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Hand Gesture Recognition Based on Perceptual Shape
Decomposition with a Kinect Camera

Chun WANG ™, Nonmember, Zhongyuan LAI™, Student Member, and Hongyuan WANG', Nonmember

SUMMARY In this paper, we propose the Perceptual Shape Decompo-
sition (PSD) to detect fingers for a Kinect-based hand gesture recognition
system. The PSD is formulated as a discrete optimization problem by re-
moving all negative minima with minimum cost. Experiments show that
our PSD is perceptually relevant and robust against distortion and hand
variations, and thus improves the recognition system performance.

key words: Kinect camerta, hand gesture recognition, perceptual decom-
position, finger detection

1. Introduction

Hand gesture recognition is important for human-computer
interaction (HCI) in different areas, such as virtual reality,
sign language recognition, and computer games [1]. Usually
the shape feature is sufficient for successful recognition [2].
However, due to the nature of optical sensor, the quality of
captured images is sensitive to the lighting conditions and
cluttered backgrounds, which makes it very difficult to ob-
tain hand shapes [3].

Thanks to the recent advent of the Kinect depth cam-
era[4], new opportunities for hand gesture recognition
emerge. Ren et al. were the first to develop a real-life
hand gesture recognition system with a Kinect sensor [5],
as shown in Fig. 1. With the assistant of depth cue, their
system can segment hands robustly. However, due to the
low-resolution of the Kinect depth map and the small size of
hand image, the segmentation of hand is usually inaccurate
and noisy, which significantly affects the recognition per-
formance. In order to address this problem, they proposed
the Finger-Earth Mover’s Distance (FEMD), which only
matches the fingers rather than the whole hand [5]. Thus,
the finger detection has a significant impact upon robust-
ness, accuracy and efficiency of their hand gesture recogni-
tion system.

Ren et al. presented two shape decomposition meth-
ods for finger detection. The first one is the Threshold-
ing Decomposition (TD) [6]. This method decomposes out-
stretched fingers using a circle that is concentric with the
maximal inscribed circle of the hand shape and of radius
a specified threshold value. Despite the implementation
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Fig.1  The framework of Ren’s part-based hand gesture recognition sys-
tem [5].

simplicity and efficiency, this method is perceptually irrel-
evant, thus usually unable to detect fingers accurately. To
address this problem, the second method called Minimum
Near-Convex Decomposition (MNCD) was proposed [8],
[9]. This method defines the mutex-pair as two contour
points whose concavity is larger than a threshold, and re-
solves all the mutex-pairs by selecting cuts from the inner
line segment set via Binary Integer Linear Programming
(BILP). Despite the detection robustness and precision, this
method needs to deal with a massive number of mutex-pairs,
inner line segments and their complex relations, which sig-
nificantly affects the efficiency of the overall system. Thus,
a shape decomposition method that can better balance the
robustness, precision and efficiency is required.

To meet this requirement, we propose a novel shape
decomposition method called Perceptual Shape Decompo-
sition (PSD). With the help of Discrete Contour Evolution
(DCE) [10] and DCE-based skeleton pruning [11], we con-
struct the negative minimum set and its symmetry set, which
are of small size, high precision and robustness. Then we
construct the candidate cut set, and decompose the shape by
selecting cuts that can resolve all the negative minima with
minimum cost. To improve the perceptual relevance, we im-
pose three heuristic criteria, the negative minima rule [12],
the short cut rule [13] and the part salience [14], [15], into
the cost function. Experiments validate the advantages of
our PSD embedded into part-based hand gesture recognition
systems with a Kinect camera.

2. Perceptual Shape Decomposition

To define perceptual shape decomposition, first we give the
following preliminary definitions.

Definition 1. For an object O, shape partition is to divide
O into k subparts {P;, i = 1,---,k},

SP(0) = {P}| UL, Pi= 0,PinP; = ®ifi # j}.

According to psychological studies in human vi-
sion [12], [14], the minima rule is the most widely used cri-
terion in perceptual decompositions. Thus we have the fol-
lowing definition:
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Definition 2. For an object O, negative minimum set is
the set of points on object contour £(0), whose curvature
has negative sign and local minimum value in its contour
neighborhood:

V(0) = {vilvi € 20), Curvature(v;) < 0
and Curvature(v;)

= min(Curvature(Neighborhood(v;)))}

The sizes of neighborhoods measure the significances of
negative minima, which are used to filter out noise and pre-
serve natural part boundaries. In perceptual decomposition,
all negative minima must be decomposed.

According to [13], part cuts across symmetrical axis

with short cut length are preferred. Then we define the sym-
metry function as follows:
Definition 3. The Symmetry function S ymmetry(-) defines
the symmetric relation to medial axis MA(O) for a pair of
contour points. The image and the preimage of symme-
try function are the contour points closest to the same axial
point:

Vv, v; € (0),v; = Symmetry(v;) & dAp € MA(O),
s.tlvi = pll = [lv; — pll = minyeqo) Iv - plI-

The part cuts are extracted based on definition 2 and 3.
Definition 4. For an object O, the candidate cut set is the
set of inner line segments, whose endpoints are selected
from either negative minima V(O) or symmetry relation
Symmetry(.):

C(0) = {cjlcj € O, Endpoints(c;) € (V(O) x V(0)) U
(V(O) x Symmetry(V(0)))}.

Definition 4 provides two complementary ways to con-
struct C, connecting a pair of negative minima or connecting
a negative minimum and its symmetry. Our final cut set is a
subset of C. Next, we present two general definitions to deal
with part cuts and negative minima. Their implementation
details are described in Sect. 3.

Definition 5. The perceptual cost of part cut ¢, denoted by
Cost(c), is defined as the degree of inconsistency between ¢
and human decomposition behavior.

A small value of Cost(c) signifies that part cut c is
friendly to human vision and being selected with high like-
lihood. We can use the following criteria to define Cost(.)
heuristically: (1) the minima rule[12], (2) the short cut
rule [13], and (3) the part salience [14], [15].

Definition 6. The negative minimum v; is removed by part
cut ¢j, if and only if v; is no longer the negative minimum
after decomposition by c;:

v; €Remove(c;) ©v; €V(0),YP; € SP(0), v; ¢ V(P)),.

If v; is removed by part cut set {cj,, - -
Remove({c;, -+, cj,}).

Now we present our definition of perceptual shape de-
composition.

*,Cjy}, we denote v; €
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Definition 7. For an object O, the perceptual shape de-
composition PSD(O) is to select a set of part cuts C* from
C(O) for a shape partition SP(O), with all negative minima
removed at minimum perceptual cost.

Suppose CS(O) is a set of subsets of C(O) that removes
all negative minima in V(O):

CS(0O)={csi|cs; € C(0O),Yv €V(0), ve Remove(cs;)},
then PSD(O) is the element of CS(O) with minimum cost:

PSD(O) = {P;| U, Pi=0,P;N P; = ®ifi # |,

C* = argmin,ccsi0) Y. Cost(c) ).

CECS;
3. Implementation

In this section, we describe in detail the implementation of
our definitions in Sect. 2.

3.1 Curvature

As stated in [16], Discrete Contour Evolution (DCE) and
its relevance measure reflects polygonal definition of global
curvature, thus concave DCE vertices are located near neg-
ative minima. We regard the concave DCE vertices set as
negative minimum set V(O) in Definition 2 (red points in
Fig.2 (a)).

The DCE is originally proposed for 2D digital shape
simplification. For two consecutive line segments s, s, and
their common point A, their relevance measure K is given
by:

K(A) = ﬁ(Sll, s2)I(s1)I(s2) 0

(s1) + I(s2)

where (-, -) is the turning angle and I(-) is the segment
length, respectively [16]. In every evolutional step, a pair
of consecutive line segments s, s, with smallest relevance
measure is replaced by a single line segment joining the end-
points of s; U s,. We evolve the object contour to a proper
stage where all significant vertices are preserved (vertices
of green polygon in Fig. 2 (a)). Each vertex is assigned to a
relevance measure.

3.2 Symmetry

We adopt Bai’s skeleton [11] to realize our symmetry func-
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Fig.2 Hand decomposition. (a) DCE vertices (vertices of green poly-
gon), negative minima (red points), Bai’s skeleton [11] (pink segments) and
candidate part cuts (yellow part lines). (b) Selected part cuts.
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tion in Definition 3, due to its nice property and DCE ba-
sis. As shown in Fig.2(a), v; = Symmetry(v;) means that
v; and v; are tangent points on the same local maximum in-
scribed circle centered at a pruned skeleton point [11] (pink
segments). Then the candidate cut set in Definition 4 is con-
structed by negative minimum set V(O) and its symmetry
set Symmetry(V(O)) (yellow part lines).

3.3 Perceptual Cost

According to perceptual decomposition behavior [14], we
define the perceptual relevance measure of part cut ¢ as
follows:

3 max (K(A), K(B))
~ K(A) - K(B)| +min (K(T) - K(A)], |K(T) - K(B)])
2)

where A,B € Endpoints(c), T = argmax, ;3K(¢). The
numerator and the first term of denominator reflect the
minima rule, favoring significant negative minima on both
endpoints. The second term of denominator reflects
the matching degree between part salience and boundary
strength [14]. Combining Eq. (2) with the short cut rule [13],
we define the perceptual cost of part cut ¢ as:
dist(A, B)

Cost(c) = m 3)

®(c)

where dist(:, ) is the cut length, and « is the parameter bal-
ancing perceptual relevance measure and cut length. Thus
Eq. (3) meets the heuristic criteria in Definition 5.

3.4 Removable Relation

After decomposition, we require that Vv; € V(0), and VP; €
PSD(0), v; has either positive curvature or insignificant neg-
ative curvature that can also be quantified by DCE relevance
measure in Eq. (1). As shown in Fig. 3 (a), to remove B; in
left part, either @; < 180° or K (m, BHB,') < 7 must hold,

where 7 is set to min K (Bi_lB,-, B,-BH). The case of two part
1

cuts removing one negative minimum is shown in Fig. 2 (b).
Similar constraint is required. This procedure implements
the function Remove(.) in Definition 6.

(b)

Fig.3 Removable relations between negative minima and part cuts,
where {B;, j=1,2---} is the set of DCE vertices. (a) B; € Remove (AIB,-).
(b) B; € Remove ({A]Bi,AzBi]).
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3.5 Perceptual Shape Decomposition

From Definition 7, based on the negative minimum set V(0O),
the candidate cut set C(O), the perceptual cost and the re-
movable relation, we formulate PSD as the selection of sub-
set from C(O) that can remove V(0O) with minimum cost as
follows:

min, PTx, s.t.t Ax > 1, xTEx = 0, x € {0, 1}", @)

where x,x; = {x;} is the binary vector to indicate whether
¢; is selected, P, = {p;} is the vector to record part
cuts’ perceptual cost, i.e., p; = Cost(c;). Auxn = {aij}
represents the removable relation, where 21]{\]:1 a;;, = 1if
Vi € Remove({c;,, --,cjy}). Euxn = {e;;} is the compatible
relation between part cuts. e;; = 0 means ¢; and c; can be
selected simultaneously, otherwise ¢;; = 1. The objective
of Eq. (4) is to minimize the perceptual cost of selected part
cuts. The inequality constraint means all negative minima in
V(O) must be removed, and the equality constraint indicates
that any pair of selected part cuts must be compatible. We
implement PSD by first constructing matrices in Eq. (4) and
then solving Eq. (4).

Let us denote binary R, = {r;;} where r;; = 1 ifv; €
Remove(c;) and binary matrix My, = {m;;} where m;; = 1
if v; € Endpoint(c;). For negative minimum v;, we only
consider two cases: (1) v; is removed by a single part cut,
as shown in Fig. 3 (a), which leads to Z';:] rij =2 1, and (2)
v; is removed by two part cuts, as shown in Fig. 2 (b), which
leads to 3% m;; > 2. Summarizing these two cases, we
have (R + M/2)x > 1. Therefore, A = R + M/2. For the
case that two adjacent part cuts cannot remove their com-
mon negative minimum, we consider these cuts inefficient
and do not select them simultaneously. This case is recorded
in E,x, = {e;;}. Another source of incompatibility between
part cuts is intersection.

Equation (4) is a binary programming problem with a
quadratic constraint. The solution can be found efficiently
by using standard discrete optimization techniques. To facil-
itate comparison, we follow Ren’s work [9] to use CPLEX.
An example of selected part cuts is shown in Fig. 2 (b).

3.6 Computational Complexity

There are two main procedures in PSD: (1) computing neg-
ative minima, candidate part cuts and their relations, and (2)
solving the problem formulated in Eq. (4). In the first pro-
cedure, the computational complexity of DCE and skeleton
pruning are O(N log N) and O(N)[11], thus the total com-
plexity of the first procedure is O(N log N), where N is the
number of contour points. In the second procedure, the com-
plexity is 0(2”2), where n is the number of negative minima
and n < N. Compared with MNCD [9] that requires O(N?)
time for calculating mutex pair and O(2" *) for solving BILP
problem, our method improves the computational efficiency
in both procedures.
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Fig.4 Examples of ten hand gestures.
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Fig.5 The decomposition of hand shapes from [9]. The three rows show
the results from TD [6], [7], MNCD [8], [9] and our method, respectively.
The parts in ellipses are either redundant or undetected.

Table 1  The mean decomposition time on the NTU-Microsoft Kinect
Hand Gesture Dataset [17].

Original MNCD [8]|Improved MNCD [9]| PSD
45.6132s 3.9705s 1.875s

Decomposition time

4. Experiments

In this section, we substantiate that compared with exist-
ing decomposition methods our PSD better balances the
robustness, precision and efficiency and thus improves the
performance of part-based hand gesture recognition system.
We choose the challenging real-life NTU-Microsoft Kinect
Hand Gesture dataset [17]. This dataset contains 10 gestures
for number 1 to 10, each of which has 100 cases with varia-
tions in orientation, scale, articulation, etc. We pre-segment
the hand shapes using the method proposed in [6], [7], where
some examples of segmented hands are shown in Fig. 4. We
make sure that the implementation environments and param-
eter settings of [6], [7] and ours are the same as far as possi-
ble.

Firstly, we compare PSD with existing decomposition
methods in terms of robustness and perceptual naturalness.
In Fig.5, three rows show the decomposition results from
TD [6], [7], MNCD [8], [9] and PSD, respectively, and the
parts being redundant or undetected are marked in ellipses.
As we can see, PSD only produces a redundant part in the
first gesture, while both TD and MNCD produce incorrect
decomposition in multiple hand shapes, demonstrating that
PSD is more robust against orientation, scale and articula-
tion changes. Moreover, the end points of part cuts in TD
are perceptually irrelevant, which have a negative effect on
the subsequent processing, whereas PSD always locates end
points in negative minima or their symmetries.

Secondly, we compare PSD with existing decompo-
sition methods in terms of efficiency, as listed in Table 1.
As reported in [9], the decomposition time for original ver-
sion of MNCD [8] is 45.6132 s, which is extremely time-
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Table 2  The confusion matrix of our PSD-based hand gesture recogni-
tion system.
Predicted Class
1 0 0 0 0 0 0 0 0 0
.01 ] .95 ] .03 ] .01 0 0 0 0 0 0
02 0 | 87].04]07] 0 0 0 0 0
2 0l oo foa[os] o] o] o].or]o
] 01 | .01 01 | .04 | 91 ] .02 0 0 0 0
g 0 0 0 .01 | .01 | .96 0 .02 0 0
2 0 0 0 .01 0 0 93 0 .01 ] .05
0 0 [.08].01] 0 0 0 [91] 0 0
0 0 0 0 0 0 0 0 1 0
.01 0 .01 ] .02 | .02 0 0 0 0 94

Table 3  The mean accuracy and the mean recognition time for various
hand gesture recognition systems. This table excluding the last row is ex-
tracted from [7].

Mean Accuracy|Mean Recognition Time
Shape Context without bending cost [18] 83.2% 12.346s
Shape Context with bending cost [18] 79.1% 26.777s
Skeleton Matching [19] 78.6% 2.4449s
TD+FEMD [7] 93.2% 0.075s
MNCD+FEMD [7] 93.9% 4.0012s
PSD+FEMD 94.1% 1.967s

consuming, and the improved version [9] applies CPLEX to
solve BILP problem and reduce the decomposition time to
3.9705s. By using CPLEX, we can further reduce the im-
plementation time to 1.875s. This comparison verifies the
theoretical analysis on complexity in Sect. 3.6.

Thirdly, we confirm that the PSD embedded part-based
hand gesture recognition system achieves performance im-
provements. The confusion matrix of our system is shown
in Table 2. In theory, we should achieve a higher perfor-
mance than TD-based FEMD (93.2%) [7], because our de-
composition is constructed on the basis of human perceptual
behavior. We should also have a lower recognition time than
MNCD-based FEMD, due to that we have much smaller
number of candidate part cuts and size of searching space
of optimization. The mean accuracy and mean recognition
time of various shape recognition systems is shown in Ta-
ble 3. As expected, the PSD embedded recognition system
achieves the highest mean accuracy (94.1%) at the second
lowest mean recognition time cost (1.967 s), demonstrating
a better tradeoff between accuracy and efficiency.

5. Conclusion

We present a novel shape decomposition method for a part-
based hand gesture recognition system. We formulate the
shape decomposition problem as an optimization problem,
which efficiently remove all the negative minima with min-
imum cost. Theoretical analysis and experimental results
show that our PSD is robust to shape variations, friendly to
perception and more efficient than MNCD [8], [9]. There-
fore, the PSD embedded hand gesture recognition system
with a Kinect camera [5] outperforms the state-of-the-art in
accuracy at moderate computational cost without compli-
cated device, resource-consuming procedure or training.
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