
2466
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

LETTER

Region-Based Way-Partitioning on L1 Data Cache for Low Power

Zhong ZHENG†a), Student Member, Zhiying WANG†, and Li SHEN†, Nonmembers

SUMMARY Power consumption has become a critical factor for em-
bedded systems, especially for battery powered ones. Caches in these sys-
tems consume a large portion of the whole chip power. Embedded sys-
tems usually adopt set-associative caches to get better performance. How-
ever, parallel accessed cache ways incur more energy dissipation. This pa-
per proposed a region-based way-partitioning scheme to reduce cache way
access, and without sacrificing performance, to reduce the cache power
consumption. The stack accesses and non-stack accesses are isolated and
redirected to different ways of the L1 data cache. Under way-partitioning,
cache way accesses are reduced, as well as the memory reference inter-
ference. Experimental results show that the proposed approach could save
around 27.5% of L1 data cache energy on average, without significant per-
formance degradation.
key words: cache, low power, region-based, way-partitioning

1. Introduction

Caches have been the most effective approach in bridging
the gap between the fast CPU and the slower main memory.
Due to the temporal and spatial locality of programs, caches
can provide fast access to the frequently accessed data. Typ-
ically, caches are organized as a cache line along with a cor-
responding tag. As a result, a cache access is comprised
of tag checking and data fetching. Set-associative caches
are widely adopted with higher hit-rate than direct-mapped
caches, at the expense of more data reading and comparison.
These extra tag comparisons and data accesses directly re-
sult in additional power consumption. For example, caches
consume around 40% of whole processor power in Stron-
gARM [1].

Many previous works have been done to address the
cache power consumption issue. Way halting [2] approach
uses a halt tag array to pre-determine which tags cannot
match, to reduce cache activities. Way prediction [3] pre-
dicts one way that the current cache access would most
likely to hit. By accessing the predicted way instead of all
of the cache ways, way prediction could save much energy.
However, the penalty of revisiting all the ways will be paid
if the prediction turns out to be wrong. Direct addressed
cache [4] leverages the compiler to identify the consecutive
accesses that will access the same cache line and let the
later memory reference directly access the cache line with-
out tag check to save power. Region-based caching [5] pro-

Manuscript received March 18, 2013.
Manuscript revised July 2, 2013.
†The authors are with the State Key Laboratory of High Per-

formance Computing & School of Computer, National University
of Defense Technology (NUDT), Changsha 410073, China.

a) E-mail: zheng zhong@nudt.edu.cn
DOI: 10.1587/transinf.E96.D.2466

vides multiple separated caches optimized for global, stack,
and heap references, instead of a unified one. This type of
caching can reduce power as small caches consume much
lower power and can offer faster access. Cooperative par-
titioning [6] adopts way-partitioning on shared LLC (Last
Level Cache) for energy efficiency on high-performance
CMPs (Chip Multi-Processors).

In this paper, we combined the idea of region-based
caching and way-partitioning for L1 data cache to re-
duce power consumption without causing significant per-
formance degradation. Our proposal is based on the fact
that small cache capacity could satisfy the requirement of
stack accesses and less way accesses could save much cache
power. As stack access occupies a large portion of the whole
memory references, as much as 60% in Mibench [7], we
redirect the stack accesses and non-stack accesses to dif-
ferent groups of L1 data cache ways. Thus, the ways that
need to be read and checked are reduced and, consequently,
the power consumption is reduced. The advantage of the
proposed approach over the region-based caching is that the
cache is still a unified one and can be configured with differ-
ent partitioning scheme. In an extreme case, this cache still
can be used as traditional cache if significant performance
degradation is caused by way-partitioning.

The experimental results show that the proposed
region-based way-partitioning scheme could reduce L1
cache data energy by 27.5% on average, without significant
performance degradation.

2. Region-Based Way-Partitioning Scheme

2.1 Region-Based Cache Partitioning

Figure 1 shows the runtime memory subdivision of a pro-
gram. There are several separated virtual memory address
regions, namely the stack, heap, data, and code region. The
stack region usually holds the local variables of the cur-
rent program function, whose accesses are usually bounded
within the current stack frame. Thus, the memory reference
to the stack is more predictable than other regions, for ex-
ample, the heap region. We name the data access to stack
region and other regions as stack and non-stack access, re-
spectively.

There has been region-based caching which designs
separated small stack and global caches for the stack and
global data, as shown in Fig. 2. Smaller cache can offer
faster access and lower power consumption. By capturing

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



LETTER
2467

Fig. 1 Typical runtime memory subdivision.

Fig. 2 Cache partitioning: separated caches for different regions.

most of the data access on smaller caches, this separated de-
sign can reduce 60% power consumption, on average, com-
pared with traditional design [5].

2.2 Region-Based Way-Partitioning

2.2.1 Design Overview

We find that a physically separated cache design is not fea-
sible for all programs, as different program have differ-
ent stack and non-stack accesses, and the design cannot be
changed once the processor has been produced. In con-
trast, a unified data cache could make better use of the on-
die resources, as it can be configured to adapt to different
programs. As a result, we propose a region-based way-
partitioning scheme for L1 data cache, which only requires
minor modification to the current cache design. Our pro-
posal is orthogonal to other schemes on shared L2 cache,
and can be combined with other L2 cache based schemes
for CMPs.

It has been shown, by region-based caching, that a
smaller cache could satisfy the stack access. For a set-
associative cache, we could configure some ways dedicated
for stack access, and the rest ways for non-stack access. As
illustrated in Fig. 3, we configure one way for stack accesses
in a four-way set-associative cache. Thus, the stack access
only reads one cache tag and one data, and other memory
references will access the rest three ways. By reducing the
tag and data read, the corresponding dynamic power dis-
sipation is reduced. In addition, the separated cache ways
could potentially isolate the memory reference interference

Fig. 3 Region-based way-partitioning overview.

between the stack and non-stack accesses.

2.2.2 Energy Modeling

In this section, we build a energy model to estimate the en-
ergy consumption of a n-way cache partitioning where n
ways are configured for stack access and rest ways for non-
stack access. Using E to denote the energy consumption,
the energy of the cache, Ecache, can be obtained by:

Ecache = Estatic + Edynamic (1)

where Estatic and Edynamic are static and dynamic energy con-
sumption, respectively.

Our approach tries to reduce the way access that di-
rectly results in dynamic energy consumption. We adopted
the dynamic energy calculation from [2], where Edec, Emux,
Etag, Edata, Epre, Ecom, ES A, Eway denote the energy dissipa-
tion of the address decoder, the mux and output driver, one
tag array access, one data array access, one way’s precharg-
ing, one way’s comparator, one way’s sense amplifier and
one way in total, respectively. Then, the energy consump-
tion of a N-way set-associative cache can be computed using
Eq. (2).

Edynamic = Edec + Emux + N ∗ Eway

= Edec + Emux + N ∗ (Etag (2)

+ Edata + Epre + Ecom + ES A)

In our way-partitioning cache design, the Edec and Emux

can not be avoided. Assuming that, in a program, P portion
of the memory references locate in the stack region and n
(0 < n < N) ways are configured for stack region. Thus,
the dynamic energy dissipation under the region-based way-
partitioning can be computed as follows:

E′dynamic = Edec + Emux + P ∗ n ∗ Eway

+(1 − P) ∗ (N − n) ∗ Eway
(3)

The saved cache dynamic energy is:

Edyn save = Edynamic − E′dynamic

= (n + (N − 2n) ∗ P) ∗ Eway
(4)

where (n + (N − 2n) ∗ P) is the number of way access that



2468
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

could be reduced per cache access under n-way partitioning.

3. Experiment and Results

3.1 Simulation Environment

To evaluate the performance and energy reduction of our
proposal, we employed the widely used Gem5 [8] simulator.
We use the timing simulation for CPU with SE (System-
call Emulation) mode to prevent the memory access from
Operating System.

In addition, we adopt CACTI 6.5 [9], under cache
model, with the technology of 32nm, to estimate the energy
consumption of region-based way-partitioning. The Gem5
simulator will offer the run time information of different
benchmarks, while CACTI 6.5 provides the leakage power
and access energy for each cache configuration. Combining
these two, we can obtain the overall cache energy dissipa-
tion of different benchmarks.

The system configuration is detailed in Table 1. We use
the traditional 4-way cache as the baseline, and we evaluate
the 1-way partitioning and 2-way partitioning, where one
and two ways out of four are configured for stack access.
The benchmarks with different input sizes are denoted us-
ing {bench name} {input size}. For instance, basicmath pro-
gram with small and large input are denoted by basic small
and basic large.

3.2 Performance

We have analyzed that this way-partitioning design on cache
could save dynamic energy as a result of reducing cache way
accesses. However, a power saving design should not cause
much performance degradation. By running the benchmark
on timing model, we get the execution time of the each pro-
gram. The results are shown in Fig. 4. Generally, there is
no significant performance difference between the proposed
approach and the baseline platform. Interestingly, some pro-
grams even get some performance improvement. For exam-
ple, the program qsort small gets around 1.2% performance
improvement under 1-way partitioning. The performance
improvements are reasonable, as the separated ways could
isolate the memory reference interference between the stack
and non-stack accesses.

On the other hand, the qsort small benchmark suffers
from around 0.7% performance degradation under 2-way
partitioning, which is insignificant. This performance degra-

Table 1 Experimental configuration.

System Parameter Value
CPU ARM ISA, one core, in-order
L1 I-Cache 32KB, 4-ways, 64B cahce line, 1 cycle
L1 D-Cache 32KB, 4-ways, 64B cache line, 1 cycle
L2 Cache 4 cycles
Memory Latency 32 cycles
Benchmark Selected from Mibench with large and

small input

dation is mainly caused by the limited capacity of the sepa-
rated cache ways.

3.3 Energy Dissipation

As descripted in Sect. 2.2.2, the saved dynamic energy could
be calculated from Eq. (4). The dynamic energy of a cache
is mainly caused by way access. The dynamic access energy
of Edynamic and Eway obtained from CACTI are 0.0446 (nJ)
and 0.0111 (nJ) in our 4-way cache, respectively. Thus, the
energy of way access (N ∗Eway) in traditional cache acounts
for about 99.5% of the total cache dynamic energy, accord-
ing to Eq. (2). Then the percentage of dynamic energy sav-
ing will be almost the same as the percentage of reduced way
access. We will first present the dynamic energy saving, and
then the overall cache energy saving.

3.3.1 Cache Dynamic Energy Saving

The cache dynamic energy saving is shown in Fig. 5. The
percentages of cache dynamic energy that can be saved
under our way-partitioning approach vary among differ-
ent benchmarks. These programs with higher portion of
the stack access will enjoy more dynamic energy saving
under 1-way partitioning, for example the sha small and
sha large, as only one way is dedicated for stack access. In
the 2-way partitioning, accesses to the stack and non-stack
will always involve two-way data accesses and tag checks,
just like a two-way cache. As a result, 50% accesses and
checks are reduced among all of the benchmarks under 2-
way partitioning, which results in around 49.8% of cache

Fig. 4 Speedups under 1-way and 2-way partitioning.

Fig. 5 Cache dynamic energy saving under 1-way and 2-way-
partitioning, normalized to baseline.



LETTER
2469

Fig. 6 Cache overall energy saving (including static and dynamic en-
ergy) under 1-way and 2-way partitioning, normalized to baseline.

dynamic energy saving.

3.3.2 Cache Overall Energy Saving

When considering the data cache overall energy saving, in-
cluding static and dynamic energy, there are some differ-
ences against dynamic energy saving. As shown in Fig. 6,
around 26.8% and 28.2% (27.5% for this two kinds of par-
titioning) energy are saved, on average, under 1-way and
2-way partitioning for different programs, respectively. The
highest overall L1 data cache energy saving is around 39%,
while the lowest is more than 16% across different pro-
grams. It’s noticeable that, in the 2-way partitioning, the
saved overall energy is different even the saved dynamic
energy is the same, around 50%. The reason is that the
dynamic energies account for different portion of the total
cache energy for different programs, as the execution time
(related to static energy) and number of data access (related
to dynamic energy) differ.

According to Fig. 4 and Fig. 6, 1-way and 2-way cache
partitioning could get different performance and energy sav-
ing on different programs. Maybe dynamically selecting the
best partitioning could get the optimal results. However, we
do not intend to make the CPU core and the cache system
much more complicated.

4. Conclusion

Cache power accounts for a large portion of the whole chip
power dissipation. In the paper, we proposed a region-
based way-partitioning scheme, which redirects stack and
non-stack access to different groups of ways in the set-
associative L1 data cache. Power consumption is reduced
since fewer cache ways are accessed to fetch data. Our
experimental results based on gem5 simulator show that

this proposed scheme could reduce the cache power around
27.5%, and without sacrificing performance. Our approach
is orthogonal to the schemes on the shared L2 caches on
CMPs and can be incorporated with other approaches for
L2 caches.

Acknowledgements

This work is partially supported by China National 863 Pro-
gram (No. 2012AA010905), the National Natural Science
Foundation of China (No. 61070037, 61272144, 61103016,
and 61202121), New Teachers’ Fund for Doctor Stations
(Ministry of Education, No.20114307120013), the Innova-
tion Foundation for Excellent Postgraduate (No. B120607)
from NUDT and Hunan Province.

References

[1] J. Montanaro, R.T. Witek, K. Anne, A.J. Black, E.M. Cooper, D.W.
Dobberpuhl, P.M. Donahue, J. Eno, W. Hoeppner, D. Kruckemyer,
et al., “A 160-mhz, 32-b, 0.5-w CMOS risc microprocessor,” IEEE J.
Solid-State Circuits, vol.31, no.11, pp.1703–1714, 1996.

[2] C. Zhang, F. Vahid, J. Yang, and W. Najjar, “A way-halting cache
for low-energy high-performance systems,” ACM Trans. Architecture
and Code Optimization (TACO), vol.2, no.1, pp.34–54, 2005.

[3] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-
associative cache for high performance and low energy consumption,”
Proc. 1999 International Symposium on Low Power Electronics and
Design (ISLPED), pp.273–275, 1999.

[4] E. Witchel, S. Larsen, C.S. Ananian, and K. Asanović, “Di-
rect addressed caches for reduced power consumption,” Proc. 34th
annual ACM/IEEE International Symposium on Microarchitecture
(MICRO), pp.124–133, 2001.

[5] S.L. Hsien-hsin and G.S. Tyson, “Region-based caching: An energy-
delay efficient memory architecture for embedded processors,” Proc.
2000 International Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems (CASES), 2000.

[6] K.T. Sundararajan, V. Porpodas, T.M. Jones, N.P. Topham, and B.
Franke, “Cooperative partitioning: Energy-efficient cache partitioning
for high-performance CMPS,” IEEE 18th International Symposium
on High Performance Computer Architecture (HPCA), 2012, pp.1–
12, 2012.

[7] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and
R.B. Brown, “Mibench: A free, commercially representative embed-
ded benchmark suite,” 2001 IEEE International Workshop on Work-
load Characterization, pp.3–14, 2001.

[8] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A.
Basu, J. Hestness, D.R. Hower, T. Krishna, S. Sardashti, et al., “The
GEM5 simulator,” ACM SIGARCH Computer Architecture News,
vol.39, no.2, pp.1–7, 2011.

[9] N. Muralimanohar, R. Balasubramonian, and N.P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP Laboratories, 2009.


