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Locality-Constrained Multi-Task Joint Sparse Representation for
Image Classification

Lihua GUO†a), Member

SUMMARY In the image classification applications, the test sample
with multiple man-handcrafted descriptions can be sparsely represented by
a few training subjects. Our paper is motivated by the success of multi-
task joint sparse representation (MTJSR), and considers that the differ-
ent modalities of features not only have the constraint of joint sparsity
across different tasks, but also have the constraint of local manifold struc-
ture across different features. We introduce the constraint of local manifold
structure into the MTJSR framework, and propose the Locality-constrained
multi-task joint sparse representation method (LC-MTJSR). During the
optimization of the formulated objective, the stochastic gradient descent
method is used to guarantee fast convergence rate, which is essential for
large-scale image categorization. Experiments on several challenging ob-
ject classification datasets show that our proposed algorithm is better than
the MTJSR, and is competitive with the state-of-the-art multiple kernel
learning methods.
key words: image classification, multi-task learning, sparse representa-
tion, manifold learning

1. Introduction

Thousands of images are generated every day, and it is nec-
essary to classify, organize and access them by methods that
are easier and faster. With the exponential growth in digital
images number, the need for semantic image classification
is becoming increasingly important to support effective im-
age database indexing and retrieval. Semantic images cate-
gorization, especially large scale image categorization, is a
challenging and important problem nowadays.

Many hand-crafted methods [1]–[6] have been pro-
posed to measure object similarity for object classification.
A recent trend is to combine these discriminative features
for class-level object classification. One popular method in
machine learning is Multiple Kernel Learning (MKL) [7]–
[9], which can be seen to linearly combine similarity func-
tions between images such that the combined similarity
function yields improved classification performance. An-
other popular method is sparse coding, which has received
wide interest in the field of visual recognition. Wright [10]
used the Lasso regularization to select some representa-
tive training subjects from the entire training set, and pro-
posed sparse representation classification (SRC) method
to implement robust face recognition. Obozinski [11] re-
garded the sparse representation as a combinational model
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of group Lasso [12] and multi-task Lasso [13], and pro-
posed Multi-task Joint Covariate Selection (MTJCS) by pe-
nalizing the sum of l2 norms on blocks of coefficients.
Yuan [14] further proposed the multi-task joint sparse rep-
resentation (MTJSR), and introduced this powerful sparse
learning model into computer vision as a joint sparse visual
representation method. The MTJSR also provided two ker-
nel extensions to fuse the discriminative power of different
visual descriptor kernels in recognition problems. Recently,
some researchers extended this framework with extra con-
texts, such as, Chen [15] proposed an approach, which in-
corporated a new type of context(label exclusive context)
with linear representation and classification, to multi-label
image classification. This model, a recent advance in sparse
learning, formulated the problem of linear representation
and classification as an exclusive lasso model. Liu [16] pro-
posed a regularized multi-task learning approach to train
multiple binary-class Semi-Supervised Support Vector Ma-
chines (S3VMs). This method was used to solve the prob-
lem of multi-class classification problem in semi-supervised
setting. Moreover, the framework of sparse representation
has achieved success in many fields, such as the human gait
recognition [17], face recognition [18], visual tracking [19]
and others [20], [21]. In this paper, motivated by the success
of multi-task sparse joint sparse representation, we intro-
duce the local manifold into the sparse representation, and
propose a locality-constrain multi-task joint sparse represen-
tation.

2. Locality-Constrained Multi-Task Joint Sparse Rep-
resentation

First, let’s review the MTJSR [14]. In the MTJSR, the gen-
eral problem of jointly estimating models from multiple re-
lated data sets was often referred to as multi-view learn-
ing or multi-task learning in the machine learning litera-
ture. The representation task was defined as a training set
Xk =

[
Xk

1, . . . , X
k
J

]
with J classes and a query data yk to

be represented, where k ∈ {1, . . . ,K} was tasks. MTJSR
aimed to find out a very few common classes of training
samples that were mostly useful for query data reconstruc-
tion in these K tasks. For object recognition, we may gen-
erate K representation tasks from K different modalities of
features associated with the same visual input. The goal of
joint sparsity can be achieved by imposing �1,2 mixed-norm
penalty on the reconstruction coefficients. The mathematic
formulated objective is as follows:
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Fig. 1 The working mechanism of our LC-MTJSR algorithm.
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But, in the real situation, not only the different modalities
of features have the constraint of joint sparsity across differ-
ent tasks, but also these features have local manifold struc-
ture. Let’s take flower image classification as an example,
which is shown in Fig. 1. The color and shape descrip-
tions are the image features, and among them, the Colts’
foot class and dandelion class have similar feature values;
thus, the features of these two images have local mani-
fold structure, which can be added into the formulated ob-
jective to explicitly encourage system to choose the simi-
lar training image for data reconstruction. We present this
new coding algorithm called Locality-constrained multi-
task joint sparse representation (LC-MTJSR). As suggested
by LCC [22], locality is more essential than sparsity, be-
cause locality must lead to sparsity but not necessary vice
versa. The LC-MTJSR method incorporates locality con-
straint instead of the sparsity constraint in Eq. (1), Specifi-
cally, our LC-MTJSR method uses the following criteria:
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whereΘ denotes the element-wise multiplication, λ is the
regularization parameter and Dk

j is the locality adaptor that

gives different freedom to different modalities of features Xk
j

, which are proportional to its similarity to the input descrip-
tor yk. Specifically,

Dk
j =

∥∥∥yk − Xk
j

∥∥∥2

2
(3)

Dk
j is the Euclidean distance between the training image Xk

j

and the query data yk. The principle of the locality con-
straint in regularization term may be explained by com-
paring Eq. (1) with Eq. (2). The MTJSR process may se-
lect quite different features for data reconstruction to favour
sparsity, thus loses correlations between different feature
space of training examples, but the explicit locality using
in our LC-MTJSR ensures that similar test feature will have

similar training feature for sparsity presentation. In prac-
tice, the LC-MTJSR in Eq. (2) is not sparse in the sense of
l0 norm. We just set those small coefficients to zero.

The recent research in image classification is focused
on the large-scale image categorization. To efficiently
apply our method into large-scale image categorization,
we conventionally adopt the Stochastic gradient descent
method(SGD) [23] during optimization to guarantee the for-
mulated object(Eq. (2)) with fast convergence rate. SGD is a
simple approach to find the local minima of a cost function
whose evaluations are corrupted by noise, and is perhaps
the most commonly used optimization procedure. To econ-
omize the computational cost at every iterations, SGD sam-
ples a subset training sample to optimize at every step. This
is very effective in the case of large-scale machine learning
problems. We update wk

j in Eq. (2) according to the SGD
method as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

wk,t+1
j = wk,t

j − η∇w
∇w = −Xkyk + XkXkwk,t

j + λ
∥∥∥∥yk − Xk

j

∥∥∥∥2

2
· wk,t

j

(4)

Where η is the step size value.
Like the MTJSR method, we also extend our method

using the kernel trick. The intuition of such a kernel trick
is to use a non-linear function ϕk for each task k to map the
training and test samples from the original space to another
higher dimensional RKHS, where we have ϕk(xi)

Tϕk
(
x j

)
=

gk
(
xi, x j

)
for some given kernel function gk. In this new

space, we can rewrite the function (4) as:
⎧⎪⎪⎨⎪⎪⎩
wk,t+1

j = wk,t
j − η∇w

∇w = −hk +Gkwk,t
j + λ

(
Pk − 2hk +Gk

)
· wk,t

j

(5)

Where hk = ϕ(Xk)ϕ(yk), Gk = ϕ(Xk)ϕ(Xk) and Pk =

ϕ(yk)ϕ(yk) are the kernel matrix associated with kth modal-
ity of feature.

When classifying test image, the test image can be re-

constructed by using only the optimal coefficients �
w

k
j asso-

ciated with the jth class, and the kth modality yk of a test

image can be approximated as �y
k
= Xk

j
�
w

k
j. The final decision

is ruled in favor of the class with the lowest total reconstruc-
tion error accumulated over all the K tasks:

j∗ = arg min
j

K∑
k=1

∥∥∥∥yk − Xk
j
�
w

k
j

∥∥∥∥2

2
(6)

The details of this kernel-view extension of LC-
MTJSR are given in Table1.

3. Experimental Results

To evaluate the effectiveness of our proposed method for
object classification by feature combination, we apply it
to several multi-class object categorization datasets, and
compare the overall recognition performance of our pro-
posed algorithms with the following methods: a) SRC [10],
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MTJSR [14] and Some others multiple kernel learning
methods from literatures [7], [9], [24].

Our datasets are chosen as follow:
Oxford flower17 dataset [25]: This dataset totally has

1360 images from 17 species of flowers, and 80 images in
each class. The flowers are chosen from some common
flowers in the UK. The images have large scale, pose and
light variations, and also there are classes with large varia-
tions of images within the class and close similarity to other
classes. The dataset has been randomly split the dataset
into 3 different training, validation and test sets. The hand-
crafted descriptions include the HSV, HOG and SIFT, which
are three matrices derived from color, shape and texture.
The χ2 distance matrices of these features along with a pre-
defined training /validation/test split are publicly available
on the dataset website.

Caltech-101 dataset [26] and Caletech-256 dataset [27]:
The Caltech-101 dataset contains images of 101 categories
of objects as well as a background class, and the Caltech-
256 dataset holds 30,607 images in 256 categories, and
presents much higher variability in object size, location,
pose than the Caltech-101 dataset. In the Caltech-101, Most
categories have about 50 images, but in the Caltech-256,
each class contains at least 80 images. The experiment
on the Caltech-256 dataset can evaluate the performance of
large scale image categorization more efficiently than that
on the Caltech-101 dataset. The classification is carried out
on the basis of χ2 distance matrices of Geometric blur [6]
PHOW gray [4], PHOW color [4] and SSIM [5]. These fea-
tures are extracted using the MKL code package from [28].
The data set is divided into a training set, a validation set and
a test set. Two different sizes of training set are used to eval-
uate performance, which include 15 training images and 30
training images per class, and each validation set consists of
15 images per class, and the test set consists of the remaining
images. We calculate the χ2 distance matrices of these four
features along with a training/validation/test split. On both
datasets, Kernel matrices are computed as exp

(
−χ2(x, x)/μ

)
,

where μ is set to be the mean value of the pairwise χ2 dis-
tance matrices on the training set. The classification average
accuracy over all classes is chosen as the final performance

Table 1 The proposed LC-MTJSR algorithm.

LC-MTJSR Pseudo Code
Input: some subset training samples Xk

i ,i = 1, . . . , n, the regularization
parameter λ and step size value η

Step1: Properly initialize �w
k,0

, set t ← 0
Step2: Randomly shuffle examples in the training set Xk

i , and calculate
the kernel matrix hk

i ,Gk
i and Pk

i

Step3: For i = 1, . . . , n, update the construct coefficients using: �w
k,t+1
i =

�
w

k,t
i − η∇i,w, where ∇i,w = −hk

i + Gk
i
�
w

k,t
i + λ

(
Pk

i − 2hk
i +Gk

i

)
· �wk,t

i , k =
1, . . . ,K
Step4: t = t + 1
Step5: If the loss function in Equations 2 does not decrease, or the itera-
tion number t is larger than a predefined threshold, then exit. Otherwise
go to step 2

Output: j∗ = arg min
j

K∑
k=1

(
−2hk

j
�
w

k
j +

(
�
w

k
j

)T
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(
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))

during the testing.
Before the experiment, the regularization parameter

λ and step size value η should been set. The step size
value η is the learning rate of the SGD method. Con-
sidering the convergence of the SGD method, we make
the step size value η decreasing with the iteration number
t, and set η as 1

1+100t . The regularization parameter λ is
used to balance the reconstruction error and locality con-
straint, and we optimize the best parameter value using
cross-validation. The regularization parameter λ is chosen
from the set {0.0001, 0.001, 0.01, 0.1, 1, 10, 100} , and the
performance of the oxford flower17, the Caltech-101 and
the Caltech-256 validation set is the best when the parame-
ter λ is 0.01, 0.001 and 0.001, respectively.

During experiment of Oxford flower17 dataset, the ac-
curacies of single feature kernel matrices of our method and
the several other methods are shown in Fig. 2. The results
show that the performance using the shape and SIFT fea-
tures is better than that using the other features because the
shapes of flower are the easiest to distinguished between
the different categories. The performance of LC-MTJSR is
better than that of SVM and the SRC only using the sin-
gle features, and in the feature of color, shape, SIFTint and
SIFTbdy, the performance of LC-MTJSR has more recog-
nition accuracies than that of MTJSR. The performance of
the combined feature are shown in Fig. 3, and the results

Fig. 2 The accuracies of single feature kernel matrices between our
method and the several other methods.

Fig. 3 The accuracies of combined feature kernel matrices between our
method and the several other methods.
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show that the classification performance using all feature
has been dramatically improved than that using single fea-
ture, and our method is better than MKL [7], MTJSR [14],
CG-Boost [9] and LPBoost [9] methods.

During the experiment of Caltech-101 category dataset,
Table 2 lists the average accuracies of our LC-MTJSR meth-
ods along with the results from [14]. We observe that the
average accuracies of LC-MTJSR are higher than those of
MTJSR when testing GB and PHOW features, and LC-
MTJSR can achieve the highest performance among all test-
ing methods using all features. Table 3 shows the average
accuracies between our LC-MTJSR methods and the other
methods on the 256 category dataset using single feature
kernel matrices. The experimental results show that the av-
erage accuracy of SVM method is the highest when testing
GB feature, and the performance of LC-MTJSR is almost
similar to that of SVM. When testing the PHOW gray and
PHOW color features, The average accuracy of LC-MTJSR
are 30.4% and 30.2%, respectively, which are better than
that of MTJSR and SVM. When testing the SSIM feature,
the performance of LC-MTJSR is similar to that of MTJSR.
Table 4 shows the average accuracies of the feature com-
bination using different training images. The average accu-
racy of LC-MTJSR is higher 0.8% than that of MTJSR when
we use only 15 training images, and LC-MTJSR achieve
the best performance. Moreover, the performance of LC-
MTJSR is higher 2.7% than that of MTJSR, and the perfor-
mance of LC-MTJSR is competitive with that of MKL using
all features.

Table 2 The accuracy(%) performance on the Caltech-101 dataset us-
ing the single features and combined features when the number of training
image is 15.

features MKL MTJSR LC-MTJSR
GB 62.6±1.2 58.3±0.4 59.4±0.7

Phow-gray 63.9±0.8 65.0±0.7 65.3±0.9
Phow-color 54.5±0.6 56.1±0.5 57.0±1.0

SSIM 54.3±0.6 61.8±0.6 61.5±0.7
All feature 70.0±1.0 71.0±0.3 71.7±0.9

Table 3 The accuracy(%) performance on the Caltech-256 dataset using
the single features when the number of training image is 15.

features SRC SVM MTJSR LC-MTJSR
GB 21.4±0.4 29.4±0.5 26.8±0.6 28.5±0.5

Phow-gray 20.4±0.5 26.3±0.7 29.4±0.5 30.4±0.6
Phow-color 19.8±0.4 27.7±0.4 28.9±0.4 30.2±0.3

SSIM 18.4±0.6 19.2±0.5 23.7±0.6 23.8±0.5

Table 4 The accuracy(%) performance on the Caltech-256 dataset using
the combined features.

Methods 15 training images 30 training images
SRC 30.1±0.7 36.7±0.6
MKL 37.5±0.6 43.9±0.7

MTJSR 37.7±1.0 41.1±0.9
LC-MTJSR 38.5±0.9 43.8±1.0

4. Conclusion

In the large scale image categorization, multiple manually
crafted features are extracted to represent the images. Our
proposal, the locality-constrained multi-task joint sparse
representation (LC-MTJSR) method, considers these de-
scriptions as different tasks, and further introduces a con-
straint of local manifold stucture into the formulated ob-
jective. During the optimization of formulated objective,
the stochastic gradient descent method (SGD) is used to
guarantee fast convergence rate of optimization. Experi-
ments were performed on several category datasets: Ox-
ford flower17 dataset, Clatech-101 dataset and Caltech-256
dataset. When challenged with Oxford flower17 dataset,
our LC-MTJSR achieved better performance than the MKL,
MTJSR, CG-Boost and LPBoost methods; when challenged
with Caltech-101 datset and Caltech-256 dataset, the per-
formance of our methods is better than that of the MTJSR
method, and is comparable with that of MKL method.
Our LC-MTJSR method, like MTJSR method, imposed �1,2
mixed-norm penalty on the reconstruction coefficients for
its relative simplicity for optimization, but in some applica-
tions, some �p,q(p > 1, q > 1) norm maybe outperforms �1,2
norm due to non-sparsity. The selection of best norm reg-
ularization is a very interesting research topic in the multi-
task joint sparse representation framework that merits our
future study. Moreover, how to efficiently apply some se-
mantic context, such as the hierarchical structure of training
sample, to the multi-task joint sparse representation frame-
work is another interesting research topic.
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