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LETTER

Speaker Adaptation Based on PARAFAC2 of Transformation
Matrices for Continuous Speech Recognition

Yongwon JEONG†a), Member, Sangjun LIM†, Young Kuk KIM††, and Hyung Soon KIM†, Nonmembers

SUMMARY We present an acoustic model adaptation method where
the transformation matrix for a new speaker is given by the product of bases
and a weight matrix. The bases are built from the parallel factor analysis
2 (PARAFAC2) of training speakers’ transformation matrices. We perform
continuous speech recognition experiments using the WSJ0 corpus.
key words: maximum likelihood linear regression, parallel factor analysis,
PARAFAC2, speaker adaptation, speech recognition

1. Introduction

In hidden Markov model (HMM) based speech recogni-
tion [1], speaker adaptation techniques are used to update an
HMM system such that the updated model better captures
the acoustic characteristics of target speakers. One class
of speaker adaptation techniques is a transformation-based
technique such as the maximum likelihood linear regression
(MLLR) adaptation [2]. In the MLLR adaptation, the model
for a new speaker is expressed as a linear transformation
of a speaker-independent (SI) model, and the transforma-
tion is estimated by maximizing the likelihood of adapta-
tion data. In the eigenspace-based MLLR (EMLLR) adap-
tation [3], the set of MLLR transformation matrices of train-
ing speakers is decomposed by principal component anal-
ysis (PCA) to build bases, and the transformation matrix
for a new speaker is expressed as a linear combination of
bases. Thus, the EMLLR adaptation is an application of
the eigenvoice adaptation [4] in the transformation space.
In the eigenvoice adaptation, training acoustic models are
decomposed by PCA to obtain bases and the model for a
new speaker is represented as a linearly weighted sum of
bases. Our approach is closely related to the EMLLR adap-
tation, but bases are built from the parallel factor analysis 2
(PARAFAC2) [5], [6] of MLLR transformation matrices of
training speakers. In our approach, the transformation ma-
trix for a new speaker is expressed as a product of bases
and a weight matrix. We derive the weight in a maximum
likelihood (ML) criterion. We evaluate the performance of
the proposed method on large vocabulary continuous speech
recognition (LVCSR) experiments. In this letter, the adapta-
tion of acoustic models to a new speaker is performed by up-
dating the Gaussian mean parameters of output distributions
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among continuous density HMM (CDHMM) parameters.
The rest of this letter is organized as follows. Section 2

explains the MLLR adaptation and Sect. 3 explains the EM-
LLR adaptation. In Sect. 4, we present the proposed speaker
adaptation method using PARAFAC2. Section 5 presents
experiments and Sect. 6 concludes this work.

2. MLLR Adaptation

In the MLLR adaptation, the updated HMM mean vector for
mixture component r (r = 1, · · · ,R) is given by

μ̂r =Wr ξr (1)

where Wr denotes the transformation matrix, and ξr =

[ωμ1 · · · μD]T the extended mean vector of an SI HMM cor-
responding to mixture component r (ω is the bias offset
term: ω = 1 to include an offset or ω = 0 otherwise).
Here, we use a single transformation matrix for all mixture
components, thus we drop out the index r in the transfor-
mation matrix. Given adaptation data O = {o1, · · · , oT }, the
D × (D + 1) transformation matrix is estimated in an ML
criterion:

Ŵ = arg max
W

∑
r

log p(O|W ξr). (2)

In finding the transformation matrix using the expectation-
maximization (EM) algorithm [7], the auxiliary Q-function
to be optimized is given as (discarding the terms that are
independent of W)

Q(W) (3)

= −1
2

T∑
t=1

R∑
r=1

γr(t)
(
ot − sr(W)

)T
Σ−1

r
(
ot − sr(W)

)

where γr(t) denotes the a posteriori probability of occupy-
ing mixture component r at t given O, Σr the covariance
matrix for Gaussian mixture component r of an SI HMM
(which is a diagonal matrix in this letter), and sr(W) =W ξr.
Setting ∂Q(W)/∂W = 0 produces

T∑
t=1

R∑
r=1

γr(t)Σ
−1
r ot ξ

T
r =

T∑
t=1

R∑
r=1

γr(t)Σ
−1
r W ξrξ

T
r . (4)

The above equation can be solved for W in the row-by-row
fashion as [2].
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3. Eigenspace-Based MLLR (EMLLR) Adaptation

The EMLLR [3] adaptation is closely related to our ap-
proach. In the EMLLR adaptation, PCA is applied to MLLR
transformation matrices. Let {W1, · · · ,WS } be transforma-
tion matrices of S training speakers. The transformation ma-
trices are converted to vectors and let {w1, · · · ,wS } be the
set of vectorized transformation of training speakers. The
set of training vectors is decomposed by PCA. The sample
covariance matrix is given by

Cw =
1

S − 1

S∑
s=1

(
ws − w̄

)(
ws − w̄

)T (5)

where w̄ =
1
S

S∑
s=1

ws.

The K dominant eigenvectors (φ’s) of the sample covariance
matrix are obtained as the basis vectors and the transforma-
tion for a new speaker is expressed as

ŵ = ΦKx + w̄ (6)

where ΦK =
[
φ1 · · ·φK

]
.

So, the updated model for mixture component r is given by

μ̂r = mat
(
ΦKx + w̄

)
ξr (7)

where mat(·) denotes the matricization of a vector (i.e., con-
version from D · (D + 1) × 1 vector to D × (D + 1) matrix).
Given adaptation data O, the K × 1 weight x is estimated in
an ML criterion:

x̂ = arg max
x

∑
r

log p(O|mat
(
ΦKx + w̄

)
ξr). (8)

The weight can be computed by the EM algorithm. The
auxiliary Q-function is given as

Q(x) (9)

= −1
2

T∑
t=1

R∑
r=1

γr(t)
(
ot − sr(x)

)T
Σ−1

r
(
ot − sr(x)

)

where sr(x) = mat
(
ΦKx + w̄

)
ξr. Setting ∂Q(x)/∂x = 0 and

solving for x yields

x̂ =
[ T∑

t=1

R∑
r=1

γr(t) GT
r Σ
−1
r Gr

]−1

(10)

×
[ T∑

t=1

R∑
r=1

γr(t) GT
r Σ
−1
r
(
ot −mat(w̄) ξr

)]

where

Gr(:, k) = mat(φk) ξr, k = 1, · · · ,K (11)

and Gr(:, k) denotes the kth column vector of Gr ∈ RD×K .

4. Speaker Adaptation Using the PARAFAC2 Model

In the previous section, transformation matrices are con-
verted to vectors before decomposition. In our approach,
transformation matrices are decomposed in their matrix
forms by PARAFAC2. Given MLLR transformation ma-
trices of training speakers, {W1, · · · ,WS }, the collection
of centered transformation matrices {W̃s}Ss=1 = {Ws −
W̄}Ss=1 where W̄ = (1/S )

∑
s Ws is expressed as follows by

PARAFAC2:

W̃s = FsHsAT + Rs (12)

such that FT
s Fs = Φ (invariant matrix), s = 1, · · · , S

where Fs is a D×K matrix of factor scores for the row units,
Hs a K × K weight matrix for W̃s, A a (D + 1) × K matrix
of weights for the column units, and Rs the residual ma-
trix. The PARAFAC2 model is depicted in Fig. 1. If Fs = F
in Eq. (12), the PARAFAC2 model becomes the PARAFAC
model [8]. In a least squares criterion, the model can be fit-
ted to {W̃s} by minimizing

Error =
S∑

s=1

‖W̃s − FsHsAT ‖2. (13)

A representative algorithm for finding the components that
minimize the squared error is the alternating least squares
(ALS) [6]. The basic idea is to minimize Eq. (13) over each
of Fs, Hs, and A alternatingly while the rest of components
are fixed. When all components except one are fixed, the
problem becomes a linear modeling problem so the com-
ponent can be found by using singular value decomposition
(SVD); please refer to [6] for more details.

We modify the PARAFAC2 model to our application
by setting Bs = FsHs in Eq. (12):

W̃s = BsAT + Rs (14)

so that Bs becomes the speaker-dependent weight “matrix”
and A becomes the matrix of bases which is common across
training speakers. Based on Eq. (14), the transformation ma-
trix for a new speaker is expressed as

Wnew = BAT + W̄ (15)

and the updated model for mixture component r is given by

μ̂r =Wnew ξr (16)

= (BAT + W̄) ξr

Fig. 1 PARAFAC2 model.
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= B ATξr︸︷︷︸
=ξreduced

r

+W̄ ξr.

Given adaptation data O, we derive the D×K weight matrix
B for a new speaker in an ML criterion. The weight can
be obtained by the EM algorithm; the auxiliary function is
given as (discarding the terms that are independent of B):

Q(B) (17)

= −1
2

T∑
t=1

R∑
r=1

γr(t)
(
ot − sr(B)

)T
Σ−1

r
(
ot − sr(B)

)

where sr(B) = (BAT + W̄) ξr. Setting ∂Q(B)/∂B = 0 yields

T∑
t=1

R∑
r=1

γr(t)Σ
−1
r
(
ot − W̄ξr

)
ξreduced

r (18)

=

T∑
t=1

R∑
r=1

γr(t)Σ
−1
r B ξreduced

r ξreducedT

r .

The above equation can be solved for B using a similar tech-
nique in [2]. We define the left-side term in Eq. (18) as

Z =
T∑

t=1

R∑
r=1

γr(t)Σ
−1
r
(
ot − W̄ξr

)
ξreduced

r (19)

and we also define

g( j)(p, q) =
R∑

r=1

vr( j, j) dr(p, q) (20)

where g( j)(p, q) denotes the (p, q) element of G( j), vr( j, j) the
( j, j) element of Vr, and dr(p, q) the (p, q) element of Dr:

Vr =

T∑
t=1

γr(t)Σ
−1
r (21)

Dr = ξ
reduced
r ξreducedT

r .

Then, the weight can be computed by

b̂T
( j) = G−1

( j) zT
( j), j = 1, · · · ,D (22)

where b̂( j) and z( j) denote the jth row vectors of B̂ and Z,
respectively. The obtained weight B̂ is plugged into Eq. (16)
and utterances from the new speaker are recognized by the
updated model.

5. Experiments

In experiments, we used the Wall Street Journal corpus
WSJ0 with 5k vocabulary [9]. As the acoustic feature vec-
tor, the 39-D vector consisting of 13 mel-frequency cepstral
coefficients (MFCCs) including the 0th coefficient, Δ co-
efficients, and Δ-Δ coefficients, was extracted from wave-
forms with the 20-ms Hamming window with the frame
sliding of 10 ms. In the training phase, we used 7,138 ut-
terances of 83 speakers form the standard SI-84 training

set (the total training utterances amounted to about 14 h).
With HMM toolkit (HTK), we built a tied-state triphone
(cross-word triphone) model with 3,120 tied states and a
mixture of 8 Gaussians. So, the number of mixture com-
ponents R = 3,120 × 8 = 24,960. From the SI HMM, we
obtained a transformation matrix for each training speaker
by the MLLR technique with 32 regression classes followed
by the maximum a posteriori (MAP) adaptation [10]. These
83 transformation matrices were used to build bases for the
EMLLR and the PARAFAC2-based model.

For the adaptation test, we used the adaptation data of
8 testing speakers from the WSJ0 corpus, i.e., the Novem-
ber 92 NIST evaluation set [11]. We used 1 to 5 utterances
from the adaptation set (an adaptation utterance was about
6 s in length). The adaptation was performed in a super-
vised mode. We performed recognition test on 330 utter-
ances from the testing set using the WSJ 5K non-verbalized
5k closed-vocabulary set and the language model of WSJ
standard 5K non-verbalized closed bigram. Approximately
40 utterances were tested by updated models for each testing
speaker.

Figure 2 shows results. Good performance is obtained
by the PARAFAC2-based method with K = 32 (the number
of adaptation parameters is 39 × 32), the EMLLR technique
with K = 70 (the number of adaptation parameters is 70),
and the MLLR adaptation with a diagonal regression ma-
trix (the number of adaptation parameters is 39 × 2). The
PARAFAC2-based method exhibits better performance than
the EMLLR and MLLR adaptation methods for adaptation
sentences ≥ 4. The EMLLR technique shows the best per-
formance for adaptation sentences ≤ 2. Using bases (a kind
of prior information about training speakers) contributes to
better performance of the PARAFAC2-based method (for
adaptation sentences ≥ 2) and the EMLLR technique (for
adaptation sentences ≥ 1) over the MLLR adaptation. Be-
cause the dimension of the PARAFAC2-based method is
given by D×K, the amount of adaptation data needed for re-
liable estimation of weight should be larger than the amount

Fig. 2 Word recognition accuracy of adapted models. The word
recognition accuracy of the SI HMM is 92.1%.
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needed in the EMLLR technique where the dimension of the
weight is given by K. We think this is the reason for which
the PARAFAC2-based method exhibits worse performance
than the EMLLR technique for adaptation sentences ≤ 2 and
better performance than the EMLLR technique for adapta-
tion sentences ≥ 4. Moreover, we think that the good per-
formance of the PARAFAC2-based model for large amounts
of adaptation data is due to its bases built by PARAFAC2
where the structure of transformation “matrix” is preserved
during decomposition whereas the matrix structure is lost
during decomposition by PCA in the EMLLR technique.

6. Conclusions

In this letter, we presented a basis-based speaker adaptation
method in the MLLR framework. In our approach, the trans-
formation matrices of training speakers in matrix form are
decomposed by PARAFAC2 to build bases. In continuous
speech recognition experiments, the proposed method out-
performs the MLLR and EMLLR adaptation techniques for
adaptation data ≥ 24 s.

References

[1] L.R. Rabiner, “A tutorial on hidden Markov models and selected ap-
plications in speech recognition,” Proc. IEEE, vol.77, no.2, pp.257–
286, Feb. 1989.

[2] C.J. Leggetter and P.C. Woodland, “Maximum likelihood linear

regression for speaker adaptation of continuous density hidden
Markov models,” Comput. Speech Lang., vol.9, no.2, pp.171–185,
April 1995.

[3] K.T. Chen, W.W. Liau, H.M. Wang, and L.S. Lee, “Fast speaker
adaptation using eigenspace-based maximum likelihood linear re-
gression,” Proc. ICSLP, vol.3, pp.742–745, 2000.

[4] R. Kuhn, J.-C. Junqua, P. Nguyen, and N. Niedzielski, “Rapid
speaker adaptation in eigenvoice space,” IEEE Trans. Speech Au-
dio Process., vol.8, no.6, pp.695–707, Nov. 2000.

[5] R.A. Harshman, “PARAFAC2: Mathematical and technical notes,”
UCLA Working Papers in Phonetics, vol.22, pp.30–44, 1972.

[6] H.A.L. Kiers, J.M.F. ten Berge, and R. Bro, “PARAFAC2 - Part I. A
direct fitting algorithm for the PARAFAC2 model,” J. Chemometr.,
vol.13, no.3–4, pp.275–294, July 1999.

[7] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. R. Stat. Soc. Ser.
B-Stat. Methodol., vol.39, no.1, pp.1–38, 1977.

[8] R.A. Harshman, “Foundations of the PARAFAC procedure: Mod-
els and conditions for an “explanatory” multimodal factor analysis,”
UCLA Working Papers in Phonetics, vol.16, pp.1–84, 1970.

[9] D.B. Paul and J.M. Baker, “The design for the Wall Street Journal-
based CSR corpus,” Proc. DARPA Speech and Natural Language
Workshop, pp.357–362, 1992.

[10] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation
for multivariate Gaussian mixture observations of Markov chains,”
IEEE Trans. Speech Audio Process., vol.2, no.2, pp.291–298, April
1994.

[11] D.S. Pallett, J.G. Fiscus, W.M. Fisher, J.S. Garofolo, B.A. Lund, and
M.A. Przybocki, “1993 benchmark tests for the ARPA spoken lan-
guage program,” Proc. Workshop on Human Language Technology,
Association for Computational Linguistics, pp.49–74, 1994.


