
2126
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.9 SEPTEMBER 2013

LETTER

Scalable and Adaptive Graph Querying with MapReduce

Song-Hyon KIM†a), Kyong-Ha LEE††, Inchul SONG†††, Nonmembers, Hyebong CHOI††††, Student Member,
and Yoon-Joon LEE††††, Nonmember

SUMMARY We address the problem of processing graph pattern
matching queries over a massive set of data graphs in this letter. As the
number of data graphs is growing rapidly, it is often hard to process such
queries with serial algorithms in a timely manner. We propose a distributed
graph querying algorithm, which employs feature-based comparison and
a filter-and-verify scheme working on the MapReduce framework. More-
over, we devise an efficient scheme that adaptively tunes a proper feature
size at runtime by sampling data graphs. With various experiments, we
show that the proposed method outperforms conventional algorithms in
terms of scalability and efficiency.
key words: graph query, parallel processing, MapReduce, adaptive tuning

1. Introduction

Graphs are widely used to model complex structures such as
protein-to-protein interactions and Web data [1]. Graph data
are growing rapidly and massively, e.g., PubChem [2] now
serves more than 40 million graphs that represent chem-
ical compounds. The overall storage size of the graphs
hits tens of terabytes [2]. A graph pattern matching query
is to find all data graphs that contain a given query graph
from a set of data graphs. A graph pattern matching query
requires to process expensive subgraph isomorphism test,
which is known to be NP-complete [3]. Thus, many studies
have been reported in the literature to cut down the number
of subgraph isomorphism tests [4], [5]. Although the algo-
rithms are prominent, they are not scalable enough to handle
a massive set of data graphs like PubChem since they all are
serial, designed to work on a single machine.

Meanwhile, it is important to set a proper feature
size in a filter-and-verify scheme since it dominantly deter-
mines the overall performance of query processing (refer to
Sect. 6). However, it is hard to find a proper feature size
before query processing since it depends on the statistics
about both query graphs and data graphs. If the feature size
is too large, the overhead of extracting and storing features
increases sharply. On the other hand, many false positives
are produced at filtering stage if the feature size is too small,
involving many obsolete subgraph isomorphism tests.

To tackle the problems, we propose MR-Graph, a dis-
tributed graph querying algorithm based on MapReduce [6].

Manuscript received April 8, 2013.
†The author is with Korea Air Force Academy, Korea.
††The author is with ETRI, Korea.
†††The author is with SAIT, Samsung Electronics, Korea.
††††The authors are with CS Dept., KAIST, Korea.
a) E-mail: kim.songhyon@gmail.com

DOI: 10.1587/transinf.E96.D.2126

MR-Graph tunes the feature size at runtime. It determines
the most appropriate feature size by sampling some portions
of data graphs. MR-Graph processes multiple queries over a
massive set of a data graph simultaneously. In addition, MR-
Graph does not require any index building and the modifica-
tion of MapReduce internals. MR-Graph is sophisticatedly
tailored to work in harmony with MapReduce’s program-
ming model.

2. Related Work

A major issue in the graph pattern matching problem is to
reduce the number of pairwise subgraph isomorphism test-
ing. Most approaches to the issue are based on a filter-and-
verify scheme with index techniques [4], [5]. They extract
substructures called features from data graphs and then filter
irrelevant graphs before actual subgraph isomorphism test-
ing. It may greatly reduce the number of actual subgraph
isomorphism tests. However, all the algorithms are serial
and thus not scalable enough to process a massive set of
data graphs. MapReduce is a programming model that en-
ables to process a massive volume of data in parallel with
a large cluster of commodity PCs [6]. It provides a simple
but powerful method that enables automatic parallelization
and distribution of large-scale computation. Recently, Luo
et al. [7] proposed an index-based method for parallel graph
pattern matching on MapReduce. They build an edge in-
dex over data graphs, which maps each distinct edge to the
list of data graphs that include the edge. However, their ap-
proach has a restricted assumption that every edge in a query
graph must be uniquely identified by labels of its endpoints
and itself. Thus it requires a subsequent verification phase
to process general graph pattern matching queries. There
are some studies about processing graphs with MapReduce.
Lin et al. [8] introduce several design patterns suitable for
iterative graph algorithms such as PageRank. Pregel [9] and
Pegasus [10] are systems devised for processing large-scale
graphs. However, they are different from our work in that
they focused on processing a single large graph such as Web
data or social network.

3. Preliminaries

We denote a graph by a tuple g = (V, E, L, l), where V is
a set of vertices and E is a set of undirected edges such that
E ⊆ V × V . L denotes a set of labels for both vertices and

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

LETTER
2127

(a) Query graph set (b) Data graph set

Fig. 1 An example of query and data graph set.

edges. l denotes a labeling function: (V ∪ E) → L. We also
define the size of a graph g, denoted by |g|, as the number of
edges in g, i.e., |g| = |E(g)|.
Definition 1. Given two graphs g = (V, E, L, l) and g′ =
(V ′, E′, L′, l′), g is subgraph isomorphic to g′, denoted
by g ⊆s g′, if and only if there exists an injective function
φ : V → V ′ such that

1. ∀u ∈ V, φ(u) ∈ V ′ and l(u) = l′(φ(u)),
2. ∀(u, v) ∈ E, (φ(u), φ(v)) ∈ E′ and l(u, v) = l′(φ(u), φ(v)).

Problem statement Let D = {g1, g2, · · · , gn} be a set of data
graphs and Q = {q1, q2, · · · , qm} be a set of query graphs,
where m << n. For each query q ∈ Q, we find all graphs Dq

such that Dq = {gi | q ⊆s gi, gi ∈ D}.
Figure 1 shows an example which will be used through-

out this paper. In the example, answers for two query graphs
are Dq1 = {g1, g2, g4} and Dq2 = {g1}, where Dqi means a set
of answers for qi.
Graph representation In MapReduce, all input data are
represented by key-value pairs. To parallelize graph query
processing with MapReduce, we first encode each graph
as a single key-value pair. A graph g is encoded as a
pair of (ID, CODE) where ID is a unique identifier for
each graph and CODE is a serialized version of g. CODE
is composed of the number of vertices, the number of
edges, a list of vertex labels, and a list of edges. In the
format, each edge is represented by a triple that consists
of from-vertex ID, to-vertex ID, and edge label. For ex-
ample, query graph q2 in Fig. 1 (a) is encoded as (q2,

‘3,3,A,B,B,0,1,b,0,2,b,1,2,b’).
Features in graph query processing A feature is a loosely
defined term for a substructure of a graph. There are various
kinds of features such as path, subtree, and subgraph [4],
[5]. In this letter, we use a subgraph as feature because it
exhibits the best filtering power among them [5]. However,
any other substructures can be used in MR-Graph without
loss of generality.

4. Basic Algorithm

A MapReduce-based algorithm works in two stages: map
and reduce. In MapReduce, input data are first partitioned
into equal-sized blocks and each block is assigned to a map-
per at map stage and mapped outputs are then stored into
local disks. Finally, the outputs are shuffled and pulled to re-
ducers for further processing at reduce stage. Algorithm 1 is
the basic algorithm of MR-Graph. Each mapper processes
queries over data graphs and each reducer groups mapped
outputs by query graph’s ID.

Algorithm 1: Basic MR-Graph
input: D: a set of data graphs, Q: a set of query graphs
output: (IDq, a list of IDg) pairs

1 init () // initializing a mapper

2
−→
F [] = ExtractFeatures (Q)

3 map (String IDg, String CODEg) // mapper

4
−→
Fg = ExtractFeatures (CODEg)

5 foreach (IDq, CODEq) ∈ Q do

6 if CheckContainment (
−→
F [IDq],

−→
Fg) then

7 if TestSubIso (CODEq, CODEg) then
8 emit (IDq, IDg)

9 reduce (String IDq, Iterator
−−→
IDg) // reducer

10 answer = Enlist (
−−→
IDg)

11 emit (IDq, answer)

At map stage, we extract features from a query graph
and a data graph by different rules (line 2 and 4). Graph
query processing is performed in a filter-and-verify scheme.
For each data graph, MR-Graph tests whether the data graph
contains all the features that compose a certain query graph
in a query set Q (line 6). If it is true, the algorithm pairs data
graph with the query graph and tests subgraph isomorphism
(line 7). At reduce stage, result data graphs are grouped by a
query graph ID and emitted. MR-Graph greatly reduces the
number of graphs that must be tested subgraph isomorphism
based on this filter-and-verify scheme.

When it comes to feature extraction, we extract
min(k, |q|)-sized features for a query graph q where |q| is
the size of query graph q. Note that we do not use features
whose sizes are less than min(k, |q|). We explain a rationale
behind this. Suppose that a query graph q has two features
fx and fy, where fx ⊆s fy and the size of feature fy, de-
noted by | fy|, is set to min(k, |q|). It is straightforward that
a data graph g contains fx if it contains fy. Thus, testing
if g contains fx is unnecessary when g is confirmed to con-
tain fy. Meanwhile, a data graph is processed with a set
of various sized query graphs. For a data graph g, we ex-
tract features whose sizes are up to min(k, |g|) each. In other
words, the size of feature f for a data graph g must satisfy
the condition, 1 ≤ | f | ≤ min(k, |g|). The ExtractFeatures
function in Algorithm 1 extracts features from both query
graphs and data graphs with the feature size following the
rules described thus far.

5. AdaptiveTune: Tuning the Feature Size at Runtime

Note that the feature size k in Algorithm 1 is determined by
a user before runtime. However, feature size decision is not
easy since the best feature size varies according to the char-
acteristics of query graphs and data graphs. To address the
issue, we devise an adaptive feature size tuning technique.
AdaptiveTune examines a set of trial values for k, denoted
by Vk, in the first few mappers, called trial mappers, then
determines a proper feature size. Note that the number of

2128
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.9 SEPTEMBER 2013

Algorithm 2: AdaptiveTune
input: kinit: initial feature size, Vk: trial values for k,

α: number of trials for each feature size in Vk

output: k: the best appropriate feature size

1. The initial feature size kinit is set into DCS.
2. If a mapper is a trial mapper, choose one value from Vk.

Otherwise, use the feature size stored in DCS.
3. The trial mapper updates DCS.
4. DCS notifies its update to all running mappers.
5. For each running mapper,

a. Estimate the remaining time left till the mapper ends,
denoted by Tcurrent , and the remaining time expected if
the mapper uses the best feature size, denoted by Tbest .

b. If Tbest < Tcurrent , change the feature size with one in DCS.
c. Process the remaining data graphs in the input split.

trial mappers is set to be α times of |Vk |. The larger α, the
more data graphs are tested to determine k. This tuning pro-
cess requires information about other mappers to determine
the best appropriate feature size and the remaining time of
each mapper. We format the information as a 4-tuple rela-
tion (k,T,N,O), where each tuple item represents ‘a feature
size’, ‘elapsed time’, ‘the number of data graphs processed’,
and ‘time overhead for feature extraction (lines 1–2 in Al-
gorithm 1)’, respectively. For example, (3, 10, 5, 4) means
that some mapper processes 5 data graphs in 10 seconds by
using feature size 3 and the time taken to extract features
from query graphs is 4 seconds. We exploit a distributed
coordination system (DCS) to share the information among
mappers.

Algorithm 2 describes AdaptiveTune. Note that this al-
gorithm begins with feature size kinit, initially set into DCS
by a user. After third step in Algorithm 2, DCS stores 4-
tuple relation (k,TB,NB,OB) that means some trial mapper
finishes its input split that contains NB data graphs in TB

time, while it takes OB time to extract features from a query
graph set. The Tcurrent and Tbest in the algorithm are esti-
mated as follows:

Tcurrent =
TC

NC
× (NB − NC) (1)

Tbest =
TB

NB
× (NB − NC) + OB (2)

where TC is the elapsed time when with a given k and TB

is the elapsed time when k is the best. NC is the number
of data graphs processed with the current feature size. We
estimate the remaining input size of a mapper by NB − NC .
Note that since NB is computed when a mapper ends, it also
represents the total number of data graphs in the mapper’s
input split. As AdaptiveTune runs α times with a trial value,
NB is expected to converge to the average number of data
graphs in an input split. We also estimate execution time per
data graph by TC

NC
or TB

NB
.

Example 1. Figure 2 shows an example of AdaptiveTune
that works with 4 mappers. Suppose that Vk = {k1, k2, k3}
and α = 1, then the number of trial mappers is 3. T1, T2,

Fig. 2 An example of AdaptiveTune.

Table 1 Statistics of graph datasets.

Dataset D/Q # |V | |E| |L| size

Real
D 10M 23.98 25.76 78 2.31 GB
Q 1000 14.26 14.00 11 131 KB

Synthetic
D 10M 14.23 30.53 47 2.62 GB
Q 1000 10.25 12.00 47 120 KB

Table 2 Statistics of input splits.

Real Synthetic
of input splits 256 256

avg. # of data graphs per input split 39062.5 39062.5
Standard deviation 6416.4 48.6

and T3 are trial mappers and they use one of Vk, while T4
uses the feature size stored in DCS, kinit. After finishing its
input split, T2 updates DCS with ‘(k2, . . .)’ at time t1. DCS
notifies this tuple to the other mappers. Then the mappers
determine whether they keep or change their feature size,
and process remaining input splits with the feature size. Fi-
nally, T1 and T4 change the current feature size to k2.

6. Experiments

Experimental setup We performed our experiments with
Hadoop version 1.0.3 working on a 9-node cluster. Each
data node is equipped with an Intel i5-2500 3.3 GHz pro-
cessor, 8 GB memory, and a 7200 RPM HDD, running on
CentOS 6.2. All nodes are connected via a Gigabit switch-
ing hub. The number of task slots is 32, which indicates
how many tasks can run simultaneoulsy on Hadoop. The to-
tal number of map and reduce tasks were set to be 8 times
(256) and 2 (64) times as many as the number of task slots.
We tested two datasets introduced in [11], i.e., PubChem
for a real-world dataset and synthetic.E30.D3.L50 for a syn-
thetic dataset. In addition, we varied the number of data
graphs or query graphs. Table 1 presents the statistics of our
datasets where the |V |, |E|, and |L| values are in average. We
set α to 1 and Vk to {1, 2, . . . , 6}. The statistics of input splits
is shown in Table 2.

We compared our method with a non-filtering ap-
proach, denoted by Basic, and Luo et al.’s approach, de-
noted by Luo [7]. All algorithms are written in C++ and the
verification phase was attached into Luo for fair comparison
(please refer to Sect. 2). In our system, we used VF2 [12] for
subgraph isomorphism test, gSpan [13] for feature extrac-
tion, and ZooKeeper [14] for distributed coordination.
Result analysis We first tested how a feature size k affects
the overall performance of graph pattern matching. Figure 3
shows that the execution time, depicted by bars, is the fastest

LETTER
2129

Fig. 3 Execution time (real).

Fig. 4 Execution time (synthetic).

Fig. 5 The size of feature sets.

Fig. 6 Feature extraction time.

when k is set to 4 whereas the average number of candidates,
depicted by lines, is the least when k is 6 for the real dataset.
The reason is that the cost of feature extraction and feature
comparison offsets the benefit of fine filtering effect. The
best value for k on the synthetic dataset is 2 as shown in
Fig. 4. Note that we omitted some results which exceeded
24 hours in our figures. The results also confirmed that the
best k can be different according to the characteristics of
given data and query graph sets. Figures 5 and 6 show how
a feature size impacted on the overall performance. As the
feature size increases, both the total storage size of feature
sets and the average feature extraction per data graph in-
crease exponentially. This causes not only space overhead
to store the features, but a lot of I/Os during query process-
ing on Hadoop.

We now evaluate AdaptiveTune. Figures 7 and 8 show
the experimental results. In the figures, the ‘Preset’ value is
a fixed initial feature size whereas the ‘Best’ value is the best
feature size computed after finishing all graph queries. In
both cases, AdaptiveTune (AT) shows good execution time
even compared to the best feature size. With the real dataset,

Fig. 7 AdaptiveTune (real).

Fig. 8 AdaptiveTune (synthetic).

Fig. 9 Comparison of methods (real, 1M).

Fig. 10 Scalability (real).

AdaptiveTune was successful to reduce the execution time
52.5%.

We also compared our algorithm with conventional al-
gorithms. We used 1 million real dataset rather than 10 mil-
lion graphs in Table 1, since Luo exhibited limitation in scal-
ability. As shown in Fig. 9, our algorithm is always better
than the others in terms of execution time per query except
in the case of processing a single graph query. As the num-
ber of query graphs becomes larger, MR-Graph outperforms
two other algorithms more. We also noticed that the perfor-
mance of Luo was even poorer than our Basic algorithm.
The reason is that Luo suffered from frequent accesses to
the storage of index files and a skewness problem; value
distribution in the indexes is highly skewed [15]. Finally,
we evaluate scalability of MR-Graph. As shown in Fig. 10,
MR-Graph is scalable to the size of a cluster. Specifically,
MR-Graph records 25.3 times faster than Basic in execution
time when we use 8 data nodes.

7. Conclusions

We proposed an adaptive and parallel algorithm, MR-

2130
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.9 SEPTEMBER 2013

Graph, which efficiently processes multiple query graphs
over a massive set of data graphs based on MapReduce.
AdaptiveTune improves query processing as it adaptively
tunes a feature size at runtime, keeping the system in a bal-
ance between the effectiveness of graph filtering and the cost
of feature extraction. Our experiments show that Adaptive-
Tune performs with very little overhead in execution time.

Acknowledgement

This work was partly supported by NRF grant funded by
Korea Government (No. 2011-0016282) and partly funded
by the MSIP, Korea in the ICT R&D program 2013.

References

[1] C. Aggarwal and H. Wang, Managing and mining graph data,
Springer, 2010.

[2] “The pubchem project.” http://pubchem.ncbi.nlm.nih.gov
[3] M.R. Garey and D.S. Johnson, Computers and Intractability; A

Guide to the Theory of NP-Completeness, W.H. Freeman & Co.,
New York, NY, USA, 1990.

[4] X. Yan, P. Yu, and J. Han, “Graph indexing: A frequent structure-
based approach,” Proc. SIGMOD, pp.335–346, 2004.

[5] P. Zhao et al., “Graph indexing: Tree + delta >= graph,” Proc.
VLDB, pp.938–949, VLDB Endowment, 2007.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Commun. ACM, vol.51, no.1, pp.107–113, 2008.

[7] Y. Luo et al., “Towards efficient subgraph search in cloud computing
environments,” DASFAA Workshops, pp.2–13, 2011.

[8] J. Lin and M. Schatz, “Design patterns for efficient graph algorithms
in mapreduce,” Proc. MLG, pp.78–85, 2010.

[9] G. Malewicz et al., “Pregel: A system for large-scale graph process-
ing,” Proc. SIGMOD, pp.135–146, 2010.

[10] U. Kang et al., “Pegasus: Mining peta-scale graphs,” Knowl. Inf.
Syst., vol.27, no.2, pp.303–325, 2011.

[11] W. Han et al., “iGraph: A framework for comparisons of disk-based
graph indexing techniques,” PVLDB, vol.3, no.1, pp.449–459, 2010.

[12] L. Cordella et al., “A (sub) graph isomorphism algorithm for match-
ing large graphs,” IEEE Trans. Pattern Anal. Mach. Intell., vol.26,
no.10, pp.1367–1372, 2004.

[13] X. Yan and J. Han, “gSpan: Graph-based substructure pattern min-
ing,” Proc. ICDM, pp.721–724, 2002.

[14] “Apache zookeeper.” http://zookeeper.apache.org
[15] Y. Kwon et al., “SkewTune: Mitigating skew in mapreduce applica-

tions,” Proc. SIGMOD, pp.25–36, 2012.

