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PAPER

Exploiting the Task-Pipelined Parallelism of Stream Programs on
Many-Core GPUs

Shuai MU†a), Member, Dongdong LI†, Yubei CHEN†, Yangdong DENG†, and Zhihua WANG†, Nonmembers

SUMMARY By exploiting data-level parallelism, Graphics Processing
Units (GPUs) have become a high-throughput, general purpose comput-
ing platform. Many real-world applications especially those following a
stream processing pattern, however, feature interleaved task-pipelined and
data parallelism. Current GPUs are ill equipped for such applications due
to the insufficient usage of computing resources and/or the excessive off-
chip memory traffic. In this paper, we focus on microarchitectural en-
hancements to enable task-pipelined execution of data-parallel kernels on
GPUs. We propose an efficient adaptive dynamic scheduling mechanism
and a moderately modified L2 design. With minor hardware overhead, our
techniques orchestrate both task-pipeline and data parallelisms in a uni-
fied manner. Simulation results derived by a cycle-accurate simulator on
real-world applications prove that the proposed GPU microarchitecture im-
proves the computing throughput by 18% and reduces the overall accesses
to off-chip GPU memory by 13%.
key words: GPU, task-pipeline, dynamic scheduling, load balance, L2
cache

1. Introduction

Graphics Processing Units (GPUs) have evolved from a pure
graphics rendering device with fixed functionality into a
highly programmable, general-purpose computing platform.
In the past a few years, GPUs have found wide applica-
tions in such domains as scientific computing, data mining,
computer vision, geological exploration, and computational
finance [1]. By offering unprecedented processing power
(e.g., 4300GFLOPS by AMD’s Radeon HD7900 GPU [2])
on a single chip, GPUs are dramatically changing the land-
scape of modern computing. Future GPUs will continue
to offer ever-growing computing throughput and increas-
ing flexibility by supporting more parallel processing pat-
terns [3].

Unlike their CPU counterparts, GPUs are designed for
efficient execution of data-parallel workloads. Today a typ-
ical GPU is equipped with hundreds of processing cores to
run tens of thousands of concurrent threads. When execut-
ing a program, the processing cores on a GPU execute the
same code but on different data sets by following a single
program, multiple data (SPMD) style. Meanwhile, GPUs
also adopt the multithreading with dedicated hardware for
fast thread context switching to hide the memory latency.
Programmers can take advantage of a software controlled
on-chip shared memory and a memory coalescing mecha-
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nism to reduce the off-chip memory latency further [4]. With
the above latency-hiding techniques, typical GPUs only de-
ploy a relatively limited capacity cache on its silicon estate.

Despite the importance of data parallelism, real-world
applications are far more complex. Many applications, espe-
cially those following a stream-processing pattern [5], have
their data parallelism interleaved with task-pipelined paral-
lelism [6]. A stream program consists of a sequence of tasks
designated as kernels [5]. Input data are usually organized
in batches, which are often called as streams. Tasks in a
stream program are usually rich of data parallelism. Fig-
ure 1 (a) illustrates the concept of stream processing. Mul-
tiple kernels constitute a pipeline that conducts different
functions on continuously arriving data, i.e., stream. The
data transferring between two neighboring kernels follows
a producer-consumer fashion. Stream processing is a fun-
damental pattern that is pervasive in virtually all scientific
and engineering applications [7]. With the rapid growth of
the data-intensive applications such as sensor network, data
mining and signal processing [8]–[10], stream processing
will play an even more important role.

A large body of research (e.g., [11]–[18]) has been pro-
posed to support GPU based stream execution. In spite of
the encouraging results, a series of problems have to be re-
solved before the task-pipelined processing pattern can be
fully streamlined on GPUs. First, most GPUs can only
launch one kernel at a time. When running kernels with rel-
atively small data sets, a GPU’s computing resources have
to be under-utilized. Second, current GPUs cannot directly
support the producer-consumer pattern of data transfer be-
tween two adjacent stages in a task pipeline. A preceding
kernel in a task pipeline has to write its output to the off-

Fig. 1 A task-pipeline flow and its GPU execution.
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chip memory, whereas the succeeding kernel then fetches
the data from off-chip memory to its local memory [19]. The
problem can be mitigated by buffering data in on-chip cache.
However, GPUs usually only have a relatively small capac-
ity cache. Thus, the cached intermediate results tend to be
replaced by other data before it can be consumed by the suc-
ceeding kernel. Figure 1 (b) depicts the serialized execution
process of task-pipelined applications on GPUs. The above
two problems seriously drag down the efficiency of running
stream applications on GPUs.

The first problem mentioned above has been addressed
by a few recent works through software [20]–[23] and/or
hardware techniques [1], [24]. Among software techniques,
uber-kernel [22] is a novel solution that packs multiple ker-
nels corresponding to various stages of a pipeline into a sin-
gle one. This approach can be efficient for task-pipelined
applications on GPUs as it helps eliminate the explicit barri-
ers and lower the overhead of launching kernels. Although
this technique can improve the programming flexibility and
execution efficiency, it is ultimately constrained by the hard-
ware scheduling mechanism.

Meanwhile, hardware techniques were first introduced
on NVIDIA’s Fermi GPU to concurrently execute multi-
ple kernels as long as there are available computing re-
sources [4]. This feature, together with an asynchronous
data transferring mechanism [4], constitutes Fermi’s stream
processing capability and proves to be effective for certain
applications [1]. Fermi GPU uses a fixed preemptive strat-
egy to map kernels to computing resources. If the first ker-
nel cannot occupy all cores (i.e. streaming multiprocessors
in NVIDIA’s terminology), then the second kernel can be
launched on the remaining cores. Otherwise, if a kernel con-
sumes all the resources, no other kernels can be started until
there are idle cores available. Therefore, the resource allo-
cation among concurrent kernels cannot be adjusted as soon
as a kernel is initialized. NVIDIA’s latest GPU architecture
called Kepler [24] enhances the flexibility of dynamic kernel
launching. Kepler supports dynamic parallelism that allows
on-the-fly GPU kernels to launch new kernels. Such an in-
novation is convenient for developers to program and opti-
mize recursive and data-dependent execution patterns with-
out the need to returning control to a host CPU. However,
Kepler’s hardware scheduling mechanism is still based on
the preemptive strategy, as children kernels can only either
occupy the idle computing resources or share the busy com-
puting resources with their parent kernels. Such a solution
still lacks the capability of allocating computing cores with
a globally optimized scheme according to the different ker-
nels’ workload. Such a dynamic parallelism mechanism is
mainly designed to ease the programming process, instead
of offering a microarchitecture-level automatic performance
tuning technique.

A static scheduling mechanism cannot adapt to the
dynamic execution characteristics of kernels. In addition,
the performance of a kernel generally does not scale lin-
early with the number of processors. Previous work [25]
already indicates that the computing efficiency of a kernel

declines when the number of processors reaches a certain
threshold. As we will elaborate later in Sect. 2.3, an exten-
sive characterization of task-pipelined applications confirms
that single-kernel performance will saturate beyond a given
number of processors. On the other hand, our experimental
results prove that simultaneously running two kernels can
often be more efficient than dedicating the whole GPU’s
computing resources to a single kernel even when this ker-
nel is able to occupy the resources fully. Therefore, a static
allocation of processors is generally not the optimal strategy.
Our results demonstrate that there exists an optimal alloca-
tion for overall performance, but it can only be determined
dynamically.

Based on the above observations, this work focuses on
developing microarchitectural techniques to enable efficient
task-pipelined execution on GPUs. The major contributions
are as follows.

• We develop a quantitative analysis to identify the pros
and cons of running task-pipelined applications on
current GPU microarchitectures. The results provide
key insights on devising microarchitectural features for
proficient task-pipelined execution on GPUs.
• An efficient adaptive task scheduler for GPUs is pro-

posed to orchestrate the execution of kernels in a
pipelined fashion. By monitoring the usage of com-
puting resources and measuring performance, the pro-
posed scheduler dynamically adjusts the allocation of
processors among multiple kernels.
• We propose a moderately modified L2 cache structure

for GPUs. By revising the replacement policy, we can
significantly reduce the number of off-chip memory ac-
cesses by 13%.
• By integrating the techniques proposed in this work, we

construct an enhanced GPU microarchitecture to sup-
port task-pipelined applications. Experiments on a set
of typical benchmark applications show that our tech-
niques enable an 18% higher throughput than the se-
rialized implementation does and a 7% improvement
over Fermi GPU’s preemptive scheduling method.

The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of current GPU architecture and a
quantitative analysis of running task-pipelined applications
on current GPUs. Section 3 introduces our microarchitec-
tural enhancements for supporting task-pipelined execution.
In Sect. 4, we evaluate the proposed techniques with exten-
sive experimental results. Section 5 reviews related work.
The paper is concluded in Sect. 6.

2. Characteristics of Task-Pipelined Processing on
GPUs

2.1 Overview of Modern GPU Microarchitecture

We use NVIDIA’s GPU, Fermi [1], as an example to review
modern GPU microarchitectures that support general pur-
pose computing. Computing resources of the Fermi GPU
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are organized into 16 multiprocessors. As the basic unit
for program execution, a multiprocessor is equipped with
32 scalar processing cores as well as local memory in terms
of shared memory and L1 cache.

NVIDIA proposed a general-purpose programming
model, CUDA (i.e. Compute Unified Device Architecture).
A CUDA program deploys up to tens of thousands of
threads, which are distributed onto multiprocessors by an
on-chip global thread scheduler. The threads are organized
into thread blocks, while multiple thread blocks constitute a
grid. A GPU computation corresponding to such a grid or-
ganization is designated as a kernel, which is equivalent to
a task in the terminology of stream processing. Threads in
different blocks can only share data through off-chip global
memory. Data sharing and synchronization between differ-
ent multiprocessors is expensive. NVIDIA’s Fermi GPU is
equipped with an on-chip unified L2 cache used to hide the
long latency to off-chip memory. However, the relatively
low cache capacity (768KB on Fermi) makes it less effec-
tive for applications with intensive or unpredictable memory
accesses [26].

2.2 Characteristics of Task-Pipelined Benchmarks

We picked up a series of task-pipelined applications
from three typical GPGPU benchmark suites, HPEC [27],
NVIDIA CUDA SDK [28] and Rodinia [29], as benchmarks
for this research. The benchmarks are widely used for eval-
uating GPU microarchitecture. As shown in Table 1, these
benchmarks cover a broad range of application domains
including image processing, high performance embedded
computing, computational finance and computational biol-
ogy. Such benchmarks as MT, PM and TDFIR are compute-
bound, while benchmarks like MUM, HG and LOS are
memory-bound.

We simulate the benchmarks with a cycle-accurate
many-core GPU microarchitecture simulator, GPGPU-
sim [30], which provides a detailed simulation model of
contemporary GPUs. The detailed execution characteris-
tics of the benchmarks are shown in Table 2. Each bench-
mark has at least two kernels and these kernels are exe-
cuted in a task-pipelined manner. The 2nd column describes
how many streams, i.e. input data sets, are fed to the task
pipeline. Note that a stream has to be processed by every
kernel serially. As each data set can be quite large, increas-
ing the number of streams will not affect the overall per-
formance, but incurs a longer simulation time. We select
the number of streams based on the principle that the per-
formance can be stable and simulation time can be kept at a
reasonable level. The numbers of kernels are listed in the 3rd
column. Columns 4 and 5 enumerate the thread organiza-
tions in terms of grid and block dimensions for each kernel,
which are consistent with the original released benchmarks
and/or manually fine-tuned for better performance. The last
column describes the active blocks per multiprocessor. This
metric indicates the maximum number of blocks distributed
onto a multiprocessor in one shot.

Table 1 Description of benchmarks.

Table 2 Characteristics of task-pipeline applications.

These benchmarks can be classified into two categories
light-load and heavy-load, according to the computation in-
tensity measured by the number of required multiprocessors
as the following equation:

Numrequired =
Product of Grid Dimension

Active Blocks/mutiprocessors
(1)

If the required number of multiprocessors derived by (1)
does not exceed the number of multiprocessors in a GPU,



MU et al.: EXPLOITING THE TASK-PIPELINED PARALLELISM OF STREAM PROGRAMS ON MANY-CORE GPUS
2197

Fig. 2 Performance scalability of serialized kernel execution.

Table 3 Configuration of Simulated GPU Microarchitecture.

all the blocks can be assigned onto the multiprocessors in
one shot. Such type of applications is designated as the
light-load benchmark. Otherwise, some blocks can only
be launched after certain assigned blocks finish execution.
We call such applications as heavy-load benchmarks. Note
that a kernel in the light-load benchmarks deploys a rela-
tively small number of thread blocks and does not occupy
all the multiprocessors fully, whereas a kernel in the heavy-
load benchmarks will consume all computing resources. In
the following evaluation and experiments, we will consider
three hardware configurations with the number of multipro-
cessors chosen as 8, 16 and 24, which are listed in Table 3.
For all three configurations, Eq. (1) leads to the same clas-
sification as shown in Table 2. MT, PM and NN are light-
load benchmarks, while the others belong to the category of
heavy-load benchmarks.

2.3 Analysis of Task-Pipelined Execution on GPU

For task-pipelined applications, both light-load and heavy-
load benchmarks have great potential for performance im-
provement by optimizing the allocation of computing re-
sources. For light-load applications, it is intuitive that two or
more continuous kernels along the pipeline can run simul-

taneously to occupy the GPU’s processors fully as long as
they handle different data stream. For heavy-load applica-
tions, we will show that it is also possible for performance
improvement by appropriately reallocating the computing
resources of GPU between two kernels.

To understand the performance implications of running
two or more kernels concurrently, we first analyze the effi-
ciency of the kernel execution on current GPU by running
the benchmarks with increasing number of multiprocessors.
The kernels in each benchmark are executed sequentially.
The analysis is performed on a cycle-accurate GPU microar-
chitecture simulator [30]. Table 3 gives the detailed config-
urations with the numbers in a bold font showing the con-
figuration of Fermi GPU. We will consider two scenarios:
1) Memory bandwidth remains fixed at six channels† with
an increasing number of multiprocessors; 2) The memory
bandwidth increases proportional to the number of multi-
processors (i.e. 3, 6 and 9 channels, respectively).

Figure 2 shows the simulation results for all the bench-
marks with the number of multiprocessors set as 8, 16, and
24, respectively. The performance of each benchmark is
evaluated with instruction throughput (IPC††) normalized to
that of an 8-multiprocessors configuration. The results of
the first scenario are shown in Fig. 2 (a). The key observa-
tion is that, except TDFIR, none of the benchmarks exhibit
good performance scalability when more multiprocessors
are installed. It suggests that generally the total through-
put is a sub-linear function of the number of multiproces-
sors. Figure 2 (b) illustrates the performance trend of the
second scenario. It follows that the performance scalability
of memory-bound programs (i.e. MUM and LOS) is better
than that of the first configuration, but it is still far from per-
fect linearity. On the other hand, it must be noticed that off-

†Each channel has a 64-bits bus. The GDDR3 memory clock
frequency is 1107MHz. Thus, the bandwidth of each channel is
1107 × (64/8) × 2/1024 = 17GB/s.
††IPC is short for Instruction per Cycle, a widely adopted metric

for performance in microarchitecture design. Given an application
and a compilation flow, the overall number of instructions is fixed
no matter how the microarchitecture is altered. Therefore, it is
a more appropriate metric than the computing throughput. The
performance evaluation results of this paper are based on IPC.
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Fig. 3 Performance scalability of single kernel in DCT.

chip memory bandwidth might not be able to always keep
pace with the increasing of multiprocessors. With the tech-
nology scaling, the number of multiprocessor increases with
the area of a GPU chip, while the number of memory bus
pins (or equivalently the off-chip memory bandwidth) only
grows with the perimeter of the GPU chip. So ultimately,
the second scenario cannot hold. We expect that the future
scalability of memory bandwidth should be somewhere in
between scenarios 1 and 2. Although the above sub-linear
trend is derived from a GPU simulator, it has also been ver-
ified on real GPU hardware running large volume of exper-
imental data [25], [31], [32].

For both scenarios in Fig. 2, a further analysis reveals
that light-load benchmarks exemplified by MT and PM
hardly benefit from a larger number of multiprocessors. The
reason is that there are no more workloads available for the
idle multiprocessors. A better way to utilize the comput-
ing resources is to run two or more kernels simultaneously.
Launching concurrent kernels has to meet the constraint that
these kernels are independent from each other. In task-
pipelined application, the independence widely exists along
the pipeline. In fact, two pipeline stages are independent as
long as they are handling different data streams. We will
elaborate this issue later in Sect. 3.

The performance of heavy-load benchmarks tends to
saturate as the number of processors exceeds a threshold.
Taking the DCT application with three kernels as an ex-
ample, we can derive the performance curves of its three
kernels executed individually as shown in Fig. 3 (Here the
memory bandwidth is fixed when the number of multipro-
cessors is increasing). The rate of performance growth drops
down when the number of multiprocessors is beyond 16.
The situation is even worse for the second kernel. It sug-
gests that, beyond a given threshold, we can only receive di-
minishing gain in performance when dedicating more com-
puting resources to a single kernel. Considering the task-
pipelined parallelism, it is appealing to investigate the fea-
sibility of expediting such heavy-load benchmarks through
concurrent kernel execution.

Accordingly, we perform a series of experiments. First,
kernels 1 and 2 of DCT are executed sequentially with both
fully occupying 24 multiprocessors. The IPC of the whole
application is shown as the red line in Fig. 4. Next, we mod-

Fig. 4 Performance comparison of varying allocations of multiproces-
sors for kernel 1 and kernel 2 of DCT application.

ify the simulator to run two kernels concurrently and al-
locate the multiprocessors between two kernels. The blue
curve in Fig. 4 depicts the performance trend of DCT by
changing the number of multiprocessor allocated to kernel 1
from 1 to 23 (i.e., 23 to 1 multiprocessors to kernel 2).

Figure 4 delivers a few important messages. First, un-
balanced allocations (i.e., those at the two ends of the blue
curve) of computing resources lead to poor performance.
Second, running two kernels in parallel does offer oppor-
tunities to outperform the sequential execution as long as a
proper allocation of multiprocessors can be identified. In
Fig. 4, when we allocate 9-13 multiprocessors to kernel 1
and remaining to kernel 2, the overall performance is higher
that the serialized solution by up to 17%. Similar perfor-
mance curves have been observed on other benchmarks.

2.4 Implication for Cache Design

The performance saturation of the single kernel execution is
largely due to the severe jam of memory traffic when a large
enough number of multiprocessors are working. With the
number of multiprocessors increasing linearly, more mem-
ory requests will be delivered. Typically, the memory over-
head for these requests cannot be linear due to the limit in
both memory bandwidth and latency of off-chip GPU mem-
ory. Such a problem is hard to solve for an arbitrary ap-
plication, as generally the memory requests from different
kernels are independent from each other. However, for task-
pipelined applications, the abovementioned problem can be
greatly mitigated because two neighboring kernels in a task-
pipeline have a producer-consumer relation. When running
sequentially, a producer kernel generates intermediate re-
sults and stores them in the off-chip memory, while a con-
sumer kernel loads the data back. In the case of parallel
execution of two or more kernels, writing and reading to off-
chip memory will both go through L2 cache. This fact sug-
gests that L2 cache can actually serve as a shortcut between
concurrently running producer and consumer kernels. The
reduced number of accesses to off-chip memory leads to the
overall performance improvement, as illustrated in Fig. 4.
The following section explains the details of our microar-
chitecture modification to support task-pipelined application
efficiently by taking advantage of the above observations.
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Fig. 5 Parallel execution of task-pipelined kernels.

3. GPU Microarchitectural Enhancements

In this section, we elaborate our work on enabling effi-
cient task-pipelined execution on GPUs. The proposed
microarchitectural enhancements include two key compo-
nents, an adaptive dynamic scheduling mechanism to or-
chestrate pipelined kernels and a moderately modified L2
cache structure to exploit the producer-consumer pattern be-
tween neighboring kernels.

Our task-pipeline oriented microarchitecture allows
parallel execution of multiple kernels in a manner as il-
lustrated in Fig. 5, where kernels can run concurrently by
sharing the GPU computing resources. The characteriza-
tion results presented in Sect. 2.3 suggest that such pipeline-
parallel execution has potential to deliver higher perfor-
mance. If an application has more than two kernels, e.g.
3, we can still issue two kernels each time by following an
execution sequence as K1-K2, K2-K3 and K3-K1. A criti-
cal question, therefore, has to be raised: how to allocate and
schedule GPU processors among multiple kernels for an op-
timal overall throughput. In Sect. 3.1, we propose an effi-
cient scheduling mechanism to answer the above question.
In Sect. 3.2, we introduce our modified cache architecture
and corresponding policy tailored for producer-consumer
pattern. In the last sub-section, the hardware implementa-
tion and its cost overhead will be estimated.

3.1 Dynamic Kernel Scheduling

The general scheduling problem under the context of multi-/
many-core processors involves both allocating computing
resources and determining the start time for each task.
In this work, the temporal scheduling is implied by the
pipelined dependency. Hence, the objective of our schedul-
ing problem is to allocate multiprocessors on a GPU chip
between K1 and K2 such that the overall throughput is opti-
mized. In other words, a multiprocessor is the basic unit of
resource allocation.

Here we propose a two-kernel scheduling mechanism
that dynamically adjusts the resource allocation by analyz-
ing the execution history of kernels and predicting the per-
formance implications. The prediction is made possible by
the fact that a kernel needs to be executed for multiple times
and statistical behaviors of the workload generally change
slightly across multiple executions. The scheduling mecha-

nism is implemented in GPU’s global scheduler.
Although we can try all possible allocations of multi-

processors to identify the solution for the best performance,
such a process will be costly. In particular, the performance
loss during the search process is unaffordable. As a result,
we take a heuristic approach to solve the problem. The pro-
posed scheduling mechanism works as follows. We have
two kernels designated as K1 and K2, which potentially
share N multiprocessors. The execution time of these two
kernels can be designated as T1(n) and T2(n), where n is the
number of multiprocessors assigned to them. Since the total
workloads of two kernels are fixed, the overall computation
time is constrained by the slower one of the two kernels, as
the fast kernel has to wait for the slower one in each step of
pipelined execution. Then the total execution time of con-
currently running two kernels is:

Texecution(n) = MAX(T1(n),T2(N − n)) (2)

The objective of the scheduling problem is to find n such
that the total execution time in (2) can be minimized. T1(n)
and T2(n) can be arbitrarily complex and generally cannot
be derived analytically. According to our experimental re-
sults, T1(n) and T2(n) can be approximated with monotoni-
cally decreasing functions. Under such an assumption, the
sufficient condition for (2) to reach its minimum is:

T1(n) = T2(N − n) (3)

However, it must be realized that Ti(n) is relatively hard to
handle because Ti(n) → ∞, i = 1, 2 when n = 0. A com-
monly used numerical technique is to use the reciprocal of
Ti(n):

P1(n) =
1

T1(n)
and P2(n) =

1
T2(n)

(4)

Again we use piecewise-linear functions to approximate
P1(n) and P2(n). Then the problem reduces to use measured
data to derive P1(n) and P2(n), and then identify an n such
that P1(n) = P2(N-n).

Upon the arrival of the 1st data stream, we run K1
and K2 sequentially and measure P1(N) and P2(N). The
measurement is done by an on-chip performance counter
as those already deployed on GPU chips [33]. Assuming
the performance of both kernels is linearly scalable, we can
derive two lines that predicting the performance of both
kernels under varying allocation of multiprocessors. In
Fig. 6 (a), the purple line is the linear approximation of P1
and the green line is that of P2. The two lines have a cross
point, which suggest a performance optimal under the above
assumptions†. However, this point generally does not corre-
spond to an integer number of processors. Suppose the cross

†It should be noticed that the performance curve of each ker-
nel is different from that calculated individually in a static manner.
The points on the performance curve are calculated dynamically
under real cache and memory constraints. Hence, the performance
inherently includes the effect of competition for cache and memory
bandwidth.
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Fig. 6 Using a piecewise-linear approximation to get the optimal pro-
cessor allocation. The convergence will be achieved after 4∼5 iterations on
average. The figure only shows the first and second iteration.

point is located between integers K and K + 1 as magnified
in Fig. 6 (a). Then we have to choose the optimal allocation
of either K or K + 1. At either point, there will be a faster
kernel and a slower one. We make a selection such that the
performance of slower kernel is larger. The situation is il-
lustrated in Fig. 6 (a), where choosing K leads to a higher
overall throughput.

Then the multiprocessors are allocated between kernels
K1 and K2 accordingly, i.e. K multiprocessors for K1 and
N-K for K2. Of course, such an initial prediction may be
inaccurate. Therefore, we use new execution results to con-
tinuously fine tune the allocation as shown in Fig. 6 (b). We
then re-calculate the performance line and find the next op-
timized allocation under the same criteria. The scheduler
will repeat this process until convergence. Table 4 gives the
number of iterations for reaching the optimal allocation in
the benchmarks. On average, the convergence to the opti-
mal allocation can be achieved in 4-5 iterations. Although
some applications, such as TDFIR and HG, achieve the con-
vergence point until almost all the stream data are processed,
the performance of the last sub-optimal allocation is already
very close to the final optimal configuration. Therefore,
even such a late convergence does not lead to obvious per-
formance degradation.

3.2 Modified L2 Cache Structure

As analyzed in Sect. 2.3, L2 cache can serve as a shortcut
for data transferring between two neighboring kernels in a
task-pipeline. To fully exploit such an opportunity, data pro-
duced by the preceding kernel should be kept in L2 cache as
much as possible until the succeeding kernel finishes con-

Table 4 Number of iterations for optimal kernel allocation.

suming the data. Thus, we can improve the chance of cache
hit when the succeeding kernel begins executing. Mean-
while, the contents written by the preceding kernel should
be flushed† immediately after the succeeding kernel finish-
ing execution, as these data have little chance to be reused
in the next round of stream execution.

Today’s GPUs are equipped with L1 and L2 cache.
However, due to the limited cache size, some cache lines
tend to be replaced by later requested data during the exe-
cution. Typical cache replacement policies like LRU can-
not specify exactly which cache lines have the potential to
be reused in the succeeding execution. In a task-pipelined
application, a preceding kernel processes the input stream
and generates new data, which will be consumed by a suc-
ceeding kernel. The intermediate data will be written to
global memory through cache. If the corresponding cache
lines are replaced, the data have to be fetched again from
global memory to the cache when the succeeding kernel
needs them. Obviously, such memory traffic can lead to
a performance overhead, especially when cache capacity is
limited. The observation suggests that it can be beneficial to
keep these cache lines until the succeeding kernel accessed
them. After that, the intermediate data will hardly be reused
and we can flush these cache lines to save space for other
work.

Based on these observations, we modified the on-chip
L2 cache of GPU by adding two labels in each cache line
as shown in Fig. 7 (a). One label, kernel ID, is used to mark
which kernel writes to the cache line, while another label,
stream ID, records to which stream the data in this cache
line belong. Both kernel ID and stream ID of all cache
lines all initialized as −1. When a memory request is sent
by a multiprocessor, the kernel ID and stream ID are added
to the memory request. Given a memory-writing request,

†The cache flushing refers to writing the cache data back to
global memory normally and labeling the cache line as invalid. It
will take only several extra cycles.
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Fig. 7 Stream-based cache structure and replacement policy.

the kernel ID and stream ID information in the memory re-
quest will be copied to the cache line after the regular cache
operations. Memory read requests are handled exactly the
same as in a conventional cache. Therefore, the major dif-
ference from the previous cache design is that write request
will record or update the label information of the cache line.
As a result, we are able to specify to which data stream and
kernel a cache line belong.

Our design ensures the data stored in each cache line
to have unique kernel ID and stream ID label. As read re-
quest will not alter the label information, we only need to
consider write request to maintain the uniqueness. When a
write miss happens, we fetch the data of the whole cache
line directly from the off-chip global memory. The label in-
formation in cache line is then updated by that of the write
request. Upon a write hit, it is possible that the label infor-
mation in the write request is different from that of the corre-
sponding cache line. One option is to store each data’s label
information separately, but it will pose a relatively high stor-
age overhead. Actually, it is rare for write requests to hit the
same cache line with different labels, as different streams
have varying writing address space in the global memory.
Therefore, to alleviate the storage pressure, we record the
labels at the granularity of the whole cache line. In other
words, we use the label information of the memory request
to replace that of the corresponding cache line. Figure 7 (b)
elaborates the detailed working procedure. At each step,
concurrent kernels finish the processing for a data stream.
Then the thread scheduler will broadcast a message contain-
ing both kernel ID and stream ID corresponding to the ker-
nel and data stream that have just finished execution to all
cache lines. Each cache line will compare its label informa-
tion with the counterpart of the message. When matched,
the corresponding cache line will be flushed.

An exemplar execution process is illustrated in
Fig. 7 (b). At step 1, kernel 1 processes data stream 1.
Therefore, the cache line written by kernel 1 is labeled with
K1S1. At step 2, kernel 2 will read the data produced by
kernel 1 at step 1. As the data are already cached, kernel

Fig. 8 Implementation of dynamic kernel allocator.

2 read them directly from cache as long as the cache lines
have matched thread ID and stream ID. Meanwhile kernel
2 writes its own results in cache lines with label as K2S1.
After kernel 2 finishes executing, the global thread sched-
uler broadcasts a message to L2 cache indicating that the
cache lines labeled with K1S1 can be flushed safely. This
implies that the flushed cache line can be reused. Without
the cache modification, at step 3 when all the cache lines
are occupied, new data requests will replace cache lines in
an unpredictable manner, while many cache lines actually
store data needed by the next step execution. In such a case,
the replaced data have to be fetched back and the extra read
accesses lead to overhead of time and energy.

3.3 Hardware Implementation and Cost Estimation

Our microarchitectural enhancements only incur moderate
hardware overhead to GPU’s global scheduler and L2 cache.
Figure 8 shows the major hardware organization of our dy-
namic kernel distribution mechanism, which is designated
as dynamic kernel allocator (DKA) and implemented in
GPU’s global scheduler. DKA is equipped with a series
of lookup tables (LUTs) to record the performance metrics.
Each kernel pair† has its own LUT, which has multiple en-
tries. Each entry corresponds to a possible allocation of mul-
tiprocessors. An entry consists of three fields, the number of
multiprocessors allocated to the 1st kernel in the kernel pair
(NK1††), the performance metric of the 1st kernel (K1 perf),
and the performance metric of the 2nd kernel (K2 perf),
respectively. The performance metrics fields are empty

†A kernel pair refers to two kernels that are two adjacent stages
are in the pipeline and execution concurrently in our work.
††The NK1 label only records the number of multiprocessors

allocated to kernel 1. Then the remaining multiprocessors are as-
signed to kernel 2.
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before a program starts†. The allocation is performed in an
iterative fashion. At the beginning of one round of the it-
eration process, GPU global scheduler sends a message to
DKA indicating which LUT to choose. Meanwhile, the per-
formance metric of each kernel-pair’s previous execution is
updated in corresponding entries. Then, the performance
metrics from the entries of LUTs will be sent to the linear
interpolation units to derive the performance metrics of the
remaining allocation solutions of multiprocessors with a lin-
ear approximation method described in Fig. 6. Meanwhile,
the predicted performance metric by the interpolation will
be stored in a temporal buffer pool. Finally, a series of sim-
ple comparisons are conducted to identify the optimal pro-
cessors allocation, which is sent back to global scheduler.

The storage units in a DKA are the main contributor
of hardware cost since the logic units are relatively simple.
Although DKA needs a 16-bit floating-point processing unit
(FPU) for performance prediction (e.g. reciprocal computa-
tion), the overhead of a FPU is negligible considering the
fact that modern GPU already have hundreds of FPUs de-
ployed. We choose the execution time as the performance
metric. The measuring of execution time can be achieved by
reusing the program cycle counters that are already installed
on GPU chips. Assuming there are 24 multiprocessors in the
GPU, for a given pair of kernels, a LUT of each kernel pair
has 25 entries. Each entry contains 5 bits, 16 bits and 16 bits
for three regions in a total of 37 bits. Currently we allow a
task-pipelined consisting of up to 8 kernels††. Thus, the to-
tal LUT of neighboring kernel pairs is 8 plus 1 in the buffer
pool. In summary, the scheduler needs a total of 1KB (i.e.,
(8 + 1) × 25 × 37bits) SRAM for storage. The modified L2
cache needs extra storage for the kernel and stream labels as
well as corresponding comparison logic. In the modified L2
cache, each cache line needs 3 extra bits for kernel ID (up
to 8 kernels) and 5 bits for stream ID (the stream ID could
be reused when exceeding the 32 streams). For a typical L2
cache with 12K cache lines (with the 768KB cache size), we
only need an extra 12KB of storage, which occupies only
1.5% of total L2 cache size. The hardware overhead of the
comparison logic is even more negligible.

4. Methodology and Experiments Results

We implemented the proposed microarchitecture features in
a cycle-accurate simulator, GPGPU-sim (version 3.0.1), for
many-core GPU microarchitectures [30]. The benchmarks
have been summarized in Table 1. Table 3 lists the de-
tailed hardware configurations. We compare three GPU mi-
croarchitectures, baseline GPU running kernels serially, the

†As described in Sect. 3.1 of this section, the initial data
streams of each kernel pair are processed serially and the perfor-
mance metrics will be initialed accordingly. The scheduling of
allocator actually starts working after the serial execution.
††The decision of supporting at most 8 kernels is based on our

observations that almost all the benchmarks have less than 8 ker-
nels. Actually, this value can be set to a larger number with a trivial
hardware overhead.

preemptive scheduling mechanism used in Fermi and Ke-
pler GPUs and our proposed techniques. The preemptive
scheduling mechanism has been incorporated in current ver-
sion of GPGPU-sim. We also implemented our proposed
techniques in GPGPU-Sim.

The performance is evaluated in the following aspects.
Section 4.1 compares the performance improvement for
three microarchitecture configurations. Section 4.2 ana-
lyzes the breakdown of performance improvement by the
dynamic scheduling and the modified L2 cache. Section 4.3
compares the reduction of off-chip memory accesses. Sec-
tion 4.4 discusses the concurrent execution of three or more
kernels.

4.1 Performance Evaluation

As introduced in Sect. 1, the preemptive scheduling mech-
anism is a straightforward method to support multiple ker-
nels. The idea is that a succeeding kernel can be launched
on the remaining idle multiprocessors if a preceding ker-
nel does not occupy all multiprocessors. Otherwise, when a
preceding kernel consumes all the resources, no other ker-
nels can start until some multiprocessors finish their work-
loads. Such a scheduling strategy considers neither the per-
formance scalability of each kernel nor the optimal number
of multi-processors allocated to each kernel.

Figure 9 shows the performance comparison normal-
ized to the baseline GPU. To evaluate the scalability of our
proposed techniques, we consider three configurations with
the number of multiprocessors set as 8, 16 and 24, respec-
tively. The L2 cache size and memory bandwidth increase
proportionally as Table 3 shows. The results in Fig. 9 lead
to a few important insights.

First, compared to the baseline, the performance im-
provement of light-workload is much better than the heavy-
workload benchmarks for both the preemptive scheduling
and our methods. For example, on the 8-multiprocessors
configuration, the performance improvement of PM for
two scheduling methods can be about 40% than the base-
line. However, the performance improvement of light-load
benchmarks does not scale prominently with the number
of multiprocessors increasing. The reason is intuitive: the
workload of a single kernel in these benchmarks does not
fully occupy the computing resources.

Therefore, both the preemptive scheduling and our
task-pipelined method can better exploit the computing re-
sources for multiple small kernels execution. The results
reveal that our dynamic scheduling can perform as well as
the preemptive scheduling on light workload benchmarks.

Second, Fig. 9 demonstrates that our method has a bet-
ter scalability than preemptive scheduling for the heavy-
workload benchmarks. On the 8-multiprocessors configu-
ration, our method does not pose significant performance
advantage. However, with the number of multiprocessors
increasing to 16, our method delivers slightly better results.
Further, when the number of multiprocessors reaches 24,
our method is superior to the preemptive method. The per-



MU et al.: EXPLOITING THE TASK-PIPELINED PARALLELISM OF STREAM PROGRAMS ON MANY-CORE GPUS
2203

Fig. 9 Performance comparison on three different microarchitecture configurations.

formance improvement of our task-pipeline method can be
12%, while that of the preemptive scheduling method is only
4%. The performance scalability can be explained as fol-
lows. With a small number of multiprocessors, our method
does not have much freedom to make an optimized alloca-
tion of multiprocessors. Taking HG as an example, it has
two kernels and the execution time of the 2nd kernel is about
30X longer than that of the 1st kernel. If we ignore the in-
fluence of memory bandwidth, the best allocation of com-
puting resources should be 3% to the 1st kernel and 97% to
the 2nd kernel, which means the 2nd kernel has to occupy
most of the computing resources. However, on 8-processors
configuration, the maximum computing resources allocated
to the 2nd kernel is 87.5% (7 of the total 8 multiprocessors)
as we have to allocate at least one multiprocessor to the 1st
kernel. In this case, not enough computing resources allo-
cated to the 2nd kernel will be the major performance bot-
tleneck. This problem can be alleviated when the number of
multiprocessors is larger. On the 24-multiprocessors config-
uration, the computing resources allocated to the 2nd can be
95%, which is near to the optimal allocation. Therefore, we
can see that larger number of multiprocessors brings more
benefits for our scheduling method, which makes it suitable
for future microarchitectures with even more processors.

Overall, on the 24-multiprocessors configuration, 7 out
of 9 benchmarks perform much better than baseline while
only TDFIR and HG are less efficient. For TDFIR, as
pointed out earlier in Fig. 2, it has almost a linear scalability.
Therefore, the choice of scheduling method does not signif-
icantly influence the performance. The reason of the perfor-
mance degradation for HG is that the workloads of its ker-
nels are extremely unbalanced and a feasible allocation is far
from optimal. On average, our task-pipeline method deliv-
ers an 18% improvement compared to the baseline and a 7%
improvement over Fermi’s preemptive scheduling method.

4.2 Performance Breakdown

We have proposed two mechanisms to support task-
pipelined execution, i.e. the dynamic kernel scheduling
mechanism and the modified L2 cache. Figure 10 shows
the breakdown of performance improvement due to these
two mechanisms on 24-multiprocessors configuration. We

Fig. 10 Performance breakdown of task-pipelined execution.

consider two scenarios of our techniques. The first one only
uses the proposed dynamic scheduling technique, while the
second one integrates both techniques. For light-workload
application, almost all contributions to the enhanced per-
formance come from the dynamic scheduling. As the per-
formance bottleneck of these benchmarks is the insufficient
usage of computing resources, instead of the contention to
memory resources. Therefore, the modified cache policy is
less influential in performance improvement.

For heavy-workload benchmarks, the modified cache
plays a more important role in performance improvement.
The MUM benchmark gets most benefits from the modified
cache, as it is memory-intensive and cache friendly. Im-
proving cache behavior can contribute to the performance
directly.

4.3 Memory Access

As we have explained in Sect. 3.2, the important objective
of our modified cache design is to reduce the number of off-
chip memory accesses, which improves performance and
lowers power consumption. Figure 11 illustrates the num-
ber of off-chip memory accesses normalized to the results
of baseline. We can see that the preemptive scheduling only
slightly changes the number of memory accesses and leads
to diverse behaviors on different benchmarks. As the pre-
emptive scheduling does not change the cache’s architec-
ture, the memory behaviors are determined by the execution
sequence of threads and the streaming characteristics have
not been exploited. On the contrary, our stream-oriented
cache architecture effectively reduces the number of mem-
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Fig. 11 Normalized number of off-chip memory accesses.

ory accesses on most benchmarks. Among these, MUM and
LOS require large-volume of data transfer between neigh-
boring kernels. Thus, the proposed technique brings up to
40% reduction in off-chip memory requests for these two
benchmarks. In the case of HG, which incurs a large num-
ber of memory references, the reduction is only 2% as most
of the requests are read operations and few data need to be
transferred between kernels. For MT and PM, the number of
accesses changes slightly. The reason is that they only need
a small volume of data transfer between neighboring ker-
nels and most data can be contained in cache. Overall, the
total number of off-chip memory accesses on the proposed
architecture is reduced by 13%.

4.4 Concurrent Execution of Three or More Kernels

In the previous design and implementation, we focus on the
concurrent execution of two kernels. It is proved that run-
ning two kernels tends to be more efficient than dedicating
the whole GPU’s computing resources to a single kernel,
even when this kernel is able to fully occupy the resources.
Scheduling two kernels simultaneously has a direction ap-
plication in computer graphics rendering, in which vertex
processing and fragment processing are two major steps of
a typical graphics pipeline.

A generic task-pipelined application may have over
two kernels. Such applications can be solved in two dif-
ferent approaches. The first approach is implemented in our
scheduling mechanism, which decomposes a task pipeline
into stages with each stage consisting of two kernels. Then
each stage of two kernels can be executed concurrently. The
second approach is to concurrently schedule three or more
kernels by extending our techniques. For the second ap-
proach, we need to consider two scenarios: 1) All the ker-
nels’ workloads are small and not all the SMs are required;
and 2) The kernels’ workloads are large enough to occupy
all the SMs. In the first scenario, the preemptive scheduling
adopted by current GPUs can distribute the computing re-
sources efficiently as different kernels do not compete for
resources. It must be noted that such a case rarely hap-
pens in current GPGPU applications because the purpose of
GPGPU is to accelerate the processing of large data sets. In
the second scenario, running three or more kernels is likely
to cause increasing traffic jam and imbalance computing re-

Fig. 12 Performance comparison between optimal two kernels execution
and three kernels execution under different configurations.

sources allocation that hurts the overall performance. We
can use benchmark DCT as an example. DCT is composed
of three kernels as a task pipeline. Figure 12 illustrates the
performance of running three kernels under all possible con-
figurations of task mapping on a 24-multiprocessors GPU.
The X axis of Fig. 12 lists the allocations of multiproces-
sors to the three kernels. The zigzagged curve shows the
IPC value of each configuration†. The configuration space
is quite large. Therefore, we only show the results on the
“boundary” of performance data††. The performance at-
tained by our proposed two-kernels scheduling is also shown
as the straight red line. It shall be noted that the performance
data of optimal two concurrent kernels is fixed as it has no
relation to the X axis. Figure 12 illustrates that only two
out of the over 40 configurations deliver a slightly higher
level of performance than our two kernels execution and the
performance advantage is less than 2%. In addition, most
configurations actually perform worse. On the other hand,
finding the optimal configuration for three or more kernels
leads to significantly increased computing time and storage
space. Overall, our dynamic two-kernels scheduling is suit-
able for current stream applications. From the above anal-
ysis, we believe that it is not beneficial to directly schedule
task pipeline with three or more kernels for concurrent exe-
cution.

5. Related Work

Mapping stream programs to multiprocessors has received
significant attention in the past [11]–[18]. Recently there has
been a wave of research work on mapping multi-task appli-
cations to GPUs. The existing work can be classified into
three categories. The first line of research focuses on con-
structing automatic flow of mapping task-pipelined stream-
ing programs onto GPU [12], [13] and auto-tuning work for
optimizing program parameters [34]–[36]. The second cat-
egory aims at software programming techniques to exploit

†The three figures on the horizontal axis represent the numbers
of multiprocessors allocated to the three kernels.
††There are at most C2

23 = 253 kinds of configuration for 24
multiprocessors. We only show the boundary performance. The
performance of other configurations all falls in the range of the
boundary performance.



MU et al.: EXPLOITING THE TASK-PIPELINED PARALLELISM OF STREAM PROGRAMS ON MANY-CORE GPUS
2205

task management on GPUs [20]–[23]. The third category
makes efforts to optimize microarchitectures for scheduling
multi-tasks among many processing cores [1]. Our work is
similar to the 3rd category.

The first category work aims at developing efficient au-
tomatic tools to map stream programs on GPU platforms
and auto-tuning program parameters for different GPU plat-
forms. Udupa et al. [12] developed efficient techniques to
map stream programs to CUDA by following a software
pipeline approach, in which GPU global memory is used as
the data buffer for concurrently executing kernels. However,
this work can only handle relatively small streaming data be-
cause their techniques require all thread blocks to be simul-
taneously active. There has been a number of work [34]–
[36] about tuning and optimizing GPU’s parameters for a
higher efficiency on different GPU hardware. They adopt
empirical optimization techniques to generate a large num-
ber of parameterized code variants for a given algorithm and
run these variants on a given platform to discover the one
that gives the best performance. These auto-tuning works
only focus on the efficient software implementations and
cannot be directly applied to the hardware resources adjust-
ing.

The work of second category put an emphasis on sup-
porting multi-task execution in the framework of the CUDA
programming model. Various software techniques were pro-
posed to enable efficient and flexible execution of multi-task
workload. Gupa et al. [23] study using persistent thread
style programming to solve irregular GPU workloads. The
persistent thread approach is to keep threads alive during the
whole process of kernel execution. Upon finishing process-
ing a task, a thread fetches a new task from a work queue.
This approach effectively reduces the overhead of launch-
ing new threads. Tatarinov and Kharlamov [22] proposed
a novel method called uber-kernel to merge multi-kernels
to one single kernel for any workload benchmarks. This
approach can be efficient for exploiting task-pipelined ap-
plications on GPUs as it can eliminate the explicit barriers
and lower the overhead of launching kernels. Based on the
uber-kernel method, Tzeng [20] developed software mech-
anism to decompose the tasks into the granularity of warps
and record the warps in distributed queues allocated on the
device memory as well as task donation mechanism to bal-
ance the workload of each task and ensure all processors can
get work quickly. The abovementioned works are valuable
in improving the performance and programming flexibility
of GPGPU applications, but they still rely on the existing
scheduling method of current GPUs.

The third category cares about hardware optimization
for a better allocation of processing cores among multi-
tasks. Early generations of GPUs supporting general pur-
pose computing do not allow directly running multiple ker-
nels. The concurrent kernel execution was first introduced
on NVIDIA’s Fermi GPU [1]. NVIDIA’s Kepler GPU of-
fered the support for dynamic parallelism [24]. Although
both Fermi and Kepler GPUs support concurrently running
multiple kernels, they still follow a preemptive scheduling

strategy, where an idle multiprocessor is immediately as-
signed to execute a kernel as long as it still has unfinished
blocks. Such a preemptive scheduling mechanism does not
consider the dynamic behaviors of kernel execution and thus
leaves space for optimization. For graphics applications,
current GPUs can allocate a varying distribution of multi-
processors to various tasks in a graphics pipeline [37]. For
example, the GPUs might use 90 percent of its processors as
pixel shaders and 10 percent as vertex shaders when draw-
ing a certain scene, and then reverse that ratio when drawing
another. However, this scheduling mechanism is only suit-
able for graphics applications, which have relatively fixed
computing patterns so that the performance is relatively easy
to predict. However, GPGPU applications involve more
complicated computation patterns and their performance is
much more difficult to estimate.

Similar to the third category, our work focuses on mi-
croarchitecture optimization to support concurrent kernels.
We provide a new solution for GPU-alike many-core mi-
croarchitectures to exploit the potential of simultaneously
exploiting task-pipeline and data parallelism. Completely
following the CUDA programming style, our hardware-
based techniques do not require programmers to change
their code explicitly.

6. Conclusion

The history of graphics processing units has consistently
witnessed the enhancements of flexibility. Task-pipelined
parallelism is a fundamental computing pattern that is com-
monly found in scientific and engineering applications, es-
pecially. As GPUs are playing an increasingly important
role in computing, this work focuses on developing microar-
chitectural techniques to support efficient task-pipelined ex-
ecution on GPUs. Based on an extensive quantitative anal-
ysis, we identify opportunities and challenges to utilize the
task-pipelined parallelism. We propose a kernel schedul-
ing mechanism that dynamically tunes the resource alloca-
tion between two concurrent kernels for an optimized over-
all throughput. We also introduce techniques to moderately
modified GPU’s L2 cache to ease the data transfer between
kernels and reduce the off-chip memory access. Simulation
results on real-world applications demonstrate the effective-
ness and scalability of our techniques.
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