
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.2 FEBRUARY 2013
249

PAPER Special Section on The Internet Architectures, Protocols, and Applications for Diversified Futures

Deep Inspection of Unreachable BitTorrent Swarms

Masahiro YOSHIDA†a), Nonmember and Akihiro NAKAO†b), Member

SUMMARY BitTorrent is one of the most popular P2P file sharing ap-
plications worldwide. Each BitTorrent network is called a swarm, and mil-
lions of peers may join multiple swarms. However, there are many unreach-
able peers (NATed (network address translated), firewalled, or inactive at
the time of measurement) in each swarm; hence, existing techniques can
only measure a part of all the peers in a swarm. In this paper, we propose
an improved measurement method for BitTorrent swarms that include many
unreachable peers. In essence, NATed peers and those behind firewalls are
found by allowing them to connect to our crawlers by actively advertising
our crawlers’ addresses. Evaluation results show that the proposed method
increases the number of unique contacted peers by 112% compared to the
conventional method. Moreover, the proposed method increases the total
volume of downloaded pieces by 66%. We investigate the sampling bias
among the proposed and conventional methods, and we find that different
measurement methods yield significantly different results.
key words: peer-to-peer networks, BitTorrent, network measurement, un-
reachable peers

1. Introduction

In recent years, BitTorrent has become the most popular
P2P networks throughout the Internet. Due to a growing
number of video sharing websites such as YouTube, BitTor-
rent traffic is steadily increasing year by year [1]. As Bit-
Torrent becomes popular, many researchers, companies and
copyright holders devote their efforts to understanding and
characterizing BitTorrent networks. Especially, the accurate
measurement of BitTorrent networks, i.e., the minimization
of sampling biases in BitTorrent measurements, can benefit
studies on BitTorrent in the following ways. It may lead to
a better understanding of the topology and characteristics of
BitTorrent swarms, a collection of peers that participate in
the distribution of a specific file through a BitTorrent appli-
cation. Accurate swarm information is valuable for under-
standing and improving the performance of the BitTorrent
protocol and traffic control methods such as P4P [2], Ono [3]
and so on. However, several issues continue to hinder the
accurate measurement of BitTorrent swarms.

First, there are many unreachable peers in each swarm
and unreachable peers causes a serious sampling bias in
peer-level measurement methods, i.e., when a crawler tries

Manuscript received June 6, 2012.
Manuscript revised September 28, 2012.
†The authors are with Applied Computer Science Course, In-

terfaculty Initiative in Information Studies, Graudate School of
Interdisciplinary Information Studies, The University of Tokyo,
Tokyo, 113–0033 Japan.

a) E-mail: yoshida@nakao-lab.org
b) E-mail: nakao@iii.u-tokyo.ac.jp

DOI: 10.1587/transinf.E96.D.249

to contact each peer to obtain detailed information [4]–[8].
Peer-level measurement methods can obtain information
such as IP address, service port number, latency, down-
load rate, connection status, available pieces of the content
(piece-bitmap), and neighboring peer addresses. However,
each swarm includes many unreachable peers (NATed, fire-
walled, or inactive at the time of the measurement). Owing
to their inability to connect the crawler to unreachable peers,
conventional peer-level measurement studies can measure
only a part of all the peers in the swarm [9].

Second, the peer-level measurement method may de-
grade the performance of BitTorrent systems. In order to
contact peers, the crawler has to contact trackers in advance.
A tracker is a server that keeps track of which peers are
in the swarm. Peers report information to the tracker pe-
riodically and, in exchange, receive information about other
peers to which they can connect. However, each tracker
retains crawler addresses for a long time, and peers may
obtain inactive crawler addresses until the trackers discard
them following the measurement. When peers try to con-
tact the inactive crawler, they cannot download their desired
files and this may slow down file completion. We must mea-
sure swarms with a minimal impact on the BitTorrent per-
formance.

In this paper, we propose an improved measurement
method for unreachable peers with minimal impact on the
BitTorrent performance. In developing our method, we fo-
cus on a BitTorrent peer that simultaneously works as a
client and server to the other peers in the swarm. In the con-
ventional peer-level measurement method, the crawler does
not work as a server and disregards all incoming accesses
for unreachable peers. To improve connectivity between the
crawler and unreachable peers, our crawler opens service
ports and accepts all incoming accesses from peers to re-
trieve detailed information. Moreover, to increase the avail-
ability of files, our crawler aggressively advertises reachable
peer addresses to the target swarm.

There are four contributions of this paper, as follows:
First, through our extensive study of peers’ connectivity in-
cluded in the collected information, we find that, on aver-
age, 8.16% of peers are reachable in each swarm. This is
because most peers are NATed or behind a firewall. Further,
we investigate how long each tracker retains inactive peer
addresses. We show that 99.11% of trackers keep inactive
peer addresses for at least 30 minutes. This out-of-date in-
formation directly affects the peer-level measurements.

Second, we develop an improved peer-level measure-

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



250
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.2 FEBRUARY 2013

ment method. Although unreachable peers do not accept a
connection from our crawler, they may access our crawler if
they know its address. For this reason, our crawler aggres-
sively advertises its address to the target swarm and accepts
all incoming accesses. Our method increases the number
of unique peers contacted by 112.75% compared with the
conventional methods.

Third, to achieve our measurement purpose, our
crawler collects peers’ incoming connections. However,
our crawler does not have any pieces of the file, and this
may slow down file completion. To avoid this problem,
our crawler advertises the set of reachable peer addresses
to incoming peers. Because our crawler cooperates by ad-
vertising reachable peer addresses to the target swarm, our
method increases the total volume of downloaded pieces by
more than 66.07% compared to the case without our coop-
eration.

Last, to evaluate the impact of different measurement
methods on peer-to-peer (P2P) characterization, we com-
pare the characteristics of the target P2P network measured
concurrently using different methods, such as churn [11] and
peer’s degree distribution. We show that the results exhibit
significant differences according to the measurement meth-
ods, and that our method captures the most detailed infor-
mation of all, revealing that the other methods may result
in false characterization of P2P networks due to a lack of
detail.

To the best of our knowledge, this is the first study into
peer-level measurement that considers both the unreachable
peers problem and the performance degradation problem.
Our main contribution in this paper is that our scrutiny of
P2P characteristics not only reinforces the sampling bias in-
herent in the existing approaches, but also suggests the pos-
sibility of improving the efficiency of P2P file sharing appli-
cations.

The remainder of the paper is organized as follows.
In Sect. 2, we briefly explain the BitTorrent protocol. In
Sect. 3, we discuss related work on BitTorrent measure-
ments, and we expose the problems of the peer-level mea-
surements in Sect. 4. Section 5 introduces our proposed
measurement method, and and Sect. 6 explains the method
employed by the implemented crawler. In Sect. 7, we show
the effectiveness of our measurement method. In Sect. 8,
we compare the measurement results obtained with differ-
ent measurement methods. We then discuss the key implica-
tions of our findings on the design of the BitTorrent system
in Sect. 9, and present our conclusions in Sect. 10.

2. BitTorrent Protocol

BitTorrent is a P2P file distribution application that achieves
efficient file sharing through so-called swarming where each
file to be shared is divided into small fragments and the peers
that intend to download the file form the same overlay net-
work (the swarm) and exchange the fragments to reconstruct
the file among the swarm.

A swarm consists of peers, a tracker and a .torrent

file. Peers are divided into two kinds, seeders, and leech-
ers. A peer who does not have the complete file is called a
leecher, whereas a peer that has the complete file is called
a seeder. For each swarm, a server is created that is known
as a tracker. The tracker does not host any files, but pro-
vides a peer discovery service to the swarm. It contains all
the peer addresses of the swarm and returns a random subset
of peer addresses (average 50) per inquiry. A peer joining
a swarm asks the tracker for a random subset of active peer
addresses, and then exchanges file fragments with those ran-
dom peers. Note that a single tracker may manage multiple
swarms simultaneously.

A .torrent file contains metadata on the file to be shared
and the tracker (e.g., the name, the identifier, the size,
tracker addresses, and piece hashes). The .torrent file is usu-
ally hosted on a web server. Peers obtain the location of the
.torrent file corresponding to the file to be downloaded, and
download the .torrent file to obtain the address of the tracker
to contact.

3. Related Work

3.1 Tracker-Level Measurements

A tracker enables coordination among peers in order to dis-
tribute their files in the BitTorrent swarm. The tracker-level
measurement method is defined as to obtain statistics regard-
ing swarms by contacting trackers but not peers.

The tracker holds the IP address and service port num-
ber of each peer in a swarm, and it is this information that
is used by tracker-level measurement studies. Such stud-
ies may be classified into two groups. The first group uses
log traces from trackers [10]–[15]. A BitTorrent tracker pro-
gram is set up on PC servers to contact active peers in the
tracked swarm. This method can only obtain the complete
set of active peer addresses when the swarm is tracked by
one tracker. However, as shown in our previous study [16],
only 10% of swarms are managed by a single tracker, and
the rest are managed by multiple trackers. Because peers
may not need to contact all trackers for the download to
complete, this approach may overlook some peers in the
swarm. Moreover, log traces are often problematic to obtain
as they require agreement from content providers. The sec-
ond group uses crawling (or spidering) techniques [8], [9],
[16], [18], [20]. In order to obtain a comprehensive picture
of the entire set of BitTorrent swarms, a crawler periodically
contacts each tracker to obtain all the peer addresses that
have been tracked. This method allows us to obtain the peer
addresses of the entire BitTorrent swarm within a short time.
However, this method requires tens of PC servers and high-
speed internet links to conduct a large-scale measurement,
such as that in [17]. Each approach is effective for address-
ing particular needs; however, there are limits to what we
can study through peer addresses.



YOSHIDA and NAKAO: DEEP INSPECTION OF UNREACHABLE BITTORRENT SWARMS
251

3.2 Peer-Level Measurements

There are only a few existing approaches for measuring Bit-
Torrent swarms using peer-level measurement methods [4]–
[8]. These methods can obtain information including IP ad-
dress, service port number, latency, download rate, connec-
tion status, available pieces of the content (piece-bitmap),
and neighboring peer addresses. Siganos et al. study the
deviant behavior of BitTorrent peers [4]. With an instru-
mented BitTorrent client, they analyze the top 600 swarms
on The Pirate Bay for 45 days. Piatek et al. [5] also use
instrumented BitTorrent clients in developing their reputa-
tion system. They obtain two datasets, from 13,353 swarms
and 55,523 swarms. Although this is the simplest method, it
is difficult to measure a large number of BitTorrent swarms.
One of the reasons is that the measurement process is slowed
down by lots of the client features, such as GUI, syn-
chronous sockets, and inefficient threadpools. In addition,
as there are over 56 variants of the original BitTorrent appli-
cation [21], different types may exhibit different measure-
ment results. Another measurement platform is developed
by Pouwelse et al. on 100 nodes of the ASCI Supercom-
puter [6]. They aggressively contact known peers of 108
swarms for two weeks and study the download speed of
peers, flashcrowds, content lifetime, and so on. Likewise,
Kryczka et al. [7] collect the graph topology of 250 real tor-
rents through PEX messages [22]. However, these measure-
ments cannot contact unreachable peers because they do not
accept all incoming accesses from peers. Therefore, their
results are only valid for reachable peers. Iosup et al. [8] ex-
tend this to contact unreachable peers in each swarm. They
develop the multiprove framework for correlated measure-
ments, which simultaneously conducts active and passive
measurements to contact unreachable peers. They measure
2,000 swarms for one week and study connectivity, geolo-
cation, RTT (round-trip time) of peers, and so on. From the
number of empirical BitTorrent measurements, few [8] even
consider aspects of the unreachable peer problem. These
can only contact a fraction of the unreachable peers, and
their datasets still exhibit a sampling bias (we explain this in
Sect. 5).

4. Problems with Peer-Level Measurement

We have identified three problems. First, each swarm con-
tains many unreachable peers. In our previous work [16], we
measure BitTorrent swarms through our tracker-level mea-
surement method. We identify about 4.4 million unique
swarms and 10 million unique peers in a day. To measure
the connectivity of each peer, our crawler tries to contact all
known peers in each swarm. Figure 1 shows the ratio of
reachable peers in each swarm. We can see that 32.21% of
swarms consist of only unreachable peers, and this means
that their swarms are inactive. Only 20% of peers are reach-
able in 93.97% of swarms, and only in 2.89% of swarms are
over 50% of peers reachable. The average ratio of reachable

Fig. 1 Ratio of reachable peers in each swarm. Horizontal axis is the
ratio of reachable peers in each of the 4.4 million unique swarms. Vertical
axis is the CDF. About 94% of swarms are composed of less than 20%
of reachable peers. The average ratio of reachable peers in each swarm is
about 8%.

Fig. 2 Holding time of inactive peer addresses in each active tracker.
0.89% of trackers hold inactive peer addresses under 5 minutes. However,
99.1% of trackers retain inactive peer addresses for at least 30 minutes.

peers in each swarm is just 8.16%. This is because most
peers are NATed or behind a firewall. In peer-level measure-
ments, the crawler needs to contact peers to retrieve detailed
information. However, the large proportion of unreachable
peers would cause a serious sampling bias.

Second, we investigate how long each tracker retains
inactive peer addresses. Another reason for the high num-
ber of unreachable peers in a swarm is that trackers advertise
inactive peer addresses. We identify about 49,000 unique
trackers, but only 499 of these are active. Our crawler con-
tacts each active tracker and reports its own address as an
active peer. Our crawler then becomes inactive immediately.
Figure 2 shows the holding time of inactive peer addresses
in each active tracker. We find that 99.11% of trackers re-
tain inactive peer addresses for at least 30 minutes. More-
over, 20.24% of trackers keep inactive peer addresses for
over 16 h. Because tracker-level measurement studies use a
dataset that includes many inactive peer addresses, it would
be difficult to get a complete picture of BitTorrent swarms
from these measurement studies. Moreover, with peer-level
measurement, the crawler needs to retrieve peer addresses
from trackers in order to contact peers in each swarm. For
the same reason, the crawler would obtain inactive peer ad-
dresses and subsequently fail to contact peers. In particular,
we should avoid collecting peer addresses from trackers that
hold inactive peer addresses for over 30 minutes.



252
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.2 FEBRUARY 2013

Finally, peer-level measurements may have the impact
on download of pieces, thus, user’s convenience. In gen-
eral, BitTorrent crawlers do not have any file pieces and they
are uncooperative to exchange files. However, trackers can-
not distinguish crawlers from normal peers and trackers dis-
tribute crawler’s addresses to swarms. Thus, peers misiden-
tify the crawler’s addresses as the seeder’s (or leecher’s) ad-
dresses. When peers try to contact the crawler, they can-
not download their desired files and this may slow down file
completion. We must measure swarms with a minimal im-
pact on the BitTorrent performance.

5. Proposed Method for Peer-Level Measurement

In order to retrieve detailed information about the peers in
a swarm, a conventional peer-level measurement method,
whereby a crawler obtains peer addresses from trackers and
attempts to contact each peer, is often used to measure as
many peers as possible [4], [6], [7]. However, this method
disregards all incoming accesses and cannot contact many
unreachable peers. For this reason, the obtained dataset may
contain a large sampling bias. In order to contact unreach-
able peers, Iosup et al. [8] have conducted passive measure-
ments where a crawler reports its own address to a tracker
and waits to be contacted by other peers. This method can
retrieve detailed information about unreachable peers when
they try to connect to the crawler. However, this method
can usually only contact a portion of the unreachable peers.
This is because the crawler address is slowly diffused to the
whole swarm and most unreachable peers cannot obtain the
crawler address. Each peer contacts a tracker every 15 min-
utes to receive information about other peers to whom they
can connect, and the tracker offers a random subset of peer
addresses per single inquiry (50-200 addresses each time).
For this reason, the crawler has to wait a long time to be
contacted by unreachable peers, and these peers may leave
the swarm during the measurement period. This has a big
impact especially on large swarms.

We believe that peer-level measurement must contact
unreachable peers for a short time. In order to achieve this,
our crawler opens many service ports and reports these ad-
dresses to a tracker. These addresses have the same IP ad-
dress but different service port numbers. The tracker regards
our crawler addresses as many NATed peer addresses. This
method increases the probability of crawler addresses being
included in the random subset. Peers can easily obtain our
crawler addresses when they contact the tracker, and they
would then try to contact our crawler to download desired
pieces of a file. As a result, our method can contact many
unreachable peers in a short time, and we can thus mini-
mize the sampling bias of the obtained dataset. An overview
of our peer-level measurement scheme is as follows (see
Fig. 3):

1. In order to obtain peer addresses to contact, our crawler
repeatedly collects a random subset of peer addresses
until no more new peers can be discovered from a

Fig. 3 Proposed peer-level measurement method. Our crawler aggres-
sively diffuses its own address to the target swarm, allowing unreachable
peers to connect to our crawler.

tracker. To avoid collecting many inactive peer ad-
dresses, our crawler does not contact trackers that hold
inactive peer addresses for over 30 minutes (see Fig. 2).
When our crawler contacts the tracker, it also reports
its own address as a seeder in order to attract leechers.
Because our crawler opens many service ports, it re-
ports the same IP address but a different port number
each time until the tracker obtains all of the crawler ad-
dresses. Following this process, the tracker is tracking
many crawler addresses.

2. When a peer has no addresses from which to download
desired pieces, they try to contact the tracker to obtain
a new random subset of peer addresses. Because the
tracker holds many crawler addresses, the probability
of the random subset including at least one crawler ad-
dress is high. Moreover, BitTorrent defines the PEX
protocol [22], which allows each peer to directly ex-
change addresses that they can connect to. Due to the
PEX protocol, peers can also obtain our crawler ad-
dresses even if they do not contact the tracker during
the measurement period. As a result, our method can
efficiently diffuse our crawler address to many unreach-
able peers.

3. After obtaining peer addresses from the tracker, our
crawler attempts to contact them to retrieve detailed in-
formation. In addition, our crawler accepts all incom-
ing connections from peers through its opened service
ports. When our crawler establishes a connection with
a peer, it sends a subset of 10 crawler addresses via a
PEX message. To conclude our measurement after a
fixed period of time, our crawler stops contacting peers
when we can obtain all of a leecher’s piece-bitmap,
which must be obtained in order to analyze the down-
load ratio of each peer in a swarm. When the seeder
has all of the valid pieces of a file, the seeder’s piece-
bitmap consists entirely of “1”. In contrast, leechers
have a wide variety of piece-bitmaps because they have
different incomplete files. By contacting the tracker,
we can obtain the number of leechers and the number
of seeders in the target swarm. When the number of
piece-bitmaps obtained from leechers equals the num-



YOSHIDA and NAKAO: DEEP INSPECTION OF UNREACHABLE BITTORRENT SWARMS
253

ber of leechers in a swarm, we can regard the other
peers as seeders. Accordingly, we assume that all
other peers’ piece-bitmaps are “1,” and we conclude
our measurement within minutes.

Our crawler aggressively advertises its address to
NATed peers and waits for them to connect. When this
happens, the crawler can obtain their addresses. However,
each tracker retains inactive addresses for up to 30 min, and
so peers may obtain inactive crawler addresses until they
are discarded by the trackers after the end of the measure-
ment period. Our crawler does not have any file pieces,
which may slow down file completion process. To avoid
this problem, our crawler sends the subset of reachable peer
addresses to incoming peers after the end of the measure-
ment. Because reachable peer addresses are well diffused to
the target swarm, our method increases the file availability
after the end of measurement. Our crawler sends random
subsets of 10 reachable peer addresses via PEX messages.

6. Implementation

In our attempt to obtain detailed information from as many
peers as possible, we have implemented a high-performance
crawler. Our crawler collects detailed information about
peers in a systematic and automated manner through the
method described in Sect. 5. Our crawler can open any num-
ber of service ports (1-65,536) and accepts all incoming ac-
cesses from peers. Because about 25% of incoming packets
are encrypted, we also implement BitTorrent protocol en-
cryption [23] to decode them. Our crawler is developed on
a single PC server (CPU: Intel Core i7 2.8 GHz, Memory:
16 GB, HDD: 3 TB). The PC server is connected to the in-
ternet via a 100 Mbps access link. The crawler is developed
in C# and runs on Windows XP 64-bit edition. To effec-
tively use the access link, our crawler uses asynchronous I/O
completion ports (IOCP) and can support more than 10,000
concurrent T CP connections. In addition, we change the
socket-related registries (MaxUserPort, TCPMaxHalfOpen,
ForwardBufferMemory, and so on) in the Windows OS.

Some BitTorrent applications support the IPv6 ad-
dressing protocol [21] and BitTorrent trackers support IPv6
peers [24]. Thanks to tracker’s extended messages [24], our
crawler can identify IPv4 peers and IPv6 peers. When our
crawler sends the subset of reachable peer addresses, our
crawler can select the appropriate addressing protocols for
each peer. For this reason, our proposed method also sup-
ports IPv6 peers.

7. The Effectiveness of Our Measurement Method

7.1 Evaluation Setup

We have evaluated the effectiveness of our method over an
internet environment. At the beginning of our measure-
ments, the target swarm is composed of over 10,000 peers
(seeders: 5,845; leechers: 4,639; file size: 351 MB). Four

trackers track this swarm in parallel. Our crawler obtains
peer addresses from, and reports its address to, these four
trackers. To compare the proposed method with conven-
tional peer-level measurement methods, we set up three
crawlers to measure the target swarm. We use PCs with the
same specification for each crawler. The three crawlers are
connected to the Internet via the same access link, but their
IP addresses are different (not NATed). The first crawler
uses only the client function, such as [4], [6]. It tries to con-
tact each peer but does not accept any incoming connec-
tions. The second crawler uses the client function and the
server function, such as [8]. It accepts all the incoming con-
nections, but trackers hold only one crawler address. The
third crawler uses the proposed method (see Sect. 5). This
crawler accepts all the incoming connections and the track-
ers hold 1,000 crawler addresses. After the measurements
are done, the third crawler waits for 30 minutes for incom-
ing accesses in order to advertise reachable peers. These
three crawlers measure the target swarm concurrently. We
measure the same swarm three times with the same settings.

Note that our proposed method works for not only for
large swarms, but also for small swarms. Actually, the
swarm size of our evaluation is over 10,000 peers but 95%
of swarms are composed of fewer than 100 peers. In gen-
eral, trackers return a random subset of peer addresses (on
average 50) per inquiry for peers. In small swarms, the prob-
ability of crawler addresses being included in the random
subset is higher than in large swarms. Therefore, our pro-
posed method works with the smaller number of crawler’s
addresses and we can complete measurements with a shorter
time. Accordingly, our proposed method is more effective
for small swarms rather than large swarms.

7.2 Evaluation Result

In this section, we demonstrate the effectiveness of our pro-
posed method. Although the target swarm of our measure-
ment is large, our method can obtain all of a leecher’s piece-
bitmap in 6 minutes.

7.2.1 The Total Number of Incoming Accesses

First, we show how many peers attempt to contact our
crawler. Our crawler collects peers’ incoming connections
in order to communicate with NATed peers and firewalls.
Table 1 shows the total number of incoming accesses over a
period of 6 minutes. When trackers hold only one crawler
address (i.e., when using the second tracker), the total num-
ber of incoming accesses during the measurement period is
less than ten. This is because the crawler address is slowly
diffused to the whole swarm and most peers may not obtain
the crawler address. In contrast, 4,102-12,462 peers contact
our crawler when the trackers hold 1,000 crawler addresses.
This shows that our method efficiently diffuses crawler ad-
dresses to the whole swarm and that our method success-
fully collects peers’ incoming connections.



254
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.2 FEBRUARY 2013

Table 1 Total number of incoming accesses over a period of 6 minutes.
Our crawler can collect many peers’ incoming connections when we diffuse
1,000 crawler addresses to the target swarm.

1 crawler address 1,000 crawler addresses
Measurement 1 7 12,462
Measurement 2 3 8,797
Measurement 3 9 4,102

Fig. 4 Total number of unique peers contacted over a period of 6 min-
utes. Vertical axis shows the total number of unique contacted peers. Our
proposed method increases the number of unique peers contacted by about
113% compared to other methods.

7.2.2 The Total Number of Unique Peers Contacted

Next, we show how many peers we can contact. Figure 4
shows the total number of unique peers contacted over the 6-
minute period. We contact 2,130 unique peers with the first
crawler, which uses only the client function and does not ac-
cept any incoming connections. Because many peers are un-
reachable, the first crawler fails to connect to them. We can
contact 2,164 unique peers using the second crawler. The
second crawler opens one service port and accepts all the
incoming packets. However, because only a small number
of peers can obtain our crawler address, the second crawler
does not allow us to contact many unreachable peers. How-
ever, our proposed method contacts 4,821 unique peers over
the 6-minute period. Using our method, many unreachable
peers can obtain our crawler addresses from trackers and
PEX messages. These peers aggressively attempt to contact
our crawler. Accordingly, our method increases the num-
ber of unique peers contacted by 112.75% compared to the
conventional methods. From these results, our method ef-
ficiently increases the number of unique peers contacted,
which can help us contact NATed peers and those behind
firewalls.

7.2.3 The Cumulative Number of Unique Leechers’ Piece-
Bitmaps

Our measurements aim to obtain all of the leechers’ piece-
bitmaps. A piece-bitmap represents the pieces that have
been successfully downloaded. Figure 5 shows the cumula-
tive number of unique leechers’ piece-bitmaps obtained. Be-
cause a leecher’s piece-bitmap varies with time, our method

Fig. 5 Cumulative number of unique leechers’ piece-bitmaps. Horizon-
tal axis is the elapsed time. Vertical axis is the cumulative number of unique
leechers’ piece-bitmaps collected over a period of 6 minutes. Our proposed
method can obtain all piece-bitmaps within 6 minutes.

must obtain the piece-bitmap in a short time. There are
4,639 unique leechers in the target swarm at the start of the
measurement. Using the first crawler, we can obtain 2,712
leechers’ piece-bitmaps in total, of which 2,076 of them are
unique. With the second crawler, we obtain 2,714 leech-
ers’ piece-bitmaps in total, and we identify 2,068 of them
as unique. Thus, with the conventional methods, we can-
not obtain even half of the unique leechers’ piece-bitmaps.
However, our method obtains 17,693 piece-bitmaps in total,
and we can obtain all of the unique leechers’ piece-bitmaps
within 6 minutes. These results demonstrate that our method
can conduct sufficient peer-level measurements in a short
time and reveal all of the peers’ download rates.

In practice, it is impossible to distinguish between
these two cases. However, our method achieves this because
a firewalled peer may contact our crawler. If the contact does
not occur within a certain time frame, we may incorrectly
mark this as an inactive peer. Although our method cannot
solve this problem completely, we can reduce its impact by
advertising a sufficient number of crawler addresses to the
target swarm. For example, we advertise 1,000 crawler ad-
dresses to a target swarm that includes 10,000 peers. In this
case, we can obtain all of the leechers’ piece-bitmaps within
6 minutes. Because our crawler can advertise any number
of crawler addresses to trackers, our method would be able
to handle this problem for any swarm size.

7.2.4 The Total Volume of Downloaded Pieces

After the end of the measurements, the third crawler sends a
subset of reachable peer addresses to incoming peers. This
is because our crawler addresses remain in trackers for up
to 30 minutes, which may interfere with peers’ piece ex-
changes. We attempt to understand how effective it is to ad-
vertise reachable peers to the target swarm. Figure 6 shows
the total volume of downloaded pieces after the end of the
measurements. We estimate the total volume of downloaded
pieces from the piece-bitmaps obtained from the leechers.
Our crawler collects piece-bitmaps for 30 minutes after the
end of measurements. When our crawler is non-cooperative



YOSHIDA and NAKAO: DEEP INSPECTION OF UNREACHABLE BITTORRENT SWARMS
255

Fig. 6 Total volume of pieces downloaded after the end of the measure-
ments. Vertical axis shows the total volume of downloaded pieces in a 30
minutes period. When our proposed method is cooperative (i.e., our crawler
sends reachable peer addresses to the target swarm), the download volume
is increased by 66%.

(i.e., does not send reachable peer addresses after the end of
the measurement), the total volume of downloaded pieces is
7,131 MB. When our crawler is cooperative (i.e., does send
reachable peer addresses after the end of the measurement),
the total volume of downloaded pieces is 11,943 MB. This
represents an increase in download volume of 66.07% by
using reachable peer addresses. This means that advertis-
ing reachable peer addresses is an effective way to minimize
the reduction of file availability because the swarm contains
many unreachable peer addresses.

7.2.5 The Ratio of Crawler Addresses To Peer Addresses

Next, we measure the effect of the number of crawler ad-
dresses advertised by our crawler. In our proposed method,
the ratio of crawler addresses to all of the peer addresses is a
key factor that directly affects the measurement completion
time. Our proposed method completes its measurements
when our crawler obtains all of the bitmaps of the file frag-
ments from the leechers (each bitmap indicates which file
fragments are held by the leechers). If we advertise many
crawler addresses to the target swarm, the ratio of crawler to
peer addresses increases. Thus, there is a higher probabil-
ity of peers obtaining our crawler addresses through track-
ers and PEX messages from neighboring peers. Therefore,
firewalled and NATed peers can quickly obtain our crawler
addresses and attempt to contact our crawler. We measure
the completion time with respect to changes in the ratio of
crawlers to peers for three cases with different swarm sizes.
nc denotes the number of crawlers and np denotes that of
peers in the swarm to be measured. The ratio of crawlers
to peers Rc is calculated by Rc =

nc

np
. Figure 7 shows the

measurement completion time when we change Rc. Our re-
sults show that the measurement completion time decreases
with Rc. In particular, the measurement completion time de-
creases rapidly until Rc = 5%, at which point the rate of de-
crease slows down. Although our crawler can advertise any
number of addresses to a given swarm, too many crawler ad-
dresses would overload trackers and peers and may decrease
the performance of the swarm. Furthermore, the measure-

Fig. 7 Measurement completion time with respect to the ratio of crawler
addresses to all peer addresses. Horizontal axis is the ratio of crawler ad-
dresses to all peer addresses. Vertical axis shows the measurement comple-
tion time. The measurement completion time decreases rapidly until Rc =

5% and is saturated above Rc = 10% in all three swarms.

ment completion time is saturated beyond Rc = 10% for each
of the three swarms measured. For this reason, we select Rc

= 10% as an appropriate value.

8. Comparison of Measurement Results Obtained
from Different Methods

To understand the impact of different measurement meth-
ods on P2P characterizations, we compare the characteris-
tics of the target P2P network measured concurrently using
different methods. Especially,we evaluate the churn [11] and
peer’s degree distribution.

We use four measurement methods to measure the tar-
get swarm. The first crawling method contacts only track-
ers; thus, it is defined as a tracker-level measurement. The
second crawling method contacts peers via the client func-
tion; thus, it is defined as a peer-level measurement (denoted
as Client). The third crawling method contacts peers via the
client function and the server function; thus, it is defined as a
peer-level measurement (denoted as Client + Server). This
method opens only one service port. The fourth crawling
method is our method (see Sect. 5), and it is defined as peer-
level measurement (denoted as Proposed method). These
four crawlers measure the same target swarm concurrently.

We measure one swarm (seeders: 310; leechers: 209;
file size: 683 MB) with a granularity of seconds to analyze
the churn. We then measure one swarm (seeders: 10,166;
leechers: 8,323; file size: 1.29 GB) with a granularity of
minutes to analyze the peer’s degree.

8.1 Churn Characteristics

To understand the churn characteristics, the session length
is the most important property [11]. The session length indi-
cates how long peers remain in the network. Figure 8 shows
the distribution of session length for different measurement
methods. In the tracker-level measurement, we measure the
session length of peers in the list by recording the elapsed
time between joining and leaving the tracker. In the peer-
level measurement, our crawler periodically contacts each



256
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.2 FEBRUARY 2013

Fig. 8 Comparison of the session length. Horizontal axis is the session
length of each peer. Vertical axis is the CDF. Four crawler types mea-
sure the same target swarm concurrently. In the tracker-level measurement,
we cannot estimate the session length for short-lived peers because most
trackers keep short-lived peers’ addresses for at least 1,800 s. However,
our proposed method succeeds in contacting many short-lived peers before
they leave the swarm.

peer. We record all such events and define the session length
as the duration between the first and last such event. We
can see that the measured session lengths are extremely dif-
ferent between the tracker-level measurement and the peer-
level measurement. In the tracker-level measurement, the
distribution of session length rises sharply at 1,800 seconds.
This is because most trackers keep the IP addresses of short-
lived peers for at least 1,800 seconds. Trackers perform pe-
riodic clean-ups by removing from their lists IP addresses
for which they have not received any updates or keep-alives.
For this reason, the tracker-level measurement has difficulty
in estimating the session length of short-lived peers. In con-
trast, peer-level measurement methods can estimate the ses-
sion length of short-lived peers. The peer-level measure-
ment method directly contacts each active peer and can thus
identify the real session length without being affected by
the tracker’s retention of IP addresses. As a result, peer-
level measurements are effective for estimating short session
lengths.

However, we can also see a difference in the session
length distribution among the three types of peer-level mea-
surements. Notably, our method obtains very short-lived
session lengths, which indicates that 14% of peers leave the
swarm within 1 minute, whereas the Client + Server method
reveals only 4% of peers leaving the swarm in this period.
Likewise, the Client method shows 2% of peers leaving the
swarm within 1 minute. This is because the Client + Server
and Client methods cannot contact sufficiently many short-
lived peers. In contrast, our method significantly increases
the number of contacted peers compared with other meth-
ods (e.g., Sect. 7.2.2). For this reason, our method succeeds
in contacting many short-lived peers before they leave the
swarm.

8.2 Degree Characteristics

In the study of network properties, the degree of a peer in a
swarm is the number of connections it has to other peers.

Fig. 9 Comparison of the degree distributions. Horizontal axis is the
peer’s degree. Vertical axis is the complementary CDF. Three crawler
types measure the same target swarm concurrently. The degree distribution
only becomes large with our proposed method. This is because our pro-
posed method can obtain many more PEX messages than other methods.

We can obtain neighboring peer addresses for each peer
through PEX messages. Note that our crawler addresses
are removed from each PEX message. Figure 9 shows the
degree distribution for the different measurement methods.
The tracker-level measurement method cannot obtain de-
gree information. Therefore, Fig. 9 only plots the degree
distribution for the peer-level measurement methods. The
degree distribution only differs slightly between the Client
and Client + Server methods. However, there is a signifi-
cant difference in the measured degree distribution between
our method and the other methods. Using our method, 55%
of peers had a degree of fewer than 30 and the average de-
gree is 90, whereas 70% of peers had a degree of fewer than
30 with the other methods. The average degree is 39 with
the Client method and 36 with the Client + Server method.
Although we measure the same target swarm concurrently
with these three methods, the degree only become large with
our method. This is because our method can obtain many
more PEX messages than the other methods. In the current
BitTorrent protocol, one PEX message does not exhibit all
the neighboring peer addresses for a peer, but instead in-
cludes only part of the neighboring peer addresses. There-
fore, we need to collect many PEX messages from each peer
to obtain the degree information. Moreover, our method can
obtain PEX messages from unreachable peers. Hence, our
method increases the number of PEX messages obtained by
a factor of six compared to other methods.

The complementary CDF of the degree distribution
drops off considerably at degree 50. This corresponds to the
default degree of the popular BitTorrent client “µTorrent,”
which is used by 26% of peers.

9. Discussion

In this section, we discuss the possibility of applying our
findings to improving the efficiency of P2P file-sharing sys-
tems. In particular, we focus on improving file availabil-
ity by advertising reachable peer addresses to a swarm.
In Sect. 7.2.4, our method is shown to aggressively dif-
fuse reachable peer addresses to improve the connectivity



YOSHIDA and NAKAO: DEEP INSPECTION OF UNREACHABLE BITTORRENT SWARMS
257

of peers. This leads to an increase of approximately 70%
in download performance. This result implies that the con-
nectivity of peers would significantly affect file availability
in the BitTorrent system. Therefore, to maintain good con-
nectivity for each peer, the BitTorrent system must be able
to efficiently handle the significant fraction of unreachable
peers (see Sect. 4).

We suggest three strategies to improve the connectivity
of peers in a swarm. First, the BitTorrent system should en-
able NAT traversal for peers in each swarm. NAT traversal
techniques allow unreachable peers to contact each other.
There are many NAT traversal techniques for Internet ap-
plications [25], and most of them require assistance from a
server at a publicly-routable IP address. We believe that,
with a few modifications, a BitTorrent tracker can work as
this server. Moreover, Guha et al. [26] develop STUNT
(Simple Traversal of UDP Through NATs and TCP too) li-
brary, which extends STUN to include TCP functionality.
BitTorrent client programs would use the library with a few
modifications, and they would communicate through the ex-
isting NAT infrastructure without sacrificing the benefits of
TCP. In addition, Lai et al. [27] implement their NAT traver-
sal technique on BitTorrent. Thanks to their efforts, we can
easily achieve our first strategy for improving the connectiv-
ity of unreachable peers.

Second, trackers should discard inactive peer addresses
after a shorter period of time. To avoid contamination of
the swarm by inactive peer addresses, it is essential to per-
form more frequent clean-ups by removing inactive peer
addresses from trackers. More specifically, peers should
use DHT (distributed hash table)-trackers instead of nor-
mal trackers. DHT-trackers can efficiently handle the churn,
meaning that they discard inactive peer addresses after a
minimal time. However, the current DHT-trackers cannot
work well due to unreachable peers [28]. Therefore, we
should also enable NAT traversal for DHT-trackers.

Third, Wu et al. [22] observe that PEX can significantly
reduce the download time for some swarms. We also con-
firm this trend in Sect. 7.2.4. Therefore, peers must be ag-
gressively exchanging active peer addresses via PEX mes-
sages. When peers follow this behavior pattern, active peer
addresses are well diffused to the whole swarm, increasing
the file availability between peers.

Although there are many unreachable peers in not only
BitTorrent but also other P2P-like distributed systems, our
method is effective for other P2P-like distributed systems.
More specifically, our method works if P2P-like distributed
systems have a peer discovery service. In BitTorrent, track-
ers work as the peer discovery service and trackers distribute
our crawler’s IP addresses to unreachable peers. Because
unreachable peers try to contact to our crawler, our method
can contact many unreachable peers in a short time. For-
tunately, most of other P2P-like distributed systems also
have a peer discovery service. For example, Winny, that is,
one of the most popular P2P file sharing networks in Japan,
contains over 50% of unreachable peers. But Winny has
the peer discovery service and we have conducted measure-

ments on Winny through our proposed method [29]. We can
easily distribute our crawler’s addresses to all peers through
a peer discovery service and this fact also means our pro-
posed method is effective for most of P2P-like distributed
systems.

10. Conclusion and Future Work

In this paper, we propose a peer-level measurement method
for unreachable peers in a swarm, and we evaluate our
method on a real BitTorrent swarm. The main contribu-
tion of this study is that our scrutiny of P2P characteristics
not only reinforces the significance of the sampling bias in
existing approaches but also suggests the possibility of im-
proving the efficiency of P2P file sharing applications. In
detail, the contributions of this paper are four-fold.

First, our measurement results indicate that the current
BitTorrent system is composed of many NATed and fire-
walled peers and that each tracker retains inactive peers for
a long time. Unfortunately, these factors mean that we can
only measure a fraction of the peers in a swarm.

Second, to solve the unreachable peer problem, we de-
velop a method that accepts all incoming accesses from un-
reachable peers, and we show that our method successfully
increases the number of unique contacted peers by 112.75%,
as compared to conventional methods. Finally, our crawler
connects all the leechers in the swarm within six minutes
and also reveals all peers’ download rates.

Third, we advertise reachable peer addresses to avoid a
slowdown in the file completion time by unreachable peers.
Our result shows that advertising reachable peer addresses
increases the total volume of downloaded pieces by 66.07%.

Finally, we measure the characteristics of the target
P2P network concurrently using different methods, and we
show that the results exhibit significant differences accord-
ing to the method of measurement. Our proposed method
captures the most detailed information of those tested, and
reveals that the other methods are subject to significant sam-
pling bias due to their relative lack of detail.

In the future, we plan to scale our measurements to a
wider scope. We are currently performing geographically
distributed crawling on PlanetLab and CoreLab [30]. In ad-
dition, we plan to apply our method to other P2P file sharing
protocols besides BitTorrent.

Acknowledgements

This research is partly supported by Grants-in-Aid for Sci-
entific Research (KAKENHI), No. 21300020.

References

[1] ipoque, Internet studies (Online),
http://www.ipoque.com/resources/internet-studies/
(Ref. 2012.10.01).

[2] H. Xie, Y.R. Yang, A. Krishnamurty, Y. Liu, and A. Silberschatz,
“P4P: Provider portal for applications,” Proc. ACM SIGCOMM’08,
2008.



258
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.2 FEBRUARY 2013

[3] D.R. Choffnes and F.E. Bustamante, “Taming the Torrent: A prac-
tical approach to reducing cross-isp traffic in peer-to-peer systems,”
Proc. ACM SIGCOMM’08, 2008.

[4] G. Siganos, J. Pujol, and P. Rodriguez, “Monitoring the Bittorrent
monitors: A bird’s eye view,” Proc. PAM’09, 2009.

[5] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Andershon, “One hop
reputations for peer to peer file sharing workloads,” Proc. NSDI’08,
2008.

[6] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips, “The Bit-
Torrent p2p file-sharing system: Measurements and analysis,” Proc.
IPTPS’05, 2005.

[7] M. Kryczka, R. Cuevas, C. Guerrero, and A. Azcorra, “Unrevealing
the structure of live BitTorrent Swarms: Methodology and analyis,”
Proc. IEEE P2P’11, 2011.

[8] A. Iosup, P. Garbacki, J. Pouwelse, and D. Epema, “Correlating
topology and path characteristics of overlay networks and the In-
ternet,” Proc. CCGrid, 2006.

[9] B. Zhang, A. Iosup, J. Pouwelse, D. Epema, and H. Sips, “Sampling
bias in BitTorrent measurements,” Lect. Notes Comput. Sci., Euro-
Par 2010 - Parallel Processing, vol.6271, pp.484–496, 2010.

[10] M. Izal, G. Uroy-Keller, E. Biersack, P.A. Felber, A.A. Hamra,
and L. Garces-Erice, “Dissecting bittorrent: Five months in tor-
rent’s lifetime,” Springer, Passive and Active Network Measure-
ment, vol.3015, pp.1–11, 2004.

[11] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” Proc. 6th ACM SIGCOMM conference on Internet mea-
surement, 2006.

[12] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “A perfor-
mance study of BitTorrent-like peer-to-peer systems,” IEEE J. Sel.
Areas Commun., vol.25, no.1, pp.155–169, 2007.

[13] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Mea-
surements, analysis, and modeling of BitTorrent-like systems,” Proc.
ACM SIGCOMM IMC’05, 2005.

[14] B. Zhang, A. Iosup, J. Pouwelse, and D. Epema, “Identifying,
analyzing, and modeling flashcrowds in BitTorrent,” Proc. IEEE
P2P’11, 2011.

[15] A. Bellissimo, B.N. Levine, and P. Shenoy, “Exploring the use of
BitTorrent as the basis for a large trace repository, ”University of
Massachusetts Technical Report, pp.04–41, 2004.

[16] M. Yoshida and A. Nakao, “A resource-efficient method for crawl-
ing swarm information in multiple BitTorrent networks,” Proc.
AHSP2011, 2011.

[17] C. Zhang, P. Dunghel, D. Wu, and K. Ross, “Unraveling the BitTor-
rent ecosystem,” IEEE Trans. Parallel Distrib. Syst., vol.22, no.7,
pp.1164–1177, 2010.

[18] G. Dan and G. Carlsson, “Dynamic swarm management for im-
proved BitTorrent performance,” Proc. IPTPS’09, 2009.

[19] S.L. Blond, A. Legout, F. Lefessant, W. Dabbous, and M.A. Kaafar,
“Spying the world from your Laptop - Identifying and profiling
content providers and big downloaders in BitTorrent,” Proc. 3rd
USENIX Workshop on Large-Scale Exploits and Emergent Threats,
2010.

[20] N. Andrade, E. Santos-Neto, F.V. Brasileiro, and M. Ripeanu, “Re-
source demand and supply in BitTorrent content-sharing communi-
ties,” Elsevier, Computer Networks, pp.515–527, 2009.

[21] Wikipedia, Comparison of BitTorrent clients (Online),
http://en.wikipedia.org/wiki/Comparison of BitTorrent clients
(Ref. 2012.10.01).

[22] D. Wu, P. Dhungel, X. Hei, C. Zhang, and K.W. Ross, “Understand-
ing peer exchange in BitTorrent systems,” Proc. IEEE P2P’10, 2010.

[23] Wikipedia, BitTorrent protocol encryption (Online),
http://en.wikipedia.org/wiki/BitTorrent protocol encryption
(Ref. 2012.10.01).

[24] BitTorrent.org, IPv6 Tracker Extension (Online),
http://www.bittorrent.org/beps/bep 0007.html
(Ref. 2012.10.01).

[25] Wikipedia, NAT traversal (Online),

http://en.wikipedia.org/wiki/NAT traversal (Ref. 2012.10.01).
[26] CMLAB, Implementing NAT traversal on BitTorrent (Online),

http://www.cmlab.csie.ntu.edu.tw/franklai/NATBT.pdf
(Ref. 2012.10.01).

[27] S. Guha and P. Francis. “An end-middle-end approach to connection
establishment,” Proc. SIGCOMM 2007, 2007.

[28] R. Jimenez, F. Osmani, and B. Knutsson, “Connectivity properties
of mainline BitTorrent DHT nodes,” IEEE P2P’09, 2009.

[29] M. Yoshida, S. Ohzahata, A. Nakao, and K. Kawashima, “Control-
ling file distribution in winny network through index poisoning,”
Proc. 23rd of International Conference on Information Networking,
2009.

[30] A. Nakao, R. Ozaki, and Y. Nishida, “CoreLab: An Emerging
Network testbed employing hosted virtual machine monitor,” Proc.
ACM CoNEXT ROADS Workshop, 2008.

Masahiro Yoshida received B.S. degree
(2008) and the M.S. degree (2010) in Engineer-
ing from Tokyo University of Agriculture and
Technology, Japan. He is currently the Ph.D.
candidate of the University of Tokyo, Japan. He
has also been a research fellowship for young
scientists at Japan Society for the Promotion of
Science (JSPS) since 2011. His research inter-
ests include network measurement, P2P traffic
control and network visualization.

Akihiro Nakao received B.S. (1991) in
Physics, M.E. (1994) in Information Engineer-
ing from the University of Tokyo. He was
at IBM Yamato Laboratory/at Tokyo Research
Laboratory/at IBM Texas Austin from 1994 till
2005. He received M.S. (2001) and Ph.D.
(2005) in Computer Science from Princeton
University. He has been teaching as an Asso-
ciate Professor in Applied Computer Science,
at Interfaculty Initiative in Information Studies,
Graduate School of Interdisciplinary Informa-

tion Studies, the University of Tokyo since 2005. (He has also been an
expert visiting scholar/a project leader at National Institute of Information
and Communications Technology (NICT) since 2007.).


