−D0) exp(D0s)e

= πs D1 exp(D0s)e

= πs D1e
πs D1

πs D1e
exp(D0s)e. (A· 6)

Letting πd = πs D1/πs D1e, the vector holds

πd = πd(−D0)−1 D1. (A· 7)

Here (−D0)−1 D1 is a transition probability matrix of em-
bedded discrete-time Markov chain on event occurrence
points. Thus πd is also the state probability vector. Since
πd exp(D0)e is a complementary c.d.f. of a phase-type dis-
tribution, the p.d.f. of Eq. (16) is a decreasing function with
respect to s.
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