
2376
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

PAPER

Training Multiple Support Vector Machines for Personalized
Web Content Filters

Dung Duc NGUYEN†a), Maike ERDMANN††, Tomoya TAKEYOSHI††, Gen HATTORI††, Nonmembers,
Kazunori MATSUMOTO††, Member, and Chihiro ONO††, Nonmember

SUMMARY The abundance of information published on the Internet
makes filtering of hazardous Web pages a difficult yet important task. Su-
pervised learning methods such as Support Vector Machines (SVMs) can
be used to identify hazardous Web content. However, scalability is a big
challenge, especially if we have to train multiple classifiers, since different
policies exist on what kind of information is hazardous. We therefore pro-
pose two different strategies to train multiple SVMs for personalized Web
content filters. The first strategy identifies common data clusters and then
performs optimization on these clusters in order to obtain good initial so-
lutions for individual problems. This initialization shortens the path to the
optimal solutions and reduces the training time on individual training sets.
The second approach is to train all SVMs simultaneously. We introduce
an SMO-based kernel-biased heuristic that balances the reduction rate of
individual objective functions and the computational cost of kernel matrix.
The heuristic primarily relies on the optimality conditions of all optimiza-
tion problems and secondly on the pre-calculated part of the whole kernel
matrix. This strategy increases the amount of information sharing among
learning tasks, thus reduces the number of kernel calculation and training
time. In our experiments on inconsistently labeled training examples, both
strategies were able to predict hazardous Web pages accurately (> 91%)
with a training time of only 26% and 18% compared to that of the normal
sequential training.
key words: support vector machines, sequential minimal optimization, text
categorization, Web content filtering

1. Introduction

With the help of an Internet monitoring company, we have
collected a set of 3.1 million documents with 12,000 fea-
tures for automatically detecting hazardous Japanese Web
pages. Our task is to build multiple filters using Sup-
port Vector Machines (SVMs) [1] to accurately identify haz-
ardous content from normal Web pages [2]. However, the
scalability is a big challenge due to the fact that SVM needs
to solve a computationally expensive quadratic program-
ming (QP) problem. Training the whole data set is expected
to take at least one month on a normal computer. If we
assume that the training process has to be conducted only
once, such a long training time might be acceptable. How-
ever, we will certainly encounter different policies on what
kind of information is hazardous, depending on which or-
ganization is requesting the Web content filter and for what

Manuscript received January 16, 2013.
Manuscript revised June 7, 2013.
†The author is with the Institute of Information Technology,

Vietnam Academy of Science and Technology, Vietnam.
††The authors are with the KDDI R&D Laboratories, Fujimino-

shi, 356–8502 Japan.
a) E-mail: nddung@ioit.ac.vn

DOI: 10.1587/transinf.E96.D.2376

purpose. For instance, parents might want a Web filter that
protects their children from adult content such as gambling
and drugs. A company might want to set up a filter that pre-
vents employees from visiting Web sites that are not work
related. Moreover, laws and ethical standards vary widely
among countries.

Under the circumstances explained above, a training
example might have to be labeled hazardous in one Web
content filter and harmless in another, but the majority of
instances is still labeled equally. We therefore introduce sev-
eral methods to train multiple SVMs in an efficient way. The
first one is called Hierarchical Training for Multiple SVMs
(HTMSVM), which can identify common data among sim-
ilar training sets and then train the common data sets in or-
der to obtain good initial solutions. These initial solutions
help in reducing the time for training the individual train-
ing sets, without influencing classification accuracy. The
second approach is to train all SVMs simultaneously. We
propose a kernel-biased selection heuristic that balances the
kernel calculation cost and reduction rate of multiple ob-
jective functions. The heuristic primarily relies on the opti-
mality conditions of all optimization problems and secondly
on the pre-calculated part of the whole kernel matrix. Ex-
perimental results on our real data show that both the hi-
erarchical (HTMSVM) and simultaneous (mSVM) training
methods effectively reduce the cost for calculating the kernel
matrix and the training time compared to that of the normal
sequential training.

The rest of the paper is structured as follows. In Sect. 2,
we introduce the Web content filtering problem and the use
of SVMs as personalized filters. In Sect. 3, we describe
different approaches to train multiple SMVs, including the
normal sequential training and our two mentioned methods.
We report and analyze our experiment results in Sect. 4. In
Sect. 5, we discuss related works on training time reduction
for SVM as well as on the learning of multiple similar tasks.
Finally, we draw our conclusions and outline future work in
Sect. 6.

2. Web Content Filtering and Support Vector Ma-
chines

2.1 Personalized Web Content Filtering

For detecting hazardous Japanese Web pages, we have col-
lected a set of about 3.1 million training examples with

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

NGUYEN et al.: TRAINING SVMS FOR WEB CONTENT FILTERING
2377

Table 1 Web content categorization examples.

Class Category Subcategory

Harmless Shopping Auctions
Shopping, general
Real estate
IT related shopping

Hobby Music
Celebrities
Food
Recreation, general

Hazardous Illegal Terror, extremism
Weapons
Defamation
Suicide, runaway

Adult Sex
Nudity
Prostitution
Adult search

12,000 features. The data is categorized into 27 categories
with 103 subcategories. Some examples of hazardous and
harmless categories are shown in Table 1. Due to different
policies in the filtering of hazardous Web pages, each fil-
ter is usually trained independently. Formally speaking, we
have a collection of M data sets T u, u = 1, . . . ,M:

T u =
{
(xi, y

u
i) ∈ Rd × {−1,+1} |i = 1, . . . , l

}
, (1)

and our task is to construct M decision functions:

yu = sgn (f u(x)) , u = 1, . . . ,M, (2)

for classifying each document x as hazardous or harm-
less. Our experience with different learning approaches in-
dicates that nonlinear SVMs with RBF kernels K(x1, x2) =
exp(−γ ‖x1 − x2‖2) satisfy our predictive performance re-
quirement (≥ 90% accuracy). Unfortunately, training non-
linear SVMs takes much time, especially when the number
of filters is very large.

2.2 Support Vector Machines

For the last decades, support vector machines [1], [3] have
become a popular method in various classification applica-
tions. Given a set of training examples xi ∈ Rd with la-
bels yi ∈ {−1,+1} , i = 1, . . . , l, the training phase of SVMs
solves the following QP optimization problem:

min
α

L(α) =
1
2

l∑

i, j=1

yiy jαiα jKi j −
l∑

i=1

αi, (3)

s.t.
l∑

i=1

yiαi = 0, (4)

0 ≤ αi ≤ C, i = 1, . . . , l. (5)

where Ki j = K(xi, x j) is a kernel function calculating dot
product between two vector xi and x j in some feature space;
C is a parameter penalizing each “noisy” training example
in the given training data. The optimal coefficients {αi} , i =
1, . . . , l will form a decision function:

y = sgn

⎛⎜⎜⎜⎜⎜⎜⎝ f (x) =
∑

αi�0

yiαiK(xi, x) + b

⎞⎟⎟⎟⎟⎟⎟⎠ . (6)

Despite the fact that training SVMs is very expen-
sive [4]–[6], their performance is superior in many do-
main like text categorization [7], character recognition [8],
[9], object detection in image [10]. The main difficulty in
solving the above QP is the huge memory demand and ex-
pensive computational power for calculating and storing the
kernel matrix {Ki j}, i, j = 1, . . . , l. In the next section, we
introduce how to train multiple SVMs in an efficient way.

3. Training Multiple Personalized SVMs

3.1 Sequential Training

A normal way to train multiple SVMs is to apply a state-
of-the-art algorithm, e.g. the sequential minimal optimiza-
tion (SMO) [11], and train the machines one by one. The
SMO is a special case of the commonly used decomposi-
tion method for SVM training. The specialty of SMO lies
in the fact that it iteratively selects only two vectors for op-
timization. Supposed that two vectors xi and x j are chosen,
the best new values of the corresponding αi and α j in terms
of reducing the objective function L in (3) are (ignoring the
box constraint (5)):
⎧⎪⎪⎪⎨⎪⎪⎪⎩
αnew

i = αold
i +

yi(−Eold
i +Eold

j)

κi j
,

αnew
j = y j(const − yiα

new
i),

(7)

where const = yiα
old
i + y jα

old
j , κi j = Kii + Kj j − 2Ki j, and

Ei =

l∑

k=1

ykαkK(xi, xk) − yi. (8)

This updating scheme leads to a reduction of objective
function L an amount of

ΔLi j = −
(−Eold

i + Eold
j)2

2κi j
. (9)

Based on this reduction rate, different selection strate-
gies have been proposed, e.g. [12], [13]. The second order
working set selection, one of the most efficient heuristics, is
as follows:
⎧⎪⎪⎨⎪⎪⎩

i = arg maxk∈Iup(α) {−Ek} ,
j = arg mink∈Ilow(α) {ΔLik | − Ei > −Ek} , (10)

where

Iup(α) = {k|αk < C, yk = +1 or αk > 0, yk = −1} , (11)

Ilow(α) = {k|αk < C, yk = −1 or αk > 0, yk = +1} . (12)

The SMO algorithm, outlined in Table 2, has been
widely implemented in various libraries and softwares for
SVM training like LibSVM [14], LASVM [15], Core Vector
Machines [16], [17], and Condensed SVMs [18]. However,

2378
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

these existing method and implementation are designed for
solving single SVM. In the next section, we describe how to
take advantages of the SMO algorithm for training multiple
Web content filters.

3.2 Training a Hierarchy of SVMs

Based on the fact that the given M training data share a large
number of commonly labeled documents, our first attempt
is to train SVMs on the common data and then to use those
solutions as initial solutions for training individual data sets.
The two-phase algorithm is specified in Table 3.

In the first phase, we detect clusters of overlapping
training data using a bottom-up hierarchical algorithm [19]
(Step 1–10). Initially, one cluster is created for each train-

Table 2 The SMO algorithm.

Input: training data T = {(xk, yk)} , k = 1, . . . , l

0. Initialize a feasible solution α
1. While S toppingCondition is not satisfied
2. Select a pair of vectors (i, j) using (10)
3. Update (αi, α j) using (7)
4. Update optimality violation state Ek , k = 1, . . . , l, in (8)
5. Endwhile

Output: optimal coefficients α = {αk} , k = 1, . . . , l

Table 3 Algorithm for training a hierarchy of SVMs.

Input: M-label training data T u =
{
(xi, y

u
i) ∈ Rd × {−1,+1} |i = 1, . . . , l

}
, u = 1, . . . ,M

Phase 1: label-based data clustering
1. For u = 1 to M do
2. Define clusters cu → Idx = {u}, cu → Child1 = cu → Child2 = NULL, cu → α = 0
3. Endfor
4. Define ClusterS et = {cu}, u = 1, . . . ,M
5. While |ClusterS et| > 1
6. (ci, c j) = arg mincu ,cv∈ClusterS et{dist(cu, cv)}
7. ci j → Idx = ci → Idx ∪ c j → Idx, ci j → Child1 = ci, ci j → Child2 = c j

8. ClusterS et = ClusterS et − {ci, c j}
9. ClusterS et = ClusterS et ∪ {ci j}
10. Endwhile

Phase 2: training a hierarchy of SVMs
11. Call root is the remaining cluster in ClusterS et, set root → α = 0
12. Push(root, FIFO)
13. While FIFO is not empty
14. c = Pop(FIFO)
15. Solve the problem (3) on T c =

⋂

u∈c→Index

T u, call αc be the optimal solution

16. If c→ Child1 � NULL AND c→ Child2 � NULL Then
17. c→ Child1 → α = αc

18. c→ Child2 → α = αc

19. Push(c→ Child1, FIFO)
20. Push(c→ Child2, FIFO)
21. Endif
22. Endwhile

Output: optimized solutions αu on T u, u = 1, . . . ,M

ing set (Step 1–3). The index set of each cluster (c → Idx)
has one element, which is the index of the data, and the
two children (c → Child) are set to zero. The α parame-
ter (c → α) is initialized to be zero. In Step 4, ClusterS et
is defined as the initial set of M clusters. In Steps 5–10, the
bottom-up hierarchical clustering is applied to ClusterS et.
In each iteration, the two closest clusters ci and c j are se-
lected (Step 6). They are then combined into a new cluster
ci j (Step 7). The two child clusters ci and c j are removed
from ClusterS et (Step 8) and the newly created cluster ci j is
added instead (Step 9). The distance between the two clus-
ters ci and c j is calculated from the total number of training
examples without the number of common training examples
in the two clusters:

dist(ci, c j) = l −
∣∣∣∣∣∣∣∣

⋂

u∈ci j→Index

T u

∣∣∣∣∣∣∣∣
, (13)

where ci j → Index = ci → Index ∪ ci → Index.
In Steps 11–12, the remaining cluster in ClusterS et be-

comes the root of the hierarchy. Its coefficient vector α is
initialized to be zero, and it is pushed into a FIFO structure
(First-in-First-out).

In the second phase, the SVM training is performed
in the order determined by the cluster hierarchy. In each
iteration, one data cluster c is picked from ClusterS et in the
FIFO structure (Step 14). The SVM training algorithm finds
the optimal solution αc on that cluster. If c has two child

NGUYEN et al.: TRAINING SVMS FOR WEB CONTENT FILTERING
2379

clusters, αc will be used as an initial solution for training
the child clusters. When all child clusters have been trained,
the training process stops. The output of the training are the
SVM for each child cluster.

Our experiments show that the training hierarchy of
SVMs significantly improves training performance. How-
ever, for some individual data sets, an initialization from
parent’s solution does not help much in reducing the to-
tal training time. We will discuss this problem in detail in
Sect. 4.2.

3.3 Simultaneous Training of Multiple SVMs

Before introducing our algorithm for simultaneously train-
ing all M SVMs, lets review the SMO algorithm described
in Sect. 3.1. We can see in Table 2 that the most expen-
sive step is to update the optimal condition on each train-
ing example (Step 4). This step consists of calculating two
columns of the kernel matrix Kik and Kjk and updating the
margin

Enew
k

← Eold
k + (yiykKik(αnew

i − αold
i) + y jykK jk(αnew

j − αold
j))

(14)

This updated information plays a crucial role in the
SMO. Firstly, it is used to select the first index i directly
and then the second index j via estimating the reduction of
the objective function (Eq. (10)). Secondly, it is used to
check the optimal condition (step 1 in Table 2). Due to its
high computational cost, different strategies has been pro-
posed to improve its efficiency. The first technique is the
kernel caching strategy that tries to avoid the recalculation
of the kernel matrix [20], [21]. As the computer’s memory
is limited, only frequently used columns are calculated and
store in the main memory. When the stored entries reach
the memory limitation, some columns must be freed and the
others are (newly) calculated. The second strategy is shrink-
ing. This strategy uses an heuristics to select a subset of
the whole training data as an “active” working set and opti-
mization algorithms iteratively work on this subset. Both the
two strategies shows their effectiveness in training SVMs on
large data [14], [21].

For the Web content filtering task, our solution is to
train all M SVMs simultaneously. As all training data sets
share the same set of l object descriptions {xi}, i = 1, . . . , l,
the M optimization problems share the same kernel matrix.
Normally we could apply the same selection heuristic to se-
lect M pairs of vectors, one for each optimization problem,
(iu, ju), u = 1, . . . ,M, where:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

iu = arg maxk∈Iup(αu)

{
−Eu

k

}
,

ju = arg mink∈Iu
low(αu)

{
ΔLu

ik | − Eu
i > −Eu

k

}
.

(15)

The updating marginal information becomes

Eu new
k ← Eu old

k + (yu
i y

u
k Kiuk(αu new

i − αu old
i)

+yu
jy

u
k K juk(αu new

j − αu old
j)). (16)

If the whole kernel matrix is pre-calculated and stored
in the main memory, then kernel entities are calculated only
once and the training process for M SVMs becomes very
fast. However, the size of the kernel matrix grows rapidly
with the number of selected pairs {iu, ju} that corresponds
to the number of kernel columns {Kiu ,Kju }, u = 1, . . . ,M.
When M problems are solved together, these columns might
be different and the memory vanishes quickly even for
a small number of iterations. As the result, some pre-
calculated columns must be freed and the newly selected
columns are (re-)calculated. This problem wastes computa-
tional power and increase the training time, especially when
the training size l and number of problems M are large.

In order to reduce the wasted kernel calculations, we
used an heuristic called kernel biased selection as follows.
Firstly, we select a problem U that violates the optimal con-
ditions the most:

U = arg max
u
{−Eu

max + Eu
min|, u = 1, . . . ,M}, (17)

where

Eu
max = max

{
−Eu

k |k ∈ Iup(αu)
}
,

Eu
min = min

{
−Eu

k |k ∈ Ilow(αu)
}
.

We then select pairs of vectors
⎧⎪⎪⎪⎨⎪⎪⎪⎩

iU = arg maxk

{
−EU

k |k ∈ Iup(αU)
}
,

jU = arg mink

{
ΔLU

ik |k ∈ Ilow(αU),−EU
i > −EU

k

}
,

(18)

and for v � U:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iv =

⎧⎪⎪⎨⎪⎪⎩
arg maxk

{
−Evk |k ∈ IU

up(αv)
}

if IU
up � ∅,

−1 otherwise,

jv =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

arg mink

{
ΔLvik |k ∈ IU

low,−Evi > −Evk
}

if IU
low � ∅,

−1 otherwise,

(19)

where

IU
up(αv) = Iup(αv) ∩CacheIdx ∪ {iU , jU},

IU
low(αv) = Ilow(αv) ∩CacheIdx ∪ {iU , jU},

and CacheIdx is the set of indexes of pre-calculated ker-
nel matrix columns. As IU

up(αv) and IU
low(αv) are subsets

of Iu
up(αv) and Iu

low(αv), the selection heuristics (18)–(19)
leads to a smaller total reduction rate of M objective func-
tions L(αu). However, it requires calculation of at most two
columns of the kernel matrix. We will show in the experi-
ment section that this trade-off is effective and suitable for
the Web content filtering problem. The outline of simulta-
neously training multiple SVMs is described in Table 4.

4. Experiment

4.1 Data Preparation and Experiment Setup

For the experiment, we used part of our corpus of about 3,1

2380
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

Table 4 Algorithm for simultaneously training of multiple SVMs.

Input: M training data T u =
{
(xk , y

u
k)
}
, k = 1, . . . , l; u = 1, . . . ,M.

0. Initialize M feasible solutions αu, u = 1, . . . ,M
1. While all M S toppingConditions are not satisfied
2. Select M pairs of vectors {(iu, ju)} using (18)–(19)
3. Forall {(iu, ju)}
4. If iu ≥ 0 and ju ≥ 0 Then
5. Update (αu

i , α
u
j) using (7)

6. Update optimality violation state Eu
k using (16)

7. Endif
8. Endfor
9. Endwhile

Output: M sets of optimal coefficients αu =
{
αu

k

}
, u = 1, . . . ,M.

million examples manually labeled as hazardous or harm-
less Web pages. The feature extraction is based on the de-
pendency relations of hazardous keywords and their neigh-
boring segments, thus the features are numerical. The ex-
traction process consists of several steps, including genera-
tion of keywords using morphological analysis on the train-
ing data, generation of segment pairs and expansion the seg-
ment pair using a thesaurus [2]. We also conducted our
experiments on an extended set of the previously reported
data in [2], which contains nearly equal distribution of haz-
ardous and harmless Web pages. From the corpus, we con-
structed five training sets representing five different data la-
beling policies ranging between conservative (e.g. parental
control) Web filters to very liberal Web filters. For the first
set, we used the original labels. In order to construct the
other four sets, we changed the labels of selected categories
and subcategories from harmless to hazardous or vice versa.
As a result, 80% of the training examples were identical in
all five sets, 10% were different in only one of the train-
ing sets and another 10% were different in two training sets.
Although the training sets were created solely for the ex-
periment, we made sure that they represented realistic Web
filtering policies.

In our experiment, we compared the training time of
HTMSVM and mSVM with those of sequential training us-
ing LibSVM [14] for different amounts of training data. The
smallest set contained 50,000 training examples per train-
ing set whereas the largest contained 250,000 training ex-
amples. Due to the strict requirement on predictive accu-
racy of Web content filters, we select the RBF kernel for
all training methods. The experiment was conducted on a
server with 8 CPUs and 60GB of memory; 10GB was used
for caching the kernel matrix. The stopping condition is the
same for all three algorithms: the maximum of KKT viola-
tions, (−Ei +E j) for LibSVM, HTMSVM and (−EiU +E jU),
for mSVM is smaller than ε = 10−3. Actually, the stopping
condition used by the mSVM is tighter than the other due to
the fact that (−Eiu + E ju) ≤ (−EiU + E jU) < ε for all u � U,
or ε is the threshold for the most of the most violation con-
ditions of all M training problems.

Fig. 1 Data clusters and training order for the Web content filter using
the HTMSVM algorithm.

4.2 Training Time

For the first hierarchical training strategy, the result of data
clustering and training order is visualized in Fig. 1. The first
training is conducted on T1,2,3,4,5, i.e. the training data which
is identical in all five sets (80% of the data). After that, the
set T1,4,5 is trained, which consists of the training data that is
identical in three of the training sets (90% of the data). Sub-
sequently, the sets T1,4 and T2,3 are trained, both containing
95% of the training examples. Finally, each training set is
trained individually. Figure 2 details the training time of the
HTMSVM and LibSVM for the 250,000 training examples.
As the results show, the training time for the private training
data is noticeably shorter for HTMSVM than for LibSVM.
As a consequence, the overall training time of HTMSVM
lies between 26% and 41% of that of LibSVM, even though
the training time for the common data sets has to be added.
In this experiment, we include the clustering time in the total
training time of the HTMSVM. In fact, it takes only several
seconds to create the hierarchy, because the calculation of
Eq. (13) is based on a set of indexes, not a float function like
Euclidean distance, and it can be calculated very efficiently.

If we look at the Fig. 2 more closely, we can see that
the training times for individual data sets are different in the
normal sequential training, e.g. training time for P2 is much
longer than for P3. Normally, the more complex problem is,
the more time it takes the SVM to converge. However, the
HTMSVM takes nearly equal time for training private data
sets. It means that the HTMSVM is more effective on the
P3 and is less effective on the P2 data set, or the solution
on a parent node might have different effect of reducing the
training time on its children nodes (P2 and P3 share the same
parents).

In Table 5, we report training time and number of ker-
nel calculations (calls to the function K(xi, x j)) of all train-

NGUYEN et al.: TRAINING SVMS FOR WEB CONTENT FILTERING
2381

Fig. 2 Detailed training time of the HTMSVM on the largest experiment data.

Table 5 Number of kernel calculation and time of the sequential training (LibSVM), training a hier-
archy of SVM (HTMSVM), and simultaneous training (mSVM) for the Web content filter.

LibSVM HTMSVM mSVM
Training Size #Kernel Time #Kernel Time #Kernel Time

50,000 4.68E+09 2:11:58 1.42E+09 0:54:44 1.38E+09 0:40:01
100,000 2.74E+10 15:14:17 5.19E+09 3:58:56 5.15E+09 2:43:29
150,000 4.78E+10 25:38:48 1.11E+10 8:52:46 1.10E+10 5:46:46
200,000 1.04E+11 59:06:13 2.1E+10 16:58:05 1.92E+10 11:17:50
250,000 1.42E+11 83:10:33 4.6E+10 34:13:55 3.43E+10 18:34:18

Fig. 3 Comparison of training time (column) and number of kernel calculations (line) of three training
strategies on the Web content filtering data.

ing methods: sequential training using LibSVM, data clus-
tering and then training a hierarchy of clusters (HTMSVM),
and simultaneous training of all data sets using the kernel-
biased selection heuristic (mSVM). We can see that mSVM
effectively reduces the training time for multiple Web con-
tent filters: only 30% to 18% of that of the sequential train-
ing.

Figure 3 shows the direct relationship between training
time and number of kernel calculations. The HTMSVM and
mSVM requires a much smaller number calculations than
those of the normal training. As the result, the two methods
significantly reduce the training time for our Web content
filters. The HTMSVM prefers working on the kernel sub-
matrix of the commonly labeled data, whereas the mSVM
biases the optimization on the pre-calculated columns of the

whole matrix.

4.3 Predictive Accuracy

After the training phase, we tested the classification accu-
racy of the individual filters. For each of the five training
sets, we have a corresponding test set containing 50,000
samples. We predicted the classification accuracy for each
of the test sets and then calculated the average accuracy of
the five results. As shown in Table 6, the classification result
of three training strategies is not identical, yet the difference
in accuracy (< 0.04%) is neglectible. Furthermore, the clas-
sification accuracy of the linear kernel was noticably lower
than that of the RBF kernel, which shows that saving train-
ing time by using the linear kernel is not an option.

2382
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

Table 6 Predictive accuracy of Web content filters.

Training Size
Method 50,000 100,000 150,000 200,000 250,000

LibSVM (linear) 82.1988% 83.7752% 84.6660% 85.3120% 85.7216%
LibSVM (RBF) 89.0704% 90.0500% 90.7504% 91.0444% 91.2540%
HTMSVM (RBF) 89.0696% 90.0500% 90.7528% 91.0432% 91.2208%
mSVM (RBF) 89.0708% 90.0492% 90.7536% 91.0420% 91.2696%

For the classifier trained on 250,000 examples, a classi-
fication accuracy of about 91% was achieved. Since a mini-
mum accuracy of 95% is required to ensure applicability of
the classifier to real applications, we need to train the whole
data set of 3.1 million training examples, which is expected
to take more than one month. For that reason, we can ex-
pect that the reduction of training time using the presented
methods will be substantial.

5. Discussion

Support Vector Machines have proved to be an effective
tool for a wide range of classification problems including
text categorization and, in particular, Web content filtering.
Many attempts have been made to train SVMs efficiently
on large-scale data, e.g. on-line and active learning [15], ap-
proximation [18], [22], parallelization [23]. However, most
of the mentioned works focused on solving a single large
optimization problem. Our attempt is to train multiple prob-
lems on the same data description but with different labeling
policies.

In order to differentiate our contribution, we will intro-
duce research on the training of similar tasks which focuses
on improving classification accuracy and/or reducing train-
ing time.

Divide-and-conquer is one of the most widely used
strategies for dealing with large scale problem, not only
for the expensive SVM training but also for machine learn-
ing applications in general. In [24], [25] and [23], the au-
thors proposed to divide the whole training data into clus-
ters and then “expert” classifiers are learned from these clus-
ters. The final decision function is formed based on the set
of these experts. While the parallel mixture of SVMs [23]
solves the large scale problems in terms of training exam-
ples, the CombNET framework [24] focuses on the prob-
lems with large number of classes like Chinese character
recognition [24]. In our application of Web content filters,
the HTMSVM and mSVM are proposed to train multiple
SVMs on the same data description but different labeling
policies. The HTMSVM uses the divide-and-conquer ap-
proach to find locally optimized solutions and then, as the
result, individual classifiers could be trained more quickly.

In multi-task learning [26]–[29], related tasks are
learned simultaneously or sequentially. The approach is of-
ten used when the number of training examples is insuffi-
cient for a single task and the learned model could be low in
generalization performance. One typical example for multi-
task learning is the simultaneous recognition of attributes
such as age, sex and facial expression of a person in a photo-

graph. Multi-task learning is a form of transfer learning, but
transfer learning [30], [31] does not necessarily require the
feature space of the related tasks to be identical. Transfer
learning can be applied, for instance, if the knowledge ob-
tained from training a classifier for customer reviews should
be transfered to customer reviews on a different product.
The previous knowledge can be transfered in form of e.g.
reusing features or training examples that are present in both
tasks. Several proposals have been made to apply transfer
learning to the task of spam filtering, but based on the as-
sumption that the personalization of the classifiers has to be
undertaken using unlabeled data [32].

Our task is also not to be confused with multi-label
classification, e.g. [33], in which more than one label can be
assigned to each training example. Multi-label classification
often occurs in e.g. text classification. For instance, a news-
paper article might be assigned both the label “politics” and
the label “economy”. In our classification problem, how-
ever, each training example is assigned only one label per
training set.

Yet another related research area is incremental learn-
ing [34]–[36], which is suitable particularly for dynamic
applications, where new training data is added or existing
training data needs to be revised frequently. Thereby, a first
classifier is built on the training data available at a given
time, and a second classifier is built on the updated training
set, i.e. new and modified examples, by reusing the results
of the first training process. Incremental learning can also
be used to train subsets of a training corpus in cases where
training of the whole data at once would take too much time.

6. Conclusion

We have introduced two methods for training personalized
Web content filters using SVMs: training a hierarchy of
SVMs and simultaneously training multiples of SVMs us-
ing a kernel-bias selection heuristic. Both the two methods
HTMSVM and mSVM aim at reducing the number of ker-
nel calculations, thus reducing the training time. We tested
our proposed method in an experiment in which we trained
five personalized Web content filters from an identical train-
ing corpus. In the experiment, 20% of the training examples
were labeled inconsistently, assuming that different policies
exist on which Web pages should be labeled as hazardous.
The filters using SVMs were able to predict hazardous Web
pages with an accuracy of more than 91%, but they require
only 26% (HTMSVM) and 18% (mSVM) of the training
time of the sequential training using LibSVM.

The two proposed methods could be applied to other

NGUYEN et al.: TRAINING SVMS FOR WEB CONTENT FILTERING
2383

kinds of transfer learning problems, where we have sev-
eral classification tasks with overlapping training sets. For
that reason, we also want to apply HTMSVM and mSVM
to other applications, such as recommendation systems. In
order to avoid negative transfer, i.e. causing an increase in
training time, it is necessary to develop a method to estimate
for which applications the proposed method is useful.

In the next step, we want to not only further reduce
the training time but also increase the performance of the
filters. One direction is to combine the two methods into
one framework that could train a large number of filters. The
second direction is to improve the predictive performance of
individual filters using different transfer learning techniques.
With a large number of carefully labeled data, we are going
to build highly accurate filters for a large number of Web
users.

Acknowledgment

We would like to thank the reviewers and the Associate Edi-
tor for their valuable comments and suggestions on the sub-
mission version of this paper. The first author was sup-
ported by the Vietnam National Foundation for Science
and Technology Development under NAFOSTED Grant
102.02.16.09.

References

[1] C. Cortes and V. Vapnik, “Support vector networks,” Mach. Learn.,
vol.20, pp.273–297, 1995.

[2] K. Ikeda, T. Yanagihara, G. Hattori, K. Matsumoto, and Y.
Takishima, “Hazardous document detection based on dependency
relations and thesaurus,” Australasian Conference on Artificial In-
telligence, pp.455–565, 2010.

[3] V. Vapnik, The Nature of Statistical Learning Theory, Springer,
N.Y., 1995.

[4] C.J.C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining and Knowledge Discovery, vol.2, no.2,
pp.121–167, 1998.

[5] L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Large-Scale
Kernel Machines (Neural Information Processing), The MIT Press,
2007.

[6] C. Cristianini and J. Shawe-Taylor, An Introduction to Support Vec-
tor Machines, Cambridge University Press, 2000.

[7] T. Joachims, “Text categorization with support vector machines:
Learning with many relevant features,” Proc. European Conference
on Machine Learning, ed. C. Nedellec and C. Rouveirol, pp.137–
142, Berlin, 1998.

[8] Y. LeCun, L. Botou, L. Jackel, H. Drucker, C. Cortes, J. Denker, I.
Guyon, U. Muller, E. Sackinger, P. Simard, and V. Vapnik, “Learn-
ing algorithms for classification: A comparison on handwritten digit
recognition,” Neural Netw., pp.261–276, 1995.

[9] C. Liu, K. Nakashima, H. Sako, and H. Fujisawa, “Handwritten digit
recognition: bench-marking of state-of-the-art techniques,” Pattern
Recognit., vol.36, pp.2271–2285, 2003.

[10] E. Osuna, R. Freund, and F. Girosi, “Training support vector ma-
chines:an application to face detection,” IEEE Conference on Com-
puter Vision and Pattern Recognition, Puerto Rico, pp.130–136, Jan.
1997.

[11] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods - Support
Vector Learning, ed. B. Schoelkopf, C.J.C. Burges, and A.J. Smola,

pp.185–208, MIT Press, Cambridge, MA, 1999.
[12] S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy, “Improve-

ments to platt’s smo algorithm for svm classifier design,” Neural
Computation, vol.13, pp.637–649, March 2001.

[13] R.E. Fan, P.H. Chen, and C.J. Lin, “Working set selection using the
second order information for training svm,” J. Machine Learning
Research, vol.6, pp.1889–1918, 2005.

[14] C.C. Chang and C.J. Lin, “LIBSVM: A library for support vec-
tor machines,” ACM Transactions on Intelligent Systems and
Technology, vol.2, pp.27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[15] B. Antoine, E. Seyda, W. Jason, and B. Léon, “Fast kernel classi-
fiers with online and active learning,” Journal of Machine Learning
Research, vol.6, pp.1579–1619, Sept. 2005.

[16] I.W. Tsang, J.T. Kwok, and P.M. Cheung, “Core vector machines:
Fast svm training on very large data sets,” J. Mach. Learn. Res.,
vol.6, pp.363–392, 2005.

[17] I.W. Tsang, A. Kocsor, and J.T. Kwok, “Simpler core vector ma-
chines with enclosing balls,” ICML ’07: Proc. 24th International
Conference on Machine Learning, New York, NY, USA, pp.911–
918, 2007.

[18] D.D. Nguyen, K. Matsumoto, Y. Takishima, and K. Hashimoto,
“Condensed vector machines: Learning fast machine for large data,”
IEEE Trans. Neural Netw., vol.21, no.12, pp.1903–1914, 2010.

[19] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, Springer Series in Statistics, Springer New York, York,
NY, USA, 2001.

[20] B. Léon, C. Olivier, D. Dennis, and W. Jason, eds., Large Scale
Kernel Machines, MIT Press, Cambridge, MA, 2007.

[21] T. Joachims, “Making large-scale support vector machine learning
practical,” in Advances in Kernel Methods: Support Vector Ma-
chines, ed. A.S.B. Scholkopf, C. Burges, MIT Press, Cambridge,
MA, 1998.

[22] S.S. Keerthi, O. Chapelle, and D. Decoste, “Building support vector
machines with reduced classifier complexity,” J. Machine Learning
Research, vol.7, pp.1493–1515, 2006.

[23] C. Ronan, B. Samy, and B. Yoshua, “A parallel mixture of svms for
very large scale problems,” Neural Comput., vol.14, no.5, pp.1105–
1114, 2002.

[24] M. Kugler, S. Kuroyanagi, A.S. Nugroho, and A. Iwata, “Combnet-
iii: A support vector machine based large scale classifier with prob-
abilistic framework,” IEICE Trans. Inf. & Syst., vol.E89-D, no.9,
pp.2533–2541, Sept. 2006.

[25] M. Kugler, S. Kuroyanagi, A.S. Nugroho, and A. Iwata, “Combnet-
iii with nonlinear gating network and its application in large-scale
classification problems,” IEICE Trans. Inf. & Syst., vol.E91-D, no.2,
pp.286–295, Feb. 2008.

[26] Y.S. Abu-Mostafa, “Learning from hints in neural networks,” J.
Complexity, vol.6, no.2, pp.192–198, 1990.

[27] R. Caruana, “Multitask learning: A knowledge-based source of
inductive bias,” Proc. Tenth International Conference on Machine
Learning, pp.41–48, 1993.

[28] S. Thrun, “Is learning the n-th thing any easier than learning
the first?,” Advances in Neural Information Processing Systems,
pp.640–646, 1996.

[29] J. Baxter, “A model of inductive bias learning,” J. Artificial Intelli-
gence Research, vol.12, pp.149–198, 2000.

[30] A. Arnold, R. Nallapati, and W.W. Cohen, “A comparative study of
methods for transductive transfer learning,” Proc. Seventh IEEE In-
ternational Conference on Data Mining Workshops, pp.77–82, 2007.

[31] S.J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol.22, no.10, pp.1345–1359, 2010.

[32] S. Bickel, “Ecml-pkdd discovery challenge 2006 overview,” ECML-
PKDD Discovery Challenge Workshop, pp.1–9, 2008.

[33] G. Tsoumakas and I. Katakis, “Multi-label classification: An
overview,” Int. J. Data Warehousing and Mining, vol.2007, pp.1–13,
2007.

2384
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

[34] G. Cauwenberghs and T. Poggio, “Incremental and decremental sup-
port vector machine learning,” Advances in Neuronal Information
Processing Systems, vol.13, pp.409–415, 2000.

[35] S. Ruping, “Incremental learning with support vector machines,”
IEEE International Conference on Data Mining, pp.641–642, 2001.

[36] A. Shilton, M. Palaniswami, D. Ralph, and A.C. Tsoi, “Incremen-
tal training of support vector machines,” IEEE Trans. Neural Netw.,
vol.16, no.1, pp.114–131, 2005.

Dung Duc Nguyen received the Bache-
lors degree in mathematics in 1994. He received
the Masters and Ph.D. degrees in knowledge sci-
ence from the Japan Advanced Institute of Sci-
ence and Technology, Japan, in 2003 and 2006,
respectively. He was a Research Engineer at
KDDI R&D Laboratories Inc., Japan. He is
now with the Institute of Information Technol-
ogy, Vietnam Academy of Science and Technol-
ogy, Ha Noi, Vietnam. His current research in-
terests include machine learning, pattern recog-

nition, and data mining. Dr. Nguyen was awarded the Innovative Medal
from the Youth Union of Vietnam in 1998 for developing the first Viet-
namese optical character recognition software, and the Technical Support
Achievement Award in 2008 for his contributions at KDDI Laboratories.

Maike Erdmann received her B.Sc. in
Computing Science from CvO University Old-
enburg, Germany in 2006 and her Master and
Ph.D. of Information Science and Technology
from Osaka University, Japan in 2008 and 2011
respectively. She joined KDDI R&D Labora-
tories, Japan as an Associate Research Engi-
neer in the Intelligent Media Processing Labo-
ratory. Her research interests include knowledge
extraction from the WWW and natural language
processing.

Tomoya Takeyoshi received the B.E. degree
of Information Engineering,the M.S. degree of
Computer Science from Hokkaido University,
Japan in 2005 and 2007 respectively. Since join-
ing KDDI in 2007, he has been working on Web
data mining technology and social media analy-
sis.

Gen Hattori received the B.E. and M.E.
degrees of Electrical and Electronic Engineer-
ing from Kobe University in 1996 and 1998 re-
spectively, and PhD degree in information sci-
ence from Osaka University, Japan. He sub-
sequently joined Kokusai Denshin Denwa Co.,
Ltd. (now KDDI) in 1998, he has been work-
ing on network management systems, intelligent
transportation systems and software agent sys-
tems, Web text mining. He is currently a re-
search engineer of Intelligent Media Processing

Lab. in KDDI R&D Laboratories, Inc. He received Young Engineers Award
of IEICE in 2004.

Kazunori Matsumoto received the B.E.
and M.E. degrees in information science from
Kyoto University, Kyoto, Japan, in 1984 and
1986, and the Ph.D. degree from Ritsumeikan
University, Kyoto, in 2009, respectively. He
has been with KDDI Research and Develop-
ment Laboratories, Saitama, Japan, since 1986,
and is currently a Senior Research Engineer of
the Intelligent Media Processing Group, Osaka,
Japan. His current research interests include
multimedia retrieval and content analysis.

Chihiro Ono received the B.E. degree of
Electrical Engineering, the M.S. degree of Com-
puter Science, Ph.D degree of Science for Open
and Environmental Systems from Keio Univer-
sity, Japan, in 1992, 1994 and 2009 respectively.
Since joining KDD in 1994, he has been work-
ing on database systems, software agent tech-
nologies, personalization technologies and so-
cial media analysis, from 1999 to 2000, he was a
visiting researcher at Stanford University. He is
currently a Senior Manager in KDDI R&D Lab-

oratories, Inc. He received Best Paper Award for Young Researchers of the
National Convention of IPSJ in 1996.

