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Low-Overhead Fault-Secure Parallel Prefix Adder by Carry-Bit
Duplication

Nobutaka KITO†a), Member and Naofumi TAKAGI††, Senior Member

SUMMARY We propose a low-overhead fault-secure parallel prefix
adder. We duplicate carry bits for checking purposes. Only one half of
normal carry bits are compared with the corresponding redundant carry
bits, and the hardware overhead of the adder is low. For concurrent error
detection, we also predict the parity of the result. The adder uses parity-
based error detection and it has high compatibility with systems that have
parity-based error detection. We can implement various fault-secure paral-
lel prefix adders such as Sklansky adder, Brent-Kung adder, Han-Carlson
adder, and Kogge-Stone adder. The area overhead of the proposed adder
is about 15% lower than that of a previously proposed adder that compares
all the carry bits.
key words: parity prediction, parallel prefix adder, fault secure, carry-bit
duplication

1. Introduction

As manufacturing technology of integrated circuits pro-
gresses by reducing feature size and providing more in-
tegration density, reliability problems have been an issue.
Designs for reliability have become increasingly important.
Concurrent error detection is crucial for enhancing reliabil-
ity. For example, in microprocessors for enterprise servers,
concurrent error detection techniques have been used [1],
[2].

Adders are important components in VLSI chips.
Many adder structures have been proposed to meet various
requirements, i.e., delay time and area. Among them, paral-
lel prefix adders are widely used [3]. A parallel prefix adder
calculates “propagate signals” and “generate signals” in par-
allel, and these signals are used to calculate the carry bit for
each bit position. Various prefix calculation circuits having
different delay times and areas can be designed to generate
these signals.

In this paper, we propose a low-overhead fault-secure
parallel prefix adder. A circuit is said to be fault-secure, if
errors are detectable by observing the circuit output when-
ever it outputs erroneous values. We can implement fault-
secure parallel prefix adders using various prefix calculation
circuits, such as Sklansky adder [4], Brent-Kung adder [5],
Han-Carlson adder [6], and Kogge-Stone adder [7]. The
adder is fed with two operands and their parity bits, and pro-
duces the sum as well as the predicted parity of the sum and
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a pair of check bits. We assume that the adder consists of
circuit blocks referred to as functional cells. We intend to
detect errors caused by a single faulty cell at the output of
the adder.

For concurrent error detection of the adder, we dupli-
cate carry bits, i.e., we introduce redundant carry bits for
checking purposes, and one half of normal carry bits are
compared with the corresponding redundant carry bits using
a two-rail checker. We also predict the parity of the result
(the sum). Because the bit width of the checker is smaller,
the overhead of the adder is lower than that of the previously
proposed fault-secure adders. We detect errors by compar-
ing the predicted parity with the actual parity of the adder
result and observing the check bit pair from the checker. The
adder is suitable for systems with parity-based error detec-
tion. In such a system, we can easily feed two operands and
their parities to the adder, and can use the predicted parity
as the parity bit.

Several concurrent error detectable adders using parity
bits have been proposed [8]–[11]. In [8], a fault-secure rip-
ple carry adder is shown. Although a ripple carry adder is
basic and simple, it is too slow for many applications. In
[9] and [10], a fault-secure and self-testing carry lookahead
adder and a fault-secure and self-testing carry skip adder are
shown, respectively. A circuit is said to be self-testing, if,
for any fault, at least one input pattern exists to detect the
fault. Additional hardware for these adders is shown at the
gate level. These adders are less flexible when implement-
ing designs, unlike the adder proposed in this paper, and
have a large hardware overhead because of the large hard-
ware required for sum-bit duplication and a larger checker.
In [11], a fault-secure adder using carry-bit duplication is
shown. In this adder, all the carry bits are compared with the
corresponding redundant carry bits for checking. In the pre-
viously proposed adders using carry-bit (or sum-bit) dupli-
cation [9]–[11], all the carry bits (or sum bits) are compared
with the corresponding redundant bits for checking. On the
other hand, in the adder proposed in this paper, only one half
of the carry bits are compared. Thus, the proposed adder has
a smaller wiring area and lower hardware overhead. Eval-
uation results show that the hardware overhead for a 32-bit
design of the proposed adder is about 15% lower than that
for a design of the adder proposed in [11].

This paper is organized as follows. In the next sec-
tion, we describe a parallel prefix adder, the fault model, and
a two-rail checker. In Sect. 3, we propose a low-overhead
fault-secure parallel prefix adder, and discuss its error de-

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



KITO and TAKAGI: LOW-OVERHEAD FAULT-SECURE PARALLEL PREFIX ADDER BY CARRY-BIT DUPLICATION
1963

tection mechanism. In Sect. 4, we evaluate a design of the
proposed adder, and in Sect. 5, we conclude this paper.

2. Preliminaries

2.1 Parallel Prefix Adder

We consider an unsigned n-bit parallel prefix adder. We let
the augend X be [xn−1 · · · x0], the addend Y be [yn−1 · · · y0],
the carry input to the least significant position be c0, and the
sum S be [cnsn−1 · · · s0].

In a parallel prefix adder, the carry bit cl+1 of each bit
position l (n > l ≥ 0) is calculated regarding the “gener-
ate signal” and the “propagate signal” spanning bit positions
from 0 to l. We calculate the generate signal gi and the prop-
agate signal pi of bit position i as follows:

gi = xi · yi

pi = xi ⊕ yi.

With the above signals, we can calculate the generate
signal and the propagate signal spanning bit positions from
k to i (n > i ≥ j > k ≥ 0) as follows:

Gi,k = Gi, j + Pi, j ·G j−1,k

Pi,k = Pi, j · Pj−1,k.

We treat Gi,i = gi and Pi,i = pi.
The carry bit cl+1 and the sum bit sl can be calculated

as follows:

cl+1 = Gl,0 + Pl,0 · c0

sl = cl ⊕ pi.

As an example of a parallel prefix adder, we show a

Fig. 1 Example of a parallel prefix adder (a 16-bit Sklansky adder).

16-bit Sklansky adder in Fig. 1. We also show the prefix cal-
culation circuits of Brent-Kung adder, Han-Carlson adder,
and Kogge-Stone adder in Figs. 2 (a), (b), and (c), respec-
tively. We use several circuit blocks, hereafter referred to
as cells, to construct a parallel prefix adder. We use five
types of cells, whose functions are shown in Table 1. A GP
cell calculates a generate signal and a propagate signal from
four inputs. We let the GP cell calculating Gi,k and Pi,k be
GP(i,k).

In this paper, we assume that a parallel prefix adder
holds the following properties for any GP cell.

• Inputs of GP(i,k) come from GP(i, j) and GP( j − 1,k)
(i ≥ j > k), i.e., there is no overlap in bit positions
between the both source GP cells.
• dm(i, j) is equal to n, or at least one of dm(i, j) and i is

odd. Here, dm(i, j) denotes the maximum d such that
all carry bits ch (d ≥ h > i) depend on the outputs of
GP(i, j).

In general, parallel prefix adders without redundant GP cells
satisfy the first property. The prefix calculation circuits
shown in Figs. 1 and 2 satisfy the above two properties.

For example, in a prefix calculation circuit of the
Sklansky adder shown in Fig. 1, dm(i, j) of GP(i, j) cell is
either n or i+1. For example, dm(6, 4) is 7 (= 6+1) because
the carry bit c7 depends on the outputs of GP(6,4) while the

Table 1 Cells for a parallel prefix adder.

Cell Function
g g = x · y
p p = x ⊕ y

GP g = Gh + Ph ·Gl

p = Ph · Pl

C c = G + P · cin

S s = p ⊕ c
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Fig. 2 Prefix calculation circuits in 16-bit parallel prefix adders. (a) Brent-Kung adder,
(b) Han-Carlson adder, (c) Kogge-Stone adder.

carry bit c8 does not depend on them. dm(7, 6) is 16 (= n)
because there are paths from GP(7,6) to the carry bits from
c8 to c16. When dm(i, j) is i + 1, either dm(i, j) or i is odd.
Therefore, all GP cells satisfy the properties.

We also show another example. In the prefix calcula-
tion circuit of the Brent-Kung adder shown in Fig. 2 (a), we
can classify GP cells into two groups. One group contains
GP(io, j) and the other contains GP(ie, j), where io and ie de-
note odd and even-numbers, respectively. GP(io, j) satisfies
the second property because io is odd. GP(ie, j) also satisfies
the property because dm(ie, j) is equal to ie + 1. Therefore,
all GP cells satisfy the properties.

2.2 Fault Model

In this paper, we assume that the considered circuit consists
of functional circuit blocks, called cells. In the circuit, at
most one cell is faulty. We consider that the logical function
of the faulty cell is different from the expected function. A
faulty cell with multiple output lines may output erroneous
logic values at the multiple output lines. For example, when
a GP cell is faulty, we consider that its two outputs may
be erroneous simultaneously. When the traditional single
stuck-at fault model is adopted, this fault is difficult to han-
dle or can not be handled because the single stuck-at fault
model consider a fault of a single signal.

Because we do not assume specific gate-level imple-
mentations of cells, any gate-level implementation can be
used. Thus, for example, an S cell that calculates p ⊕ c can
be implemented by an XOR gate or by a combination of

Fig. 3 Two-rail checker.

gates. Therefore, various gate-level implementations exist
for an adder that consists of cells, and implementation flexi-
bility of circuits that consist of cells is higher than that of the
gate-level circuit considering the traditional single stuck-at
fault model. Moreover, multiple faults in a gate-level imple-
mentation of a cell can be treated as a single cell fault.

2.3 Two-Rail Checker

We use the two-rail checker shown in Fig. 3 for the parallel
prefix adder proposed in this paper. The two-rail checker
takes two bit vectors V1 and V0 as inputs. V1 is expected to
be the bitwise logical inverse of V0.

The two-rail checker consists of CHK cells. A CHK
cell has four input lines (a1, a0, b1 and b0) and calculates
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Fig. 4 Carry-bit duplicated fault-secure parallel prefix adder.

two outputs (t1 and t0) as follows:

t1 = a1 · b0 + a0 · b1

t0 = a1 · b1 + a0 · b0.

The outputs t1 and t0 have the same value if the input value
for a1 is equal to that for a0, or if the input value for b1 is
equal to that for b0. When input values for a1 and b1 are
the logical inverses of those for a0 and b0, respectively, the
output values of t1 and t0 are equal to a1 ⊕ b1 and a1 ⊕ b1,
respectively.

In a two-rail checker, we connect t1 and t0 of the CHK
cells to a1 and a0 or b1 and b0, respectively. We feed the bits
of V1 to a1 and b1 of the leaf CHK cells and the correspond-
ing bits of V0 to a0 and b0 of the leaf CHK cells. Normally,
t1 and t0 of the root CHK cell output the parity of bits in V1
and the logical inverse of the parity, respectively. When V1
is not the bitwise logical inverse of V0, two outputs of the
root CHK cell have the same logical value. Therefore, this
checker is code-disjoint, i.e., we can always detect errors
when unexpected input values are fed to the circuit.

3. Low-Overhead Fault-Secure Parallel Prefix Adder

We propose a low-overhead fault-secure parallel prefix
adder. We assume that, in addition to the augend X and
the addend Y , parity bits p(X) and p(Y) that correspond to X
and Y , respectively, are fed to the adder. The outputs of the
adder are the sum S , the predicted parity PS , and a pair of
check bits tout0 and tout1. In the adder, we introduce redun-
dant carry bits for checking purposes (hereafter referred to
as check carry bits) and compare only one half of carry bits
with the corresponding check carry bits. We also predict the
parity of the result for error detection purposes.

In this section, we assume that if not otherwise speci-
fied, the input parities p(X) and p(X) are consistent with the
operands X and Y , respectively.

Table 2 Cells for a fault-secure parallel prefix adder.

Cell Function
C’ c′ = x · y + p · cin

XOR p = p1 ⊕ p2

3.1 Structure

The proposed low-overhead fault-secure parallel prefix
adder is shown in Fig. 4. In the figure, the structure for a
4w-bit adder (w > 0) is shown. The cells in bold lines are
the additional ones for the fault-secure adder. We introduce
two types of cells (C’ and XOR) shown in Table 2. We need
no additional cell for calculating the sum bits. Therefore,
the adder has a low delay overhead for calculating the sum
bits.

In a parallel prefix adder, the value of carry bit ci+1 is
equal to gi + ci · pi. In the proposed adder, with this rela-
tion, we duplicate the carry bit for each bit position except
the least significant position. We name the check carry bit
c′i . c′i has the inverse value of the carry bit ci. The check
carry bit c′i+1 is calculated using the carry bit ci according to
xi · yi + ci · pi. We use a C’ cell to calculate the check carry
bit, whose function is shown in Table 2.

In an adder, the following relations hold among X, Y ,
cn, cn−1, . . . , c0, and sn−1, . . . , s0

cn ⊕ sn−1 ⊕ sn−2 ⊕ · · · ⊕ s0 = (xn−1 ⊕ · · · ⊕ x0)

⊕ (yn−1 ⊕ · · · ⊕ y0) ⊕ (cn ⊕ · · · ⊕ c0)

Thus, we can predict the parity of the sum using p(X), p(Y),
and the parity of carry bits p(C) (= cn ⊕ · · · ⊕ c0). The
predicted parity PS is calculated according to p(X)⊕ p(Y)⊕
p(C) in the proposed adder. Note that, by using only the
predicted parity, we can not detect erroneous values caused
by even number of carry-bit inversions. With the checker
described below, we can obtain fault-secure property.

We use a two-rail checker as shown in Fig. 4. We treat
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Fig. 5 Example of a fault-secure parallel prefix adder (a 16-bit Sklansky adder).

the original carry bits at even-numbered positions cie and
check carry bits at even-numbered positions c′ie (n ≥ ie > 0)
as input vectors V1 and V0 of the checker, respectively. We
let the outputs t1 and t0 of the root CHK cell be tout1 and
tout0, respectively. Normally, the values of tout1 is equal
to the parity of all the original carry bits at even-numbered
positions cie (n ≥ ie > 0), and the values of tout0 is the
inverse value of tout1. If a carry bit and a corresponding
check carry bit have the same value because of a fault, tout0
and tout1 output the same value.

We let the parity of all the check carry bits at odd-
numbered positions c′io be p(C′odd). When n = 4w or
n = 4w − 1 (w > 0), c4w−1 ⊕ c4w−3 ⊕ · · · ⊕ c1 is
equal to c′4w−1 ⊕ c′4w−3 ⊕ · · · ⊕ c′1 (= p(C′odd)), and there-
fore, we can obtain the predicted parity PS by calculating
p(X) ⊕ p(Y) ⊕ p(C′odd) ⊕ tout1 ⊕ c0 because p(C) is equal
to p(C′odd) ⊕ tout1 ⊕ c0. In the other cases, i.e., n = 4w − 2
or n = 4w − 3, we can obtain the predicted parity PS by
calculating p(X) ⊕ p(Y) ⊕ p(C′odd) ⊕ tout0 ⊕ c0.

When the adder works correctly, the predicted parity
PS is equal to the parity of the sum S and the values of
the checker outputs tout1 and tout0 are the parity of bits in
V0 and its inverse, respectively. When the adder outputs
an erroneous value because of a fault, either the predicted
parity PS differs from the parity of the sum S or the values
of the checker outputs tout0 and tout1 are the same.

In the previously proposed fault-secure adders [9], [11],
all the carry (or sum) bits are compared with the correspond-
ing redundant ones. Because only one half of the carry bits
are compared in our adder, the two-rail checker and wiring
area are smaller.

As an example, in Fig. 5, we show the proposed adder
with a prefix calculation circuit in Sklansky adder corre-
sponding to Fig. 1. Note that we can reduce the delay time
of PS , tout0, and tout1 by optimizing the tree structure of

Fig. 6 Example of a datapath circuit with the fault-secure adder in a
system using parity-based error detection.

CHK cells and the tree structure of XOR cells considering
the signal delay.

We can easily use the proposed adder in systems using
parity-based error detection. We show an example system in
Fig. 6. We can use parity bits of the memory or the register
file as parities of operands p(X) and p(Y) for the adder. We
can use the predicted parity of the adder as the parity bit.
In this case, errors in the adder will be detected by a parity
checker of the system or by observing the checker output
lines of the adder.

Note that, when we want to compare the predicted par-
ity with the parity of the sum in the adder, we append a parity
calculation circuit consisting of n XOR cells and compare
the predicted parity and the parity of the sum using a CHK
cell and an inverter to invert one of the two parities.

While we assume that the input parities p(X) and p(Y)
are consistent with the operands X and Y in this section, we
can detect an odd number of bit inversions in X, Y , p(X), and
p(Y) by comparing the predicted parity PS and the parity
of the sum S , because the predicted parity is calculated by
p(X)⊕ p(Y)⊕ p(C). In this sense, the adder is code-disjoint.
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3.2 Error Detection

Now, we show that we can detect any error caused by a sin-
gle cell fault by observing the output of the adder. For each
type of cells in the adder, we discuss propagation of effects
caused by a faulty cell, and show the adder’s detectability of
erroneous outputs.

First, we discuss an error caused by a faulty S cell, a
faulty XOR cell, or a faulty CHK cell. An S cell calculates
a sum bit of the adder. Thus, we can detect the error by com-
paring the predicted parity PS and the parity of the sum S .
We can also detect an error caused by a faulty XOR cell for
parity prediction by comparing the predicted parity and the
parity of the sum. The effect of a faulty CHK cell propagates
to outputs tout0, tout1, and PS , and we can detect it by ob-
serving the checker outputs tout0 and tout1 or by comparing
the predicted parity and the parity of the sum.

Next, we discuss an error caused by a faulty C cell or
a faulty C’ cell. If the C cell that generates ci is faulty, its
effect propagates to the sum bit si and/or the check carry bit
c′i+1. If both c′i+1 and ci are erroneous, we can detect one of
them by observing the checker outputs tout0 and tout1. If
the effect of the C cell does not propagate to c′i+1, we can
detect the error by observing the checker outputs (when i is
even) or by comparing the predicted parity PS and the parity
of the sum S (when i is odd). When a C’ cell is faulty, it only
affects the circuit for the parity prediction and the checker.
Thus, we can detect an error caused by a faulty C’ cell in the
same manner as that by a faulty CHK cell.

To discuss an error caused by a faulty GP cell, a faulty
g cell, or a faulty p cell, we introduce a new notation.
For a pair of operands, we let pm(i) be the bit position
such that xmi � ymi for all bit positions mi between pm(i)
and i (pm(i) > mi > i), and xpm(i) = ypm(i). For exam-
ple, when (. . . , xi+3, xi+2, xi+1, . . .) = (. . . , 0, 0, 0, . . .) and

Fig. 7 Example of fault effect propagations by a faulty GP cell when dm(i, j) ≥ pm(i) (GP(3,2) is
faulty, and the checker circuit and the parity prediction circuit are omitted).

(. . . , yi+3, yi+2, yi+1, . . .) = (. . . , 0, 1, 1, . . .), pm(i) is i + 3 be-
cause xi+3 is equal to yi+3 while xi+2 and xi+1 are not the
same values as yi+2 and yi+1, respectively. Note that we con-
sider pm(i) = n when xmi � ymi for all bit positions higher
than i (n > mi > i).

Now, we discuss an error caused by a faulty g cell gen-
erating gi or a faulty GP cell GP(i, j) such that dm(i, j) ≥
pm(i). In this case, the effect of the faulty g cell or the
faulty GP cell propagates to the carry bits from ci+1 to
cpm(i) and to the check carry bits from c′i+2 to c′pm(i) be-
cause the effect propagates to upper positions while the
carry bit cpm(i)+1 and the check carry bit c′pm(i)+1 are deter-
mined only by xpm(i) and ypm(i). We show an example in
Fig. 7. In the figure, (x11, x10, . . . , x4, x3) = (0, 1, . . . , 1, 0),
and (y11, . . . , x3) = (0, . . . , 0) are fed to the adder. We as-
sume GP(3,2) is faulty and the output value G3,2 is inverted.
In this example, dm(3, 2) = 16 and pm(3) = 11 because
propagate signals from p4 to p10 are 1 and p11 = 0. As de-
scribed above, carry bits from c4 (= c(3+1)) to c11 (= cpm(3)),
check carry bits from c′5 to c′11, and sum bits from s4 to s11

are inverted.
While the effect propagates to ci+1, the effect does not

propagate to c′i+1. Thus ci+1 is equal to c′i+1. When i + 1 is
even, i.e., i is odd, we can detect the error by observing the
checker outputs tout0 and tout1. In Fig. 7, c4 and c′4 have the
same value, and they are compared by the checker. When i is
even, we calculate the sum output with the erroneous carry
bit ci+1 while we calculate the predicted parity PS with the
correct check carry bit c′i+1. Thus, the predicted parity PS
is not equal to the parity of the sum S , and we can detect
the error by comparing the predicted parity with the parity
of the sum. Therefore, we can detect an error caused by a
faulty GP cell or a faulty g cell whether i is even or not.

We also discuss an error caused by a faulty GP cell
GP(i, j) such that pm(i) > dm(i, j). In this case, the effect
of the faulty cell propagates to carry bits at least from ci+1
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Fig. 8 Example of fault effect propagations by a faulty GP cell when dm(i, j) < pm(i)
(GP(5,0) is faulty).

Fig. 9 Example of fault effect propagations by a faulty p cell (p cell that generates p4 is faulty).

to cdm(i, j), and check carry bits at least from c′i+2 to c′dm(i, j)+1.
Therefore, ci+1 and cdm(i, j)+1 are equal to c′i+1 and c′dm(i, j)+1,
respectively. Owing to the properties of adders shown in
Sect. 2.1, dm(i, j) or i is odd. cdm(i, j)+1 or ci+1 is compared
with the corresponding check carry bit, and errors caused
by the faulty GP cell can be detected. We show an example
in Fig. 8. In the figure, (x9, x8, x7, x6, x5) = (0, 1, 1, 1, 0),
and (y9, y8, y7, y6, y5) = (0, 0, 0, 0, 0) are fed to the adder.
We assume GP(5,0) is faulty and the output value G5,0 is
inverted. In this example, dm(5, 0) = 7 and pm(5) = 9. As
shown in the figure, c6, c7, c′7, and c′8 are inverted by the
faulty GP cell. Because dm(5, 0) is odd, the bit position of
the most significant erroneous check carry bit is even (c′8 in
this case). Thus, the check carry bit is compared with the

corresponding correct carry bit by the checker.
Finally, we discuss an error caused by a faulty p cell

that generates pi. The effect of the faulty p cell propagates to
the sum bit si. The effect also propagates either to no other
bit or to the carry bits, the check carry bits, and the sum
bits of bit positions from i+ 1 to pm(i). Thus, the number of
inversions in the sum bits are larger by one than the numbers
of inversions in the original carry bits and the check carry
bits. Therefore, we can detect the error by comparing the
predicted parity PS and the parity of the sum S . In Fig. 9,
we assume the p cell that generates p4 is faulty. In the figure,
carry bits from c5 to c11 and the corresponding check carry
bits are inverted, and the sum bits from s4 to s11 are inverted.
Though the number of bit inversions in carry bits and that in
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check carry bits are odd, the number of bit inversions in sum
bits is even. Thus, the predicted parity PS is not equal to the
parity of the sum.

As a result, we can detect an error caused by a faulty
GP cell, a faulty g cell, or a faulty p cell. Therefore, by
observing the output of the adder, we can detect any error
caused by a single cell fault.

4. Hardware Overhead

We estimate hardware overhead of the proposed adder and
compare it with that of the previously proposed adder [11].
In Table 3, we show the overhead in a design of the proposed
adder and that in a design based on [11] that was imple-
mented using the same cells as in this paper. In the bottom
row of the table, we show estimated hardware overhead in
the number of equivalent 2-input NAND gates. We consider
that an XOR cell is 2.5 gate equivalents because in CMOS
technology without transmission gates, an XOR gate and a
2-input NAND gate can be realized by 10 transistors and
4 transistors, respectively. We also consider a C’ cell and
a CHK cell as 2 gate equivalents and 4.5 gate equivalents,
respectively. The overhead of the proposed adder is 15%
(≈ 2

13 ) lower than that in [11].
To acquire the actual overhead, we designed the pro-

Table 3 Comparison of hardware overhead.

Proposed Based on [11]
Number of C’ cells n n

Number of CHK cells n
2 − 1 n − 1

Number of XOR cells n
2 + 3 3

Total gate equivalents 11n
2 + 3 13n

2 + 3

Table 4 Comparison of area overhead.

N Normal Proposed Based on [11] Overhead ratio
Area Area Area overhead Area Area overhead Proposed/Based on [11]

[µm2] [µm2] [%] [µm2] [%] [%]
8 1486.6 2145.9 44.3 2249.4 51.3 86.4

16 3361.0 4640.8 38.1 4847.8 44.2 86.2
32 7497.8 10018.6 33.6 10432.6 39.1 85.9
64 16585.7 21588.7 30.2 22416.7 35.2 85.8

Table 5 Comparison of delay overhead.

N Normal Proposed Based on [11]
Sum [ns] Sum [ns] PS [ns] tout0 [ns] tout1 [ns] Sum [ns] PS [ns] tout0 [ns] tout1 [ns]

8 1.83 2.06 2.71 2.26 2.32 2.06 2.83 2.58 2.63
16 2.70 2.92 3.86 3.35 3.40 2.92 3.91 3.66 3.71
32 4.02 4.25 5.44 4.88 4.93 4.25 5.45 5.19 5.24
64 6.49 6.71 8.17 7.54 7.60 6.71 8.12 7.86 7.91

Table 6 Comparison of area overhead (Brent-Kung adder).

N Normal Proposed Based on [11] Overhead ratio
Area Area Area overhead Area Area overhead Proposed/Based on [11]

[µm2] [µm2] [%] [µm2] [%] [%]
8 1438.1 2097.4 45.8 2200.9 53.0 86.4

16 3070.0 4349.8 41.7 4556.8 48.4 86.2
32 6382.4 8903.3 39.5 9317.3 46.0 85.9
64 13055.7 18058.6 38.3 18886.6 44.7 85.7

posed adder and the previously proposed adder [11] hav-
ing the same prefix calculation circuit in a Sklansky adder.
We synthesized them with Synopsys design compiler and
adopted the Rohm 0.18 µm CMOS process cell library. In
Tables 4 and 5, we show the synthesis results. Area con-
straints are used for synthesis. The hardware overhead in
the design of the proposed adder is about 15% lower than
that in the design based on [11]. The delay time of the de-
sign of the proposed adder is smaller than or nearly equal to
the delay time of the design based on [11]. The impact of
the modification on delay time of the sum outputs is small.

Note that, in the proposed adder, ratio of the hard-
ware overhead in designs varies depending on the number
of GP cells because the additional hardware are the same
for designs. For example, a design of Brent-Kung adder
has smaller amount of GP cells and a design of Kogge-
Stone adder has larger amount of GP cells than a design
of Sklansky adder. Thus, ratio of the overhead in a design
of Kogge-Stone adder is smaller than that in a design of
Sklansky adder, and that in a design of Brent-Kung adder
is larger. We show hardware overhead in designs of Brent-
Kung adder, Han-Carlson adder, and Kogge-Stone adder in
Tables 6, 7, and 8, respectively.

5. Conclusion

We have proposed a low-overhead fault-secure parallel pre-
fix adder. We duplicate carry bits for checking purposes,
and compare only one half of the carry bits with the corre-
sponding check carry bits using a two-rail checker. We also
predict the parity of the result for error detection purposes.
We can detect errors by observing the output lines of the



1970
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.9 SEPTEMBER 2013

Table 7 Comparison of area overhead (Han-Carlson adder).

N Normal Proposed Based on [11] Overhead ratio
Area Area Area overhead Area Area overhead Proposed/Based on [11]

[µm2] [µm2] [%] [µm2] [%] [%]
8 1486.6 2145.8 44.3 2249.3 51.3 86.4
16 3360.9 4640.7 38.1 4847.7 44.2 86.2
32 7497.5 10018.3 33.6 10432.3 39.1 85.9
64 16546.3 21549.2 30.2 22377.2 35.2 85.8

Table 8 Comparison of area overhead (Kogge-Stone adder).

N Normal Proposed Based on [11] Overhead ratio
Area Area Area overhead Area Area overhead Proposed/Based on [11]

[µm2] [µm2] [%] [µm2] [%] [%]
8 1729.0 2388.3 38.1 2491.8 44.1 86.4
16 4185.1 5464.9 30.6 5671.9 35.5 86.2
32 9873.0 12393.9 25.5 12807.9 29.7 85.9
64 22800.3 27803.3 21.9 28631.3 25.6 85.5

checker or by comparing the predicted parity with the parity
of the result. The hardware overhead of the proposed adder
is lower compared to the previously proposed fault-secure
adders because the proposed adder’s checker has a smaller
bit width than that of the checker in the previously proposed
adders. We can implement adders with various prefix cal-
culation circuits such as Sklansky adder, Brent-Kung adder,
Han-Carlson adder and Kogge-Stone adder. Evaluation re-
sults show that the hardware overhead of the proposed adder
is about 15% lower than that of the previously proposed
adder. By the results, we can conclude that a reduction in
the bit width of the checker in the proposed adder is effec-
tive for total area reduction of a fault-secure parallel prefix
adder.

Acknowledgement

This work is supported by VLSI Design and Education Cen-
ter (VDEC), The University of Tokyo with the collaboration
with Synopsys Corporation.

References

[1] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita,
T. Muta, T. Motokurumada, S. Okada, H. Yamashita, Y. Satsukawa,
A. Konmoto, R. Yamashita, and H. Sugiyama, “A 1.3 GHz fifth gen-
eration SPARC64 microprocessor,” Proc. 40th Annual Design Au-
tomation Conference, DAC ’03, pp.702–705, 2003.

[2] J. Rivers, M. Gupta, J. Shin, P. Kudva, and P. Bose, “Error toler-
ance in server class processors,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol.30, no.7, pp.945–959, July 2011.

[3] S. Vangal, M. Anders, N. Borkar, E. Seligman, V. Govindarajulu, V.
Erraguntla, H. Wilson, A. Pangal, V. Veeramachaneni, J. Tschanz, Y.
Ye, D. Somasekhar, B. Bloechel, G. Dermer, R. Krishnamurthy, K.
Soumyanath, S. Mathew, S. Narendra, M. Stan, S. Thompson, V. De,
and S. Borkar, “5-GHz 32-bit integer execution core in 130-nm dual-
Vt CMOS,” IEEE J. Solid-State Circuits, vol.37, no.11, pp.1421–
1432, 2002.

[4] J. Sklansky, “Conditional-sum addition logic,” IRE Trans. Electronic
Computers, vol.EC-9, no.2, pp.226–231, June 1960.

[5] R.P. Brent and H.T. Kung, “A regular layout for parallel adders,”
IEEE Trans. Comput., vol.31, no.3, pp.260–264, March 1982.

[6] T. Han and D.A. Carlson, “Fast area-efficient VLSI adders,” Proc.
8th IEEE Symposium on Computer Arithmetic (ARITH), pp.49–56,

May 1987.
[7] P.M. Kogge and H.S. Stone, “A parallel algorithm for the efficient

solution of a general class of recurrence equations,” IEEE Trans.
Comput., vol.22, no.8, pp.786–793, Aug. 1973.

[8] M. Nicolaidis, R.O. Duarte, S. Manich, and J. Figueras, “Fault-
secure parity prediction arithmetic operators,” IEEE Des. Test Com-
put., vol.14, pp.60–71, 1997.

[9] E.S. Sogomonyan, V. Ocheretnij, and M. Gössel, “A new code-
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