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Dynamically Constrained Vector Field Convolution for Active
Contour Model

Guoqi LIU†a), Zhiheng ZHOU†b), Shengli XIE†c), Nonmembers, and Dongcheng WU†∗d), Member

SUMMARY Vector field convolution (VFC) provides a successful ex-
ternal force for an active contour model. However, it fails to extract the
complex geometries, especially the deep concavity when the initial contour
is set outside the object or the concave region. In this letter, dynamically
constrained vector field convolution (DCVFC) external force is proposed
to solve this problem. In DCVFC, the indicator function with respect to the
evolving contour is introduced to restrain the correlation of external forces
generated by different edges, and the forces dynamically generated by com-
plex concave edges gradually make the contour move to the object. On the
other hand, traditional vector field, a component of the proposed DCVFC,
makes the evolving contour stop at the object boundary. The connections
between VFC and DCVFC are also analyzed. DCVFC maintains desirable
properties of VFC, such as robustness to initialization. Experimental re-
sults demonstrate that DCVFC snake provides a much better segmentation
than VFC snake.
key words: active contour model, vector field convolution, correlation,
snakes, image segmentation

1. Introduction

Active contour model (ACM), or snake, is an efficient tool
for image segmentation. It was originally introduced by
Kass et al. [1]. Generally, there are two types of active con-
tour model, i.e., parametric active contour model [1] and ge-
ometric active contour model [2]. The former represents
curves and surfaces explicitly in their parametric forms.
Compared with parametric active contour models, the ge-
ometric active contour model represents curves and surfaces
implicitly as a level set of higher dimensional function [3].
This letter focuses on parametric active contour model.

A snake [1] is a parametric curve ν(s) = (x(s), y(s)), s ∈
[0, 1]. The converged curve is viewed the object boundary
by minimizing the following energy functional:

Esnake =

∫ 1

0

1
2

(α(s)ν2s(s) + β(s)ν2ss(s)) + Eext(ν(s))ds

(1)

where νs(s) and νss(s) are the first and second derivatives of
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ν(s) with respect to arc length parameter s, the parameters
α(s), β(s) are the weight factors and always set constants.
The external energy Eext is derived from an image, which is
usually computed as follows:

Eext(x, y) = −|∇[Gσ(x, y) ∗ I(x, y)]|2 (2)

where Gσ(x, y) is a two-dimensional Gaussian function with
standard deviation σ, I is the gray of the image. In calculus
of variations [4], the Euler equation to minimize Esnake is

ανss(s) − βνssss(s) − ∇Eext = 0 (3)

The first two terms are always viewed as the internal force
smoothing the contour while the last term −∇Eext is the ex-
ternal force pulling the contour to the desired features. The
segmentation tasks will be turned into a process of curve
evolution which is derived from an energy functional mini-
mization. Affected by both internal force and external force,
the parametric curve, i.e., the contour, moves to the direction
of minimum energy.

The external force plays a leading role in the evolu-
tion of the contour and most of methods are concerned with
the external force in parametric active contour models, such
as balloons [5], vector field convolution (VFC) [6], gradi-
ent vector flow (GVF) [7], its generalization (GGVF) [8] and
improvement [9]–[11]. VFC is calculated by convolving an
vector field kernel with the edge map derived from an im-
age. It has a large capture range and needs few computa-
tional cost. However, VFC has difficulty in extracting an
object with deep concavity and complex geometries when
contour is initialed outside the object or concave region.

In this letter, the correlation of the external forces gen-
erated by various edges in VFC is analyzed. Because of
the correlation, VFC could not extract the concavity. In
order to decrease the correlation of external force, a new
type of external force for snakes, called dynamically con-
strained vector field convolution (DCVFC), is proposed. By
introducing an indicator function with respect to the evolv-
ing contour, the edge information only inside the contour is
used to convolute the vector field kernel to generate new ex-
ternal force. Thus, proposed force field is not affected by
force generated by the edges outside evolving contour. The
vector fields by dynamically convolving a vector field ker-
nel with constrained edge map are obtained to attract the
contour converge to concave region.
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Fig. 1 Some conflict components appear in VFC. (a) VFC vector field;
(b) The vector field component (zoomed) in the dotted rectangle of (a).

2. Problem Analysis

2.1 Vector field convolution (VFC)

Vector field convolution (VFC) is introduced by Li [6]. It
was given by

Vv f c(x, y) = k(x, y) ⊗ f (x, y) (4)

where f is the edge map derived from an image I, f is given
as follows:

f = |∇[Gσ(x, y) ⊗ I(x, y)]|2 (5)

Gσ(x, y) is a two-dimensional Gaussian function with stan-
dard deviation σ. ⊗ is convolution operator, k(x, y) is the
vector field kernel defined by:

k(x, y) = (
√

x2 + y2 + ε)−γ · ( −x√
x2 + y2

,
−y√

x2 + y2
) (6)

where γ is positive parameter to control the decrease, ε > 0
is a small positive constant to prevent division by zero at
the origin. Let r =

√
x2 + y2, m = (r + ε)−γ and −→n (x, y) =

(−x/r,−y/r), then k(x, y) = m(x, y) · −→n (x, y). m(x, y) is the
magnitude of the vector at (x, y) and −→n (x, y) is the unit vec-
tor pointing to the kernel origin.

2.2 Correlation Analysis of the External Forces Generated
by Various Edges

From the generation of VFC, the capture range of VFC is
determined by the vector field kernel k(x, y). However, with
a large capture range in VFC, correlation of external forces
derived from different edges results in saddle points [12].
Near the saddle points, some conflict components [13] in
VFC stop the contour converging to concavity, which is
shown in Fig. 1. It can be analyzed as follows: As shown
the forces at a point O in Fig. 2 (a), the forces generated by
the various edges impose the point O. Force derived from
the deepest concave edges which are far away the point O is
small and even could be ignored since the influence from the
edge feature decreases as the particles are far away. There-
fore, the external forces derived from concave boundary
points (such as E, F) are overwhelmed by the forces gen-
erated by the other edges points (such as A, B, C, D). The

Fig. 2 (a) The motion of particle O is determined by the resultant force
V generated by various edge points (such as A, B, C, D, E, F); (b) Initial
contour (circle) deforms in VFC and stops undesired location (dashed line);
(c) The resultant force V at O generated by the edge points (such as E, F)
in DCVFC; (d) The contour moves to the object.

resultant force V at O does not point to the concave bound-
ary because of correlation of the external forces generated
by various edges.

3. Proposed Method

Based on the above analysis, DCVFC is proposed in this
section. By introducing an indicator function, the vector
field are generated by constrained edge gradient informa-
tion. On the other hand, the proposed vector field is dy-
namic. But different from tradition dynamic fields [5], [12],
DCVFC does not change at each iteration. It is composed
by multistage vector fields. Waiting for the convergence in
one stage of vector fields, then external field is updated. The
converged contour is viewed as the initial contour in the next
stage of vector fields.

3.1 DCVFC External Forces

Firstly, the first stage of vector fields V1 is obtained by inter-
polating the vector field Vv f c which is calculated by Eq. (4)
and the traditional vector field ∇ f as follows:

V1 = τV
v f c + (1 − τ)∇ f (7)

where τ = e−
|∇ f |
K , K is a parameter. If the edges to preserve

are weak, K should be small and vice versa. Vector field
Vv f c dominates in the homogeneous region and the tradi-
tional one dominates near the object boundary. As shown in
Fig. 2 (b), initial contour (the circle) is placed outside the ob-
ject, converged contour (dashed line) could not completely
extract the complex concavity in the V1 stage.

Assuming the converged contour in V1 is C1, the indi-
cator function HC1 is defined as follows:

HC1 (x, y) =

{
1, (x, y) is inside the C1

0, otherwise
(8)
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Then, the next stage external field V2 is given as follows:

V2 = τV
v f c
2 + (1 − τ)∇ f (9)

where Vv f c
2 is calculated by Vv f c

2 = k ⊗ (HC1 ∗ f ). Contour
with the initial curve C1 deforms in the vector field V2 to
extract the object. As shown in Fig. 2 (c), because of the
indicator function HC1 , the edges outside or on the contour
C1 are not used to generate external forces. The resultant
force V at point O generated by the edge inside the contour
C1 (such as E, F) point to the concave region. As shown
in Fig. 2 (d), the external force Vv f c

2 attracts the contour to
the concavity, the vector field ∇ f makes the contour stop at
object boundary.

Generally, the proposed vector field Vi can be uni-
formly represented as following:

Vi = τV
v f c
i + (1 − τ)∇ f , i = 1, 2, 3, · · · , n (10)

where Vv f c
i = k ⊗ (HCi−1 ∗ f ), Ci is the converged contour

in the vector field Vi, n is an integer. When i = 1, HC0 with
respect to the initial contour C0 is considered to 1 at every
point. Thus, V1 is the same as VFC in homogeneous region,
it is robust to initialization. For complex geometries, the
vector field is not generated until the contour is unchanged
in the new vector field.

3.2 Connections between VFC and DCVFC

From the Eq. (7), VFC can be considered a special case of
the vector field V1 (τ = 1). On the other hand, VFC can be
represented as:

Vv f c = k ⊗ f = k ⊗ (HC ∗ f ) + k ⊗ ((1 − HC) ∗ f ) (11)

Thus, we have

Vv f c = Vv f c
i + k ⊗ ((1 − HCi−1 ) ∗ f ) (12)

In homogeneous regions of the image, the second term in
Eq. (10) can be ignored because the gradient of edge map f
is zero and τ = e−

|∇ f |
K = 1. Therefore, Vv f c is represented

with Vi in homogeneous region:

Vv f c = Vi + k ⊗ ((1 − HCi−1 ) ∗ f ) (13)

From the above equation, Vv f c could not make the contour
move to concave region because of influence of the term
k ⊗ ((1 − HCi−1 ) ∗ f ). When initial contour is placed outside
the object or concave region, the force k ⊗ ((1 − HCi−1 ) ∗ f )
generated by the edges outside the contour Ci−1 make the
contour away from the concavity. In proposed force field,
external force generated by k ⊗ ((1 − HCi−1 ) ∗ f ) is omitted.
Therefore, the external forces generated by the edges inside
the contour gradually attract the contour to the complex or
concave region.

4. Experimental Results

In this section, the performance of the VFC snake and

proposed snake are compared. The edge map f used in
two snakes is normalized to the range [0, 1], α = 0.2 and
β = 0.1 are set in both snakes for all experiments. For each
tested image, the same initialization is employed for the two
snakes. The parameter K for proposed snake is set to 0.01 in
all experiments unless otherwise stated. Because VFC can
be viewed a special case of the DCVFC, DCVFC has the
desirable properties of the VFC vector field, such as initial-
ization insensitiveness. It also improves the performances
of VFC snake in extracting the deep concavity and complex
geometries, which are verified in this section.

4.1 Deep and Complex Concavity Extracting

A 20-pixel long, 5-pixel wide concavity is employed to test
the performance of the VFC and DCVFC snakes. The first
row of Fig. 3 (c) and (d) shows that the proposed snake suc-
ceeds in extracting the deep and narrow concavity by evolv-
ing two stage of vector fields. Contour evolves 125 times in
VFC and every stage of DCVFC. In VFC, the forces gen-
erated by the concavity are affected by the forces generated
by other edges, the VFC snake could not generate enough
forces to push the contour converge to the deepest concav-
ity, which is shown in the first row of Fig. 3 (b).

Two images with complex concave geometries are also
used to test the performance of VFC and DCVFC snakes.
In VFC, there are “equilibrium issues” [12] in dealing with
the complex geometries. As shown in the second row of
Fig. 3 (a), initial contour has crossed the object. In VFC,
the forces generated by edges have the conflict components.
Thus, contour suffers from local minimum with VFC snake,
which is shown in second row of Fig. 3 (b). From the con-
nections between VFC and DCVFC force fields, DCVFC is
also robust to initialization. As shown the second row of
Fig. 3 (c) and (d), DCVFC snake makes the contour com-
pletely converge to the object.

In the last row of Fig. 3, the object with a cross-

Fig. 3 Performance of VFC and DCVFC snake on image with deep con-
cavity and complex geometries. (a) Original image with the initial snake
position indicated (circles); (b) convergence of the VFC snakes; (c) conver-
gence of the DCVFC snakes; (d) the final results with DCVFC snakes.
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Fig. 4 Performance of VFC and DCVFC snake on gray image. (a) Orig-
inal image with the initial snake position indicated. Result (b) with VFC
snake and (c) with DCVFC snake.

Fig. 5 Magnified results at concavity with VFC and DCVFC snakes. (a)
Result with VFC snake and (b) result with DCVFC snake.

Fig. 6 Performance of VFC and DCVFC snake on gray image. (a) Orig-
inal image with the initial snake position indicated. (b) Result with VFC
snake and (c) result with DCVFC snake.

shaped concave boundary is also tested. VFC suffers from
premature convergence, the contour stops undesired loca-
tion. While the contour with DCVFC snake converges to
the cross-shaped concave boundary by deforming in three
stages of vector field (V1, V2 and V3). The final result with
proposed method is shown in the final row of Fig. 3 (d).

4.2 Gray Images

Figure 4 shows the segmentation results of the VFC and
DCVFC snakes on gray image. The 512 ∗ 512 medical im-
age is polluted by noise and there are some deep concavities.
The contour initialed near the object boundary. Compared
with VFC snake, DCVFC snake successfully converges to
the concavities, which is shown in Fig. 4 (c) and Fig. 5 (b).
Another 160 ∗ 120 gray image is also tested. As shown in
the Fig. 6, DCVFC snake also converges to the boundary of
the monkey. While VFC snake failed to extract the concav-
ity, especially the hand of the monkey.

5. Conclusion

In this letter, the DCVFC external force is proposed. The

constrained edges gradient information is used to remove
the correlation of the external forces generated by various
edges. On the other hand, the proposed external field is dy-
namic. Experimental results on synthetic and gray images
show that DCVFC snake outperforms VFC snake. This al-
gorithm is particularly useful for extracting the object with
deep and complex concavity.
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