
2272
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.10 OCTOBER 2013

LETTER

Efficient Shellcode Detection on Commodity Hardware∗∗

Donghai TIAN†,††a), Mo CHEN†,††∗, Changzhen HU†,††, Nonmembers, and Xuanya LI†,††∗, Student Member

SUMMARY As more and more software vulnerabilities are exposed,
shellcode has become very popular in recent years. It is widely used by at-
tackers to exploit vulnerabilities and then hijack program’s execution. Pre-
vious solutions suffer from limitations in that: 1) Some methods based on
static analysis may fail to detect the shellcode using obfuscation techniques.
2) Other methods based on dynamic analysis could impose considerable
performance overhead. In this paper, we propose Lemo, an efficient shell-
code detection system. Our system is compatible with commodity hard-
ware and operating systems, which enables deployment. To improve the
performance of our system, we make use of the multi-core technology. The
experiments show that our system can detect shellcode efficiently.
key words: efficient shellcode detection, multi-core technology

1. Introduction

In order to exploit vulnerable programs, code-injection at-
tacks are widely used. By utilizing the vulnerabilities, at-
tackers could inject shellcode into the target process to
change or even hijack the program’s execution. To prevent
the vulnerable programs from being exploited, it is impor-
tant to filter out the network data that contains shellcode.

In the past few years, many detection approaches [1],
[3], [4], [6], [9] have been proposed. Basically, these meth-
ods can be divided into two categories: static analysis [3],
[4] and dynamic analysis [1], [6], [9]. The core idea of static
analysis is to disassemble the network stream and then an-
alyze the code-level patterns that could be signatures ob-
tained from existing shellcode. This approach is efficient
to identify known exploit code. However, it is limited in
detecting shellcode that employs binary obfuscation tech-
niques. To address this problem, Polychronakis et al. pro-
pose the dynamic methods based on the network-level emu-
lation [1]. This method first disassembles network data into
several execution chains and then emulates these chains.

Manuscript received January 30, 2013.
Manuscript revised May 13, 2013.
†The authors are with the School of Software, Beijing Institute

of Technology, China.
††The authors are also with State Key Laboratory of Information

Security (Institute of Information Engineering), Chinese Academy
of Sciences, China.

∗Presently, with the School of Computer, Beijing Institute of
Technology, China.
∗∗This work is supported partially by the National High-

Tech Research Development Program of China under Grant No.
2009AA01Z433 and the Open Fundation of State Key Laboratory
of Information Security (Institute of Information Engineering, Chi-
nese Academy of Sciences, Beijing 100093).

a) E-mail: donghaitad@gmail.com
DOI: 10.1587/transinf.E96.D.2272

Compared with static analysis methods, dynamic analysis
methods can achieve better detection completeness and ac-
curacy. Nevertheless, this approach imposes considerable
performance overhead. Moreover, it is easy for the shell-
code to detect the emulated environment so that this dy-
namic method could be evaded [2].

Recently, Snow et al. proposed a new framework, Shel-
lOS [5], enabling fast detection and forensic analysis of
shellcode. Although ShellOS has made great progress on
dynamic methods, it still has some limitations as follows:
1) Since ShellOS relies on the hardware assisted virtualiza-
tion technology, it is still possible for the shellcode to detect
the presence of the virtualized environment and then hide its
malicious behavior. 2) ShellOS is built upon the KVM hy-
pervisor. As a result, the performance will be affected due
to the interactions between the VM and hypervisor. 3) Shel-
lOS is a special OS kernel developed from scratch, so it is
not easy to widely deploy. 4) ShellOS does not make full
use of multi-core technology.

In this paper, we present a prototype system, Lemo,
which leverages commodity hardware and operating sys-
tems to achieve efficient shellcode detection. Lemo is imple-
mented on the Linux kernel, and it does not need the support
of hardware assisted virtualization. Our approach makes the
following contributions:

• We propose an efficient shellcode detection approach
based on commodity hardware. Moreover, our ap-
proach only requires minimal changes to the commod-
ity OS kernel.
• We leverage the multi-core technology to achieve high

performance. To deal with the synchronization prob-
lem, we utilize Lamport’s ring buffer algorithm [8].
• We design and implement a prototype of Lemo based

on Linux. The evaluations show that our system can
detect shellcode with good performance.

2. Overview of Our Approach

The goal of Lemo is to build a system that achieves efficient
shellcode detection based on the existing hardware and op-
erating system. Our high level idea is consistent with pre-
vious dynamic analysis methods: just to execute the net-
work stream on the CPU and then check the presence of the
shellcode in the consequent instruction sequences. Since the
first instruction of the shellcode is not known in advance,
Lemo is required to execute from each offset of the network

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



LETTER
2273

Fig. 1 System workflow.

stream. In other words, our system tries each byte of the net-
work stream as a potential entry point of shellcode. Similar
to the dynamic approaches [1], [6], [9], we refer to a com-
plete execution from each offset of the stream as an exe-
cution chain. Compared with the dynamic approaches that
require intercepting and tracking each instruction, our ap-
proach allows instruction sequences being executed directly
on the CPU, and only trap a small number of instructions se-
lectively by utilizing hardware paging mechanisms. There-
fore, the impact on system throughput will be minimized
using our approach.

The general workflow of our system is illustrated in
Fig. 1. First, Lemo saves the detection program’s initial
memory state for later recovery. Then, the detection pro-
cess executes the network stream directly on the CPU. Since
the network stream may contain random instructions (e.g.,
privileged instructions), executing them on the user mode
could cause system faults. In contrast, the shellcode will
not contain such instructions. Therefore, the system fault
could indicate the start location of the shellcode in the net-
work stream is not correct. To run the next execution chain,
we reset the detection program’s state by restoring the pre-
viously saved memory content. Furthermore, our detection
program may execute the network stream for a long time
due to the accidental formation of loop instructions. To de-
tect and terminate the loop execution quickly, we utilize the
timer interrupt. Next, we reset the program’s state for the
next execution chain. After the execution chains containing
faulty and loop instructions are filtered, we make use of the
hardware paging mechanism to detect shellcode.

3. System Design and Implementation

We have developed Lemo, a prototype based on Linux ker-
nel (with version 2.6.32) to demonstrate our approach. We
provide the method to handle system faults (or exceptions)
in Sect. 3.1. The shellcode detection approach is described
in Sect. 3.2. We present the parallel architecture in Sect. 3.3.

3.1 Fault Handling

As mentioned previously, executing the network streams di-
rectly on the CPU may result in system faults (or exceptions)
due to the random instructions within the streams. More-
over, running these random instructions may corrupt the nor-
mal data of our detection process. Therefore, we should

Fig. 2 Execution timeline.

adopt a mechanism to recover the corrupted data. Before
recovering the data, the process’ initial clean state must be
first saved in the kernel space so that the user code cannot
touch the data. To minimize the size of our saved memory,
we only need to preserve the writable pages of our detection
process. Relying on the vm area struct structure of the
task descriptor (i.e., task struct), we can locate the pages
to be saved.

To get a chance for storing the process’ initial state, we
should somehow make the process’ execution trap into the
OS kernel before executing the network data. For this pur-
pose, we insert the INT 3 instruction into the front of the
network stream. After the INT 3 instruction is executed, the
debug exception will be raised. Accordingly, we hook the
exception handler do debug to save the memory content of
the detection process. For preserving the current CPU reg-
isters, we leverage the fact that the OS kernel saves regis-
ters of the user program on the kernel stack before entering
fault handlers. In Linux, we can locate these registers via a
data structure pt regs. Then, the execution control is trans-
ferred from the OS kernel to our detection program.

To execute the network stream in our detection process,
we set a function pointer to the address of the program’s
buffer that contains the network data. Next, we invoke this
function to change the program’s execution to the network
stream. When this execution encounters an instruction that
causes a system fault, we recover the program’s normal data
by restoring the previously saved memory content and CPU
registers. Moreover, we change the program counter stored
on the stack so that our detection process will start the next
execution chain once the execution control is returned to the
user mode.

In some execution chains, our detection process may
encounter a return instruction so that the function execut-
ing the network stream will return and exit. To address
this problem, we modify the program counter located on the
stack to the address of kernel space. In this way, an excep-
tion will happen after the function returns. Then, we hook
the corresponding fault handler for the next execution chain.

In addition, we have to deal with the execution chain
that contains infinite loops. To abort the loop execu-
tion as soon as possible, we make use of the timer inter-
rupt. In the multi-core environment, the APIC timer is
used for maintaining the time activities related to a spe-
cific CPU (e.g., how long the current process is running).
For the implementation, we hook the timer interrupt handler
apic timer interrupt() to check if the running time of
the execution chain exceeds the predefined limit and then
perform the associated operations.

Specifically, we need to handle situations shown in



2274
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.10 OCTOBER 2013

Fig. 2. Before starting a new execution chain, we record
the tick counter (i.e., jiffies) at time t0. Then, an excep-
tion may occur at time e1. Accordingly, we recover the pro-
gram’s previous state and then change the program counter
to the start point of the next execution chain. Also, the tick
counter is incremented. Next, a timer interrupt is raised at
time t1. To determine whether the execution is in the loop,
the current tick is compared with our tick counter. If the cur-
rent tick is larger than the tick counter, the program’s previ-
ous state is restored. Moreover, we increase the tick counter
and start a new execution chain. On the other hand, if the
current tick is equal to our tick counter at time t1, we will do
the similar work at time e2 or t2.

It is worth noting that if we want to exit infinite loops
quickly, the timer frequency should be set higher. However,
doing so would also increase the performance overhead due
to the world switch between the user process and OS kernel.

3.2 Shellcode Detection

To set up an execution environment for shellcode, our sys-
tem needs to mimic a Windows environment. In general,
Win32 code expects the Process Environment Block (PEB)
to be present in its execution environment. This Windows
internal structure contains a variety of process-specific in-
formation, such as current structured exception handling
frame, Win32 thread information and so on. In order to in-
voke user-level Windows API, shellcode has to first resolve
the API addresses that could be acquired via the PEB. In
the Windows environment, a pointer to the PEB is stored
in the FS register. Setting up this segment register requires
modifying the process local descriptor table (LDT). In our
implementation, we first allocate a chunk of memory for the
PEB. Then, we utilize the system call (i.e., modify ldt())
to set up the FS register.

In order to detect shellcode in our execution environ-
ment, we employ the PEB heuristic [6]. This detection
heuristic relies on the conventional behaviour of shellcode:
After executing the network string, the shellcode will first
read the memory address of FS:[0x30] to locate the PEB,
and then read the LoaderData field (0xc bytes offset) of the
PEB to locate the PEB LDR DATA structure. Based on this
structure, the shellcode will walk through the loaded mod-
ules list to resolve the base address of kernel32.dll.

To trap the memory operations on the PEB during the
shellcode’s execution, we make use of the stealth breakpoint
technique [7]. Specifically, we clear the present bit of the
page table entry (PTE) mapping for the addresses that are
associated with the PEB. As a result, when the shellcode try
to access the PEB, it will cause a page fault. Accordingly,
we hook the page fault handler (i.e., do page fault()) in
Linux kernel to check whether the operation hits our prede-
fined breakpoints. If it is, the handler sets the present bit
in the PTE such that the corresponding memory page can
be accessed. To ensure trapping future access to this page,
the handler has to enable the single step debug mechanism
for reseting the present bit in the PTE and then disable the

Fig. 3 Parallel architecture.

debug mechanism.

3.3 Parallel Architecture

To improve the performance of our system, we leverage
the increasingly popular multi-core technology. As shown
in Fig. 3, our system can be divided into two parts: Net-
work Sniffer and Detection Processes. Relying on differ-
ent CPU cores, these two components can work in paral-
lel. Specifically, the Network Sniffer is responsible for cap-
turing network packets. Before transferring these network
stream to the Detection Processes, the Network Sniffer has
to assemble the TCP stream in that attackers may disperse
their shellcode across different IP packets. After that, the
Detection Processes perform the TCP stream analysis to in-
spect the presence of shellcode. By applying the multi-core
technology, the Network Sniffer and Detection Processes are
mapped to different CPU cores.

To dispatch network packets to different buffers of De-
tection Processes, we employ a segmentation scheme simi-
lar to a previous study [12]. Specifically, we divide the net-
work string into continuous overlapping segments, and the
length of the overlapped part between any two neighboring
segments equals to the maximum length of shellcode, which
we assume is 2048 bytes. In this way, any shellcode that is
less than 2048 bytes will be included in at least one segment.

In order to deal with the synchronization problem be-
tween the Network Sniffer and Detection Processes, we uti-
lize the Lamport’s ring buffer algorithm [8], which is shown
in Fig. 4. The ring buffer is located in the OS kernel space
so that its TCP data cannot be corrupted when executing the
network stream.

The specific definition of the ring buffer structure is il-
lustrated in Line 1∼7. The reason of containing the 52 bytes
padding field (pad[52]) in this structure is to make the data
aligned in the first-level hardware cache. By doing so, our
system performance could be improved. To ensure con-
current operations on the ring buffer without using locks,
the producer (i.e., Network Sniffer) needs to invoke the
Enqueue function to insert the network data into the buffer



LETTER
2275

Fig. 4 Lamport’s ring buffer algorithm.

(Line 11∼19). On the other hand, the consumer (i.e., De-
tection Process) has to invoke the Dequeue function to con-
sume the data from the buffer (Line 20∼28). In particular,
the Detection Process analyzes the data copied from the ring
buffer in its user address space (Line 26).

Once the detection process finishes the TCP data anal-
ysis, its execution is transferred to the OS kernel. Then, we
update the TCP data in the Detection Process’ buffer for the
next analysis. To reduce the packet loss of the Network Snif-
fer, different ring buffers are allocated for different Detection
Processes. Moreover, when one of these ring buffers is fully
filled with the TCP data, the Network Sniffer will choose the
other one for transferring the data so that the Sniffer could
continue capturing network packets without being blocked.

4. Evaluation

To test the capabilities of Lemo, we conduct a series of
experiments and throughput measurements. All the exper-
iments are carried out on a Dell PowerEdge T410 work sta-
tion with a 2.13 G Intel Xeon E5606 CPU and 4 GB mem-
ory.

4.1 Effectiveness

We evaluate the effectiveness of Lemo for shellcode detec-
tion with Metasploit Framework [10]. Particularly, we se-

Fig. 5 Experimental testbed.

lect 8 classical exploits that make use of the PEB for Win-
dows API resolution as our experimental samples. For each
sample, we apply the advanced polymorphic engines within
Metasploit to generate 700 different shellcode instances. We
feed these samples to our detection process for network data
analysis. The experiments show that all these 5600 shell-
code instances are successfully detected by our system.

4.2 Throughput

To evaluate the network throughput of our system, we set
up a test bed consisting of 3 machines, which is shown
in Fig. 5. All these machines are connected by a 100 MB
hub. To generate the TCP network traffic, we make use
of LanTraffic [11]. Specifically, the LanTraffic sender runs
on the machine A while the LanTraffic receiver is located
on the machine C. The length of TCP data is configured
as 64 KB. Our detection system runs on the machine B.
We set the timer frequency to 1000 HZ. All the execution
chains in the TCP stream are fully analyzed. The evalu-
ations show that our system is able to achieve 38.6 Mbps
network throughput with one CPU core. When we utilize 2
CPU cores for two different detection processes, our system
can achieve 73.8 Mbps network throughput without packet
loss. Compared with the emulation-based methods [1], [6],
[9], the network throughput is greatly improved.

5. Conclusion

In this paper, we present Lemo, an efficient shellcode detec-
tion system based on commodity hardware. We exploit the
fault (exception) handling mechanisms of commodity oper-
ating systems to analyze network streams by executing them
directly on the CPU. Moreover, we leverage the multi-core
technology to improve the system performance. Our evalu-
ations show that Lemo can detect shellcode effectively with
good performance.

References

[1] M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos,
“Network-level polymorphic shellcode detection using emulation,”
3rd International Conference on Detection of Intrusions and Mal-
ware & Vulnerability Assessment (DIMVA), 2006.

[2] R. Paleari, L. Martignoni, G.F. Roglia, and D. Bruschi, “A fistful of



2276
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.10 OCTOBER 2013

red-pills: How to automatically generate procedures to detect CPU
emulators,” Proc. 3rd USENIX Workshop on Offensive Technolo-
gies (WOOT), 2009.

[3] T. Toth and C. Krgel, “Accurate buffer overflow detection via ab-
stract payload execution,” 5th International Symposium on Recent
Advances in Intrusion Detection (RAID), 2002.

[4] R. Chinchani and E. van den Berg, “A fast static analysis approach
to detect exploit code inside network flows,” 8th International Sym-
posium on Recent Advances in Intrusion Detection (RAID), 2005.

[5] K.Z. Snow, S. Krishnan, F. Monrose, and N. Provos, “SHELLOS:
Enabling fast detection and forensic analysis of code injection at-
tacks,” Proc. 20th USENIX Security Symposium, 2011.

[6] M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos, “Com-
prehensive shellcode detection using runtime heuristics,” Proc.
26th Annual Computer Security Applications Conference (ACSAC),
2010.

[7] A. Vasudevan, and R. Yerraballi, “Stealth breakpoints,” Proc. 21st
Annual Computer Security Applications Conference (ACSAC),
2005.

[8] L. Lamport, Proving the Correctness of Multiprocess Programs,
IEEE Transactions on Software Engineering, 1977.

[9] M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos,
“Emulation-based detection of non-self-contained polymorphic
shellcode,” 10th International Symposium on Recent Advances in
Intrusion Detection (RAID), 2007.

[10] Rapid7 LLC, Penetration Testing Software: Metasploit,
http://www.metasploit.com/, 2012.

[11] ZTI, LanTraffic V2, http://www.zti-telecom.com/, 2012.
[12] L. Wang, H.-X. Duan, and X. Li, “Dynamic emulation based mod-

eling and detection of polymorphic shellcode at the network level,”
Science in China Series F: Information Sciences, 2008.


