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SUMMARY As the number of concurrently running applications on the
chip multiprocessors (CMPs) is increasing, efficient management of the
shared last-level cache (LLC) is crucial to guarantee overall performance.
Recent studies have shown that cache partitioning can provide benefits in
throughput, fairness and quality of service. Most prior arts apply true Least
Recently Used (LRU) as the underlying cache replacement policy and rely
on its stack property to work properly. However, in commodity proces-
sors, pseudo-LRU policies without stack property are commonly used in-
stead of LRU for their simplicity and low storage overhead. Therefore, this
study sets out to understand whether LRU-based cache partitioning tech-
niques can be applied to commodity processors. In this work, we instead
propose a cache partitioning mechanism for two popular pseudo-LRU poli-
cies: Not Recently Used (NRU) and Binary Tree (BT). Without the help of
true LRU’s stack property, we propose a profiling logic that applies curve
approximation methods to derive the hit curve (hit counts under varied
way allocations) for an application. We then propose a hybrid partition-
ing mechanism, which mitigates the gap between the predicted hit curve
and the actual statistics. Simulation results demonstrate that our proposal
can improve throughput by 15.3% on average and outperforms the stack-
estimate proposal by 12.6% on average. Similar results can be achieved
in weighted speedup. For the cache configurations under study, it requires
less than 0.5% storage overhead compared to the last-level cache. In addi-
tion, we also show that profiling mechanism with only one true LRU ATD
achieves comparable performance and can further reduce the hardware cost
by nearly two thirds compared with the hybrid mechanism.
key words: cache partitioning, pseudo-LRU, curve approximation

1. Introduction

Many cache partitioning techniques have been proposed to
provide performance isolation for shared last-level cache
(LLC) [1], [9], [13], [16]. Most proposals are based on true
LRU policy and rely on its stack property to function. How-
ever, true LRU is typically not implemented in commer-
cial processors, due to its hardware complexity and over-
head. Instead, pseudo-LRU (PLRU) replacement policies,
such as Not Recently Used (NRU) policy in SUN proces-
sors [19] and Binary Tree (BT) [8] in IBM processors, dom-
inate. Therefore, those cache partitioning proposals based
on the stack property of true LRU may not be beneficial in
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many commercial processor designs.
A cache partition algorithm can use the number of hits

under different number of cache ways as its input to improve
performance. Since the hit counts of an application can be
modeled as a function of the number of cache ways allo-
cated, we define a hit curve as the hit counts over a number
of cache ways in this work. Auxiliary Tag Directories (ATD)
can be used to derive the hit curve. Since PLRU policies
don’t have stack property, the hit curve cannot be directly
gathered from only one n-way ATD (n is the associativity of
cache) through one-pass execution [17]. Kedzierski et al. [6]
proposed two partitioning mechanisms for PLRU policies
NRU and BT respectively. We note them as stack-estimate
mechanisms. In both mechanisms, an estimation scheme
for hit curve is proposed requiring only one n-way ATD.
In other words, all the hit counts under allocations from 1
to n ways can be estimated through one n-way ATD. The
stack-based replacement policy posses the inclusive prop-
erty. For example, a cache block existing in the 4-way cache
must exist in an 8-way cache. However, PLRU policies that
don’t have stack property can’t guarantee the above inclu-
sive character. As a result, a hit in 4-way ATD may miss
in 8-way ATD. Moreover, a hit in the 4th way of an 8-
way ATD may also miss in the actual 4-way ATD. The
stack-estimate mechanisms don’t take the impact of differ-
ent number of ways in ATDs into account, and actually are
developed under the assumption that PLRU policies have
stack property. Therefore, the estimation of hits and misses
via the traditional method using only an n-way ATD may
result in large deviation from the reality. The inaccuracy in
hit curves probably degrades system performance.

One way to improve the accuracy of hit curve is to
use n separated ATDs, from 1-way ATD to n-way ATD.
Each ATD is accessed by the same access sequence. Thus,
cache blocks are evicted or updated independently without
the interference among applications. We note this method
as fullset. However, fullset incurs too much hardware over-
head. To reduce the overhead, we propose an estimation
method requiring only a few ATDs to get sampling points on
the hit curve, and then estimates the entire hit curve through
curve approximation. To further improve the performance
of profiling logic, we propose a hybrid partition mechanism
that dynamically selects partitions and achieves most bene-
fits.

The paper makes the following contributions:
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• A curve approximation method is proposed to estimate
the hit curve for PLRU replacement policies, without
the prerequisite of true LRU’s stack property.
• Based on the curve approximation method, we imple-

ment a low-overhead profiling mechanism to derive the
estimation hit curve.
• A hybrid mechanism is proposed to dynamically se-

lect the most optimal partitioning mechanisms to fur-
ther improve performance, which can adapt to varying
scenarios.
• Extensive simulations show our proposal can im-

prove throughput by 15.3% on average under NRU
and 11.0% on average under BT against non-
partitioned baseline, and significantly outperforms
the recently proposed PLRU partitioning mechanism
stack-estimate by 12.6% on average. It requires less
than 0.5% of storage compared with 4MB LLC.
• Through evaluation, we also observed that the profil-

ing mechanism with only one true LRU ATD could
provide comparable performance as the hybrid mech-
anism. Though not as adaptive as the hybrid one, it can
further reduce hardware cost by nearly two-thirds.

2. Related Works

Partition with profiling logic: Cache utilization under var-
ied cache sizes needs to be obtained by low-overhead profil-
ing logic to determine the right partition. Zhou et al. [23]
proposed one operating system (OS) implementation and
one hardware monitor to dynamically track Miss-Ratio-
Curve (MRC) of applications at run time. RapidMRC [20]
is also an OS-based technique to obtain L2 cache MRC.
Qureshi and Patt [13] proposed a low-overhead profiling cir-
cuit which uses a group of auxiliary tags having the same
associativity as main cache and dynamic set dueling scheme
(DSS) to track the utility of cache under varied number of
ways, and this mechanism is referred to as TLRU-UCP in
this work. Suh et al. [18], on the other hand, proposed an in-
cache monitoring scheme to track the utility of cache with-
out auxiliary tags. However, the interference among appli-
cations in the main cache degrades the the accuracy of pro-
filing. All these proposals are based on the true LRU policy.
Kim et al. [7] proposed a dynamic partitioning mechanism
that is independent of replacement policies; however, it is
only able to lock in local optimal partitions.

Partition with enforcement logic: Cache can be par-
titioned in ways [2], [13], [22], in sets [14], [16], [21] or in
finer-grained blocks [15]. Set-partitioning schemes require
disjoint address spaces across applications, the assumption
of which does not hold in many cases. Way-partitioning
schemes strictly enforce partitions within a fixed set of op-
tions and may restrict performance improvement. There-
fore, some relaxed enforcement logic is desired. Some
proposals [4], [5] partition cache approximately by alternat-
ing insertion and replacement policies, however, they can-
not guarantee landing in the desired partitions. Promotion-

insertion pseudo-partitioning (PIPP) [22] resolves the above
problem and attains target partition at the cost of applying
LRU policy, which is hard to apply to PLRU policies. Stack-
estimate [6] introduces enforcement logics that fit for NRU
and BT, but they strictly enforce the target partitions within
a predetermined set of options, and can’t adapt to frequent
changes in access patterns.

3. Design

3.1 Motivation

The accurate hit curve of each application is crucial to com-
pute the optimal partitioning. Figure 1 shows the hit curves
of LRU, NRU and BT. The single-threaded applications
shown are drawn from SPEC 2006, and L3 cache (last-level
cache) contains 4096 sets with varied associativities†. We
observe that in these cases, the hit curves of BT and NRU
resemble those of LRU. This phenomenon motivates our
proposed estimating method, that is, using hit curve of the
conceptual LRU to estimate the cases of PLRU policies.
While in other cases that hit curves of PLRU doesn’t re-
semble those of LRU, we use linear approximation or other
estimation methods according to specific conditions.

3.2 Framework

Figure 2 depicts the framework for supporting the PLRU
partitioning on a quad-core system. Each core is assigned an
ATD and two groups of hit counters tracking the hit curve of
an application. The dedicated ATD for each core contributes
to tracking the hit curves without the interference from other
cores. The number of ATD sets is reduced as prior research
on TLRU-UCP which suggests that 32 sets are enough to
attain the track accuracy for the entire cache. Each access to
the shared LLC is recorded by the corresponding ATD. In
TLRU-UCP, one n-way ATD (n is the associativity of shared
cache) is required to track the LRU hit curve that can obtain
hit counts from 1-way to n-way. Due to the lack of stack
property, the primitive implementation depends on n groups
of ATDs (from 1-way to n-way) to track the hit curve of
PLRU policies. This results in the overwhelming complex-
ity and overhead.

In our mechanism, we reduce the hardware overhead
by using a few sampling ATDs of 3-way, 6-way, 9-way and
13-way associativities††, as is shown in the shaded area in
Fig. 2. Our sampling ATDs apply PLRU instead of LRU. At
the same time, ATD for tracking LRU hit curve with true
LRU replacement policy is still reserved, as is shown with
“set 16way” in Fig. 2. The true LRU is not implemented in
LLC, and thus the overhead is minimal. Once the profiling
phase is done, the LRU hit curve and the sampling points

†More information on simulation environment is available in
Sect. 4.
††The principle to choose sampling points is explained in

Sect. 3.3. Our proposed method generally applies to other cache
configurations.
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Fig. 1 Hit curves of LRU, NRU and BT. The x-axis denotes the number of ways allocated from
1-way to 13-way. The y-axis labels the corresponding hit counts.

Fig. 2 Hardware support for Pseudo-LRU Cache Partitioning.

on PLRU hit curve are combined to estimate the unsampled
points. As a result, the whole PLRU hit curve can be de-
rived. Note that, two groups of hit counters are required:

one is for storing the hit counts for LRU policy; the other is
for PLRU policy.
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3.3 Curve Approximating

The curve approximation method is proposed, which uses
the hit curves of LRU to estimate the hit curves of PLRU.
Merely one LRU hit curve may not be adequate when some
PLRU hit counts don’t match LRU hit curve. In this case,
we use the curvilinear translations of LRU hit curve as a
supplement.

By comparing the hit counts of the sampling points on
PLRU hit curve and the corresponding neighboring points
on LRU hit curve, we estimate the difference between the
LRU hit curve and the PLRU hit curve. Based on this dif-
ference, hit counts of other unsampled points can be derived
by interpolation. The number of sampling points should be
appropriate, since too many sampling points will cost too
much hardware, while too few sampling points may incur
too much error. For example, in a 16-way cache shared by
4 threads, each thread occupies at least one way. Therefore,
one thread can occupy at most 13 ways. In total 13 points
are required to derive the hit curve. We choose four points
as sampling points: 3, 6, 9 and 13. The hit count of point 1
under PLRU is always the same as that under LRU. The hit
counts of the other 8 points are obtained through estimation.
The sampling intervals are chosen with the incremental or-
der, e.g. interval 1 between points (1, 3), interval 2 between
points (3, 6) and (6, 9), and interval 3 between points (9, 13).
It makes sense because the hit counts with smaller allocated
ways, are more frequently used in partitioning algorithm,
and thus need to be more accurate. In addition, the reason
why we don’t choose sampling points that are the power of
two (e.g. 4, 8) will be explained in Sect. 3.4.

Once the sampling points are decided, the hit curves
can be seen as piecewise functions among these sampling
points. There are four pieces: 1, 3, 3, 6, 6, 9 and 9, 13. Other
unsampled points can be derived using the interpolation,
based on the value of sampling points and the LRU hit curve
(or its translations). The parameters are defined as follows:

m, n x-axis of left starting and right end of a piece
Hlru(k) hit counts with k ways under LRU
Hplru(k) hit counts with k ways under pseudo-LRU

Note that a piece can contain three, four or five points,
and the associated approximation methods are quite similar.
Due to space constraints, we take a piece with four points as
an example, and describe the curve approximation method
in the following.

(1) Initialization
For the starting point m, we first find the points ma and

mb on the LRU hit curve that are just above and below point
m. Then, we can determine if these two neighboring points
are very close to point m.

First, find neighboring points on LRU. For each sam-
pling point m, initialize ma and mb, where

Hlru(ma) ≥ Hplru(m) ≥ Hlru(mb)

ma = mb + 1;

Then, determine whether m is close to ma and mb on
LRU. ms is defined to indicate that close point where
ms ∈ {ma,mb,NULL}. Then ms can be obtained:

i f (
∣
∣
∣Hlru(ma) − Hplru(m)

∣
∣
∣ < (1/16) ∗ Hplru(m))

ms = ma;

else i f (
∣
∣
∣Hlru(mb) − Hplru(m)

∣
∣
∣ < (1/16) ∗ Hplru(m))

ms = mb;

else ms = NULL;

Boundary conditions: (1) if m has only one neighbor-
ing point above, mb is set to NULL; (2) if m has only one
neighboring point below, ma is set to NULL.

The above initialization procedure is also fit for sam-
pling point n when simply replacing m with n. The initial-
ization of ns can be traced by analogy.

(2) Estimate the non-sample points
According to similarity between the PLRU hit curve

and the neighboring LRU hit curve (or its curvilinear trans-
lations), the estimation methods are categorized into four
cases (as shown by Fig. 3):

• if the two sampling points (m and n) are both approach-
ing the same LRU hit curve (or its translation), we use
the LRU hit curve (or the translation) to represent the
PLRU hit curve (Fig. 3 (a)).
• If only one sampling point is approaching the LRU hit

curve (or its translation), we use a triangle approxima-
tion. Figure 3 (b) shows the case in which the left start-
ing point m is close to a point ms on LRU hit curve.
Similar method can be applied to the other case.
• If neither of the two sampling points are approaching

the LRU hit curve (or its translation), but they are in the
region between two LRU hit curves (or its translations),
we use trapezoid approximation (Fig. 3 (c)).
• Otherwise, we use linear approximation (Fig. 3 (d)).

3.4 Hybrid Partitioning Mechanism

Figure 4 shows an example of the hit curves under dif-
ferent mechanisms. LRU denotes the LRU hit curve ob-
tained from TLRU-UCP mechanism. Fullset mechanism
uses ATDs ranging from 1-way to 13-way to derive PLRU
hit curve. Sampleset is our proposed curve approximation
mechanism. The data are obtained from the profiling logic
in experiment.

Figure 1 and Fig. 4 show that the BT hit curve is not
as smooth as that of LRU (or NRU). The variations make
BT hit curve hard to approximate. The reason is that the
binary tree is not symmetrical when the number of ways is
not the power of two. As a result, the blocks within the
subtree with fewer blocks generally have high probability
to be evicted, which leads to the thrashing in its hit curve.
Examples can be seen in Fig. 4 and 410.bwaves in Fig. 1: on
point 4 and 8 that are 2n, hit counts of BT are nearly the same
as LRU, while for other points that are not 2n, hit counts of
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(a) (b)
If ((ms! = NULL)&&(ns! = NULL)
&&(ms + 3 == ns)) {
Hplru(m + 1) = Hlru(ms + 1);
Hplru(m + 2) = Hlru(ms + 2); }

If ((ms! = NULL)&&(ns == NULL)) {
Mdi f f = Hplru(n) − Hlru(ms + 3);
Hplru(m + 1) = Hlru(ms + 1) + 1/4 ∗ Mdi f f ;
Hplru(m + 2) = Hlru(ms + 2) + 3/4 ∗ Mdi f f ; }

(c) (d)
If ((ms == NULL)&&(ns == NULL)
&&(ma + 3 == na)&&(mb + 3 == nb)) {
Mldi f f = Hplru(m) − Hlru(mb);
Mrdi f f = Hplru(n) − Hlru(nb);
Hplru(m + 1) = Hlru(mb + 1) + 3/4 ∗ Mldi f f

+1/4 ∗ Mrdi f f ;
Hplru(m + 2) = Hlru(mb + 2) + 1/4 ∗ Mldi f f

+3/4 ∗ Mrdi f f ; }

Otherwise:
Mdi f f = Hplru(n) − Hplru(m);
Hplru(m + 1) = Hplru(m) + 1/4 ∗ Mdi f f ;
Hplru(m + 2) = Hplru(m) + 3/4 ∗ Mdi f f ;

Fig. 3 Algorithms to compute the non-sampled points on PLRU hit curve. The algorithms are for
pieces including 4 points, and thus n = (m + 3). Δ = (ma − m).

Fig. 4 An example to show LRU hit curve, and BT hit curves obtained
from fullset and sampleset mechanisms. The x-axis denotes the number of
ways allocated

BT are apparently different from that of LRU. Thus, LRU hit
curve can be seen as an alternate approximation curve with
sampling points 2n, which is complementary with sampleset
hit curve with sampling points that are not 2n.

As a result, a hybrid partitioning mechanism denoted
as hybrid-par is proposed as follows. Besides acting as the
guide for curve approximation in sampleset, the LRU hit

curve itself is also applied as the input to generate an alter-
nate partitioning. The partitions coming from LRU hit curve
and the PLRU hit curve are both candidates and competing
for which is the better. The dynamic mechanism for choos-
ing the better candidate partitioning is described in the fol-
lowing subsection. The hybrid mechanism potentially out-
performs sampleset.

3.5 Enforcement Policy

After deriving the hit curve through the curve approximation
method, partitioning algorithm is used to decide the optimal
partitions. We used the partitioning algorithm proposed in
[13] to get two candidate partitionings under sampleset and
LRU respectively. Then a dynamic policy selection mech-
anism is implemented with the prior wisdom that uses Set
Dueling technique [12] to identify which candidate parti-
tioning is better suited.
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To enforce target partitions obtained from hybrid-par,
we adopt two enforcement policies for NRU: the hybrid-
strict policy and the hybrid-flexible policy. Hybrid-strict
policy strictly enforce the target partitions. Hybrid-flexible
permits capacity stealing under target partitions to achieve
further performance improvement. Hybrid-flexible is similar
to the enforcement policy proposed in [13] for LRU. When
implementing that policy under NRU, a Not-Recently-Used
block takes place of an Least-Recently-Used block.

4. Evaluation

4.1 Simulation Setup

We use CMP$im [3], a Pin [10] based trace-driven x86 sim-
ulator, to evaluate our proposal. The parameters of baseline
system are shown in Table 1. Non-partitioned shared LLC
under the corresponding NRU or BT policy is used as the
baseline. We use two metrics: IPC throughput and weighted
speedup [11]. Let IPCi denote the IPC of the ith applica-
tion when it concurrently executes with other applications
and S ingleIPCi be the IPC of the same application when it
executes in isolation. The metrics are given by:

Throughput = Σ(IPCi) (1)

Weighted S peedup = Σ(IPCi/S ingleIPCi) (2)

We choose sixteen applications from SPEC2006 with
a variety of cache demand. We fast forward each work-
load for two billion cycles, and then collect traces for five
hundred million cycles. Since not all the combinations of
single-threaded workloads can get benefits from cache parti-
tioning, we just selected 14 representative combinations (as
shown in Table 2), in which TLRU-UCP scheme can im-
prove the throughput compared against the non-partitioned
baseline. We perform partitioning once every 0.5M total ac-
cesses to LLC.

4.2 Comparison of Partitioning Mechanisms

Figure 5 † shows the system performance for six partition-
ing mechanisms: fullset, sampleset, TLRU-UCP, stack-
estimate, LRU-par and hybrid-par. LRU-par here refers
to the mechanism whose profiling logic requires only one
16-way ATD under true LRU, and without PLRU ATDs.
Since the true LRU policy generally has higher performance
than PLRU policies, and the accurate true LRU hit curve is
easy to get because of stack property, TLRU-UCP poten-
tially has better performance than other schemes. In most
cases, hybrid-par outperforms or has comparable results as
its counterparts. On average, hybrid-par can achieve the
throughput improvement by 13.6%, and nearly the same as
TLRU-UCP. LRU-par can improve throughput by 13.2%.

†The results on arithmetic mean (avg.) are shown because for
stack-estimate scheme, some results are negative. As a result, geo-
metric mean (gmean) can’t reflect the negative cases.

Table 1 Baseline system parameters.

Component Parameter

Processing core 4-wide pipeline out-of-order
Instruction latency 1 cycle
L1 I-cache 32KB/4-way/LRU/1 cycle
L1 D-cache 32KB/8-way/LRU/1 cycle
L2 cache 256KB/8-way/LRU/10 cycles
L3 (LLC) cache 4MB/16-way/30 cycles
Memory access latency 200 cycles
Cache line 64B

Table 2 Multiprogrammed workloads.

Mix-1 astar.rivers,h264.ref baseline,libquantum.ref,milc.su3imp
Mix-2 bzip2.source,astar.rivers,lbm,soplex.ref
Mix-3 bwaves,bzip2.source,soplex.pds,soplex.ref
Mix-4 astar.rivers,hmmer.retro,bwaves,soplex.ref
Mix-5 bzip2.source,bwaves,soplex.pds,hmmer.nph3
Mix-6 hmmer.nph3,astar.rivers,h264.ref baseline,bwaves
Mix-7 hmmer.nph3,soplex.pds,h264ref.sss main,lbm
Mix-8 bzip2.program,astar.rivers,cactusADM,lbm
Mix-9 bzip2.source,zeusmp,lbm,hmmer.nph3
Mix-10 bzip2.program,bzip2.source,lbm,bwaves
Mix-11 h264.ref baseline,cactusADM.benchADM,milc.su3imp,lbm
Mix-12 bzip2.source,h264ref.sss main,lbm,bwaves
Mix-13 bzip2.program,bzip2.source,soplex.pds-50,lbm
Mix-14 bzip2.program,astar.BigLakes2048,hmmer.retro,lbm

Fig. 5 Improvement in IPC throughput under NRU (against non-
partitioned baseline).

Fig. 6 Improvement in weighted speedup under NRU (against non-
partitioned baseline).

Stack-estimate usually performs worse than other mech-
anisms, and in some applications (e.g. mix-6, mix-7), it
degrades the performance. The average improvement in
throughput under stack-estimate is 2.7%.

On average, the performance of LRU-par is only 3%
worse than hybrid-par. The reason is that in many cases,
the hit curves of PLRU resemble those of TLRU, and the
performance gap between LRU-par and hybrid-par is rel-
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Fig. 7 Performance of enforcement policies (against Non-partitioned
Baseline).

atively small. However, when referring to some specific
cases, the performance gap gets larger. For example, for
mix-9 in Fig. 5, the performance of LRU-par is worse than
that of hybrid-par by 18.8%. In such cases, LRU-par may
lead to worst-case execution time because of inaccurate hit
curves. Things will get exacerbated in systems targeted for
high-performance and hard-real-time use. Hybrid-par, on
the contrary, is an adaptive partition mechanism to variable
scenarios.

Figure 6 shows the weighted speedup compared with
the non-partitioned baseline, and the performance trend is
very similar to that in IPC throughput metric. The per-
formance of fullset, LRU-par, hybrid-par and TLRU-UCP
are close to each other. Sampleset increases the weighted
speedup by 10.5%(on gmean), a little worse than fullset.
On average, hybrid-par outperforms the other two schemes
a little, and increase weighted speedup by 11.1% against
the baseline, and the performance of LRU-par, fullset and
TLRU-UCP are 10.8%, 10.9% and 10.8% respectively. The
weighted speedup results demonstrate hybrid-par and LRU-
par also provide better fairness. Due to the similarity of the
trends between throughput and weighted speedup, we only
deal with throughput in the rest of this paper.

The comparisons between fullset and sampleset show
that fullset is not always superior over sampleset. The poten-
tial reason is that fullset is also an estimating method, which
profiles a few sets to guide the entire partitioning, and uses
the recent interval statistics to guide the partitioning in the
next partitioning interval. Thus, it is a relatively trustworthy
partitioning method. The performance of fullset partitioning
is more stable than that of sampleset. It is shown that per-
formance of fullset is comparable to that of TLRU-UCP, and
both are better than that of sampleset. There is an anoma-
lous case that stack-estimate performs best in mix-5. The
reason is that the access pattern of mix-5 varies frequently.
We will explain it in details in the next subsection.

4.3 Performance with Enforcement Policy

Figure 7 illustrates the impact of the enforcement logic
with our hybrid-par mechanism. On average, hybrid-strict
and hybrid-flexible promote the throughput by 13.6% and
15.3%, respectively. Compared with stack-estimate, hybrid-
flexible improves throughput by 12.6%. It can be observed
that our partitioning mechanism can be further improved

Fig. 8 Comparison of hit curves under NRU (against fullset).

Fig. 9 Comparison of hit curves under BT (against fullset).

with effective enforcement logic.
In mix-5, hybrid-flexible achieves the most significant

improvement compared against hybrid-strict and TLRU-
UCP. It can be inferred that the access pattern of mix-5
varies frequently. In this case, the methods such as sam-
pleset and hybrid-par which use a long interval statistics to
calculate the optimal partitioning, and strictly retain the par-
titions, limit performance. Hybrid-flexible can adapt to the
varying access behaviors adaptively and thus provides better
performance.

4.4 Comparison of Hit Curves

To analyze the accuracy of the curve approximation method
and the reason why stack-estimate works not so well, we
compare the hit curves of different schemes. Figure 8 com-
pares the hit curves of sampleset compared with fullset un-
der NRU. We obtain the hit counts under varied num-
ber of ways from different mechanisms after each interval,
and normalize the difference to fullset hit counts. Results
show that hit curve of sampleset resembles that of fullset
by only a little difference of 0.49% on average (0.42% on
gmean). It demonstrates that our proposed curve approx-
imation method is accurate. Note that, result of stack-
estimate is not shown in Fig. 8, because the profiling logic
for NRU doesn’t update hit counters when cache hit at a
not-recently-used block in ATD. Thus, the hit counts of
stak-estimate mechanism is much smaller than other mech-
anisms. Figure 9 shows the difference of sampleset and
stack-estimate under BT against fullset. Sampleset provides
a 3.6% difference on average (1.9% on gmean). Though
the difference is bigger than that under NRU, it is reason-
able considering the variations of BT hit curve. With stack-
estimate scheme, the difference is 19.3% on average (16.9%
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Fig. 10 Improvement in throughput under different partitioning inter-
vals.

Fig. 11 Improvement in IPC throughput under BT (against non-
partitioned baseline).

on gmean). It shows that our proposed curve approximation
method can estimate the PLRU hit curve with good accu-
racy.

4.5 Impact of Partitioning Time Interval

Recall that we perform partitioning once every 0.5 million
total accesses to LLC, and we also experiment with varied
partitioning intervals including 0.1M, 1.5M, 3M and 5M ac-
cesses, results are shown in Fig. 10. It shows the perfor-
mance of hybrid-par. Interval 0.1M has the worst perfor-
mance, while for other intervals, there is no significant dif-
ference in performance. It is reasonable that applications
generally have a long interval before facing a phase change.
Perform partitioning in longer intervals mean we can can
reduce the power overhead consumed in partitioning algo-
rithms. In addition, we also experiment with varied number
of sampling sets from 32 sets to 128 sets, results show that
performance are quite similar.

4.6 Performance for BT

Figure 11 presents the performance of six partitioning mech-
anisms for BT against non-partitioned baseline. Fullset im-
proves throughput by 10.3%, while the results of stack-
estimate and sampleset are 3.1% and 3.5% respectively. Un-
der BT, it is harder to estimate the accurate hit curve be-
cause the variation in hit curve of BT is larger than that of
NRU, which exacerbates violation. When sampleset loses
efficiency, the hybrid-par which can mitigate the variations
is stable and can perform best or close to the best counter-
parts in most cases. Hybrid-par improves the throughput by
10.9%, only a little lower than TLRU-UCP, which improves
the throughput by 12.7%. It is reasonable that BT funda-

Fig. 12 Improvement in weighted speedup under BT (against non-
partitioned baseline).

mentally has lower performance, and BT hit curve is harder
to be captured than LRU and NRU. The relative improve-
ment between hybrid-par and stack-estimate is a noticeable
7.8%. LRU-par improves throughput by 10.5%, and it also
outperforms stack-estimate and is a litter lower than that of
hybrid-par. In weighted speedup metric, Fig. 12 shows that
hybrid-par can provide 10.1% improvement, while the per-
formance of LRU-par and TLRU-UCP are 9.7% and 11.4%
respectively.

4.7 Overhead

The hardware overhead of our proposed hybrid-par is
mainly from the profiling logic. Table 3 lists the breakdown
of storage overhead of profiling logic for each core. The
storage overhead is invariant to the number of cores, and
doesn’t increase with augment of set number, and thereby
scalable. We assume 40-bit physical address space, 16-way
shared LLC, and other parameters are based on our baseline
system. Each profiling logic for NRU needs 4820B of stor-
age (about 0.11% of the entire 4MB shared LLC), which in-
dicates that about 0.44% storage overhead for implementing
all four profiling logics. For other cache configurations, the
similar sampling points are still applied to retain the storage
overhead. Under BT policy, the storage overhead is almost
the same as NRU because there is only one bit difference
between BT and NRU in each sampling set. The storage
overhead of fullest is 6196B, which is more than hybrid-
par by 28.5%. For each access on the sampling set, hybrid-
par only accesses 5 ATDs, while fullest accesses 13 ATDs.
Therefore, the profiling logic of fullest consumes more area
and power, while profiling logic of hybrid-par is relatively
low-overhead and can be scaled to more cores. In addi-
tion to hybrid-par, under the same configuration, the stor-
age overhead of the profiling logic of stack-estimate under
NRU is 1600B for each core, while for LRU-par, that stor-
age overhead is 1792B. Overall, compared to the 4MB LLC,
the storage overheads of profiling logic for stack-estimate,
LRU-par and hybrid-par under four cores are 0.14%, 0.16%
and 0.44% respectively.

To evaluate the detailed hardware cost, we further im-
plemented the TLRU ATD and NRU ATDs with Verilog-
HDL and synthesized them with SYNOPSYS Design Com-
piler based on TSMC 0.18mm 1P6M CMOS technology.
Results show that on 100MHz, the ATDs (with replace-
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Table 3 Storage overhead of the profiling logic of hybrid-par for each application∗.
LRU Profiling logic(A1) NRU Sample Profiling logic(A2) Total overhead(A1 + A2)

Each ATD entry 1b(v)+22b(tag)+4b(LRU) 27b 1b(v)+22b(tag)+1b(NRU) 24b Profiling logic 1728+2976+64+52 4820B
# ATD entries/set 16 3+6+9+13 31 Baseline LLC 256KB tags+4MB data 4352KB
ATD overhead/set 27 bits/way * 16 ways 54B 24 bits/way * 31 ways 93B %increase vs. baseline 4820B/4352KB 0.11%
Total ATD overhead 32 sampled sets*54B/set 1728B 32 sampled sets * 93B/set 2976B

TLRU-UCP overhead
1792B + (LRU bits
- NRU bits) / 4 core

7936B
Hit counters 16 counters * 4B each 64B 13 counters*4B each 52B

ATD + hit counters 1728B+64B 1792B 2976B+52B 3028B %red. vs. TLRU-UCP (7936B-4820B)/7936B 39.3%
*The calculations assume 40-bit physical address space, 16-way LLC cache with 64B block. No matter how many sets in LLC in total, 32 sampled sets
are enough for sampling hit curve [13]. Thus, the total overhead of profiling overhead per application is invariant to number of cores and LLC capacity.

ment logic) in the profiling logic of stack-estimate, LRU-par
and hybrid-par per core require 122K-gate, 123K-gate and
358K-gate respectively. Synthesized results also show that
the area cost of ATDs in the profiling logic of stack-estimate,
LRU-par and Hybrid-par per core is 0.45%, 0.45% and 1.3%
respectively, compared to the 4MB 16-way 64B block L3
cache. The area of the L3 cache is estimated through the
HP CACTI tool [24]. Overall, the hardware costs of all
hree schemes are under a small threshold. Moreover, stack-
estimate and LRU-par require less hardware and are easier
to implement.

True LRU ATDs are required to implement in the LRU-
par and hybrid-par scheme. The mechanism for True LRU
used shift registers. For the 16-way ATD, it needs 4 bits
for the way number, 1 valid bit by 16 entries. Each entry
has a 4 XORs for matching ids. Thus, it requires (4+1)*16
master-slave latch, 4*16 XOR, 16 muxes plus some glue
logic for each set. Since true LRU is not implemented in
LLC, the overhead is minimal. One 32-set 16-way ATD un-
der true LRU requires 123K-gate and the area overhead is
only 0.45% of LLC area. In addition to true LRU mech-
anism, the curve approximation mechanism in sampleset
and hybrid-par merely contains several add, compare and
shift operations, which require simple circuit and negligi-
ble storage. One 10-bit policy selection counter is required
to perform hybrid-par, together with the negligible logic for
choosing sampling sets. The operation on ATD is not on
critical path, and thus latency is not impacted. In addi-
tion, the estimation mechanism and partitioning algorithm
are carried out once in every partitioning interval.

5. Conclusions

Previous studies have proposed a variety of mechanisms
to ameliorate the performance of cache partitioning under
LRU. However, most of these LRU-based techniques are
based on the stack property, which is avoided by PLRU poli-
cies widely adopted by the commodity processors. Thus,
practical cache partitioning mechanisms for PLRU policies
are required. Previous PLRU cache partitioning methods
don’t take the impact of stack property into account, which
leads to inaccurate hit curves and thus degrades system per-
formance.

In this paper, we proposed the partitioning mechanisms
specifically for PLRU policies. A curve approximation
method is proposed to estimate the hit curve for PLRU poli-

cies. In addition, a hybrid mechanism (i.e. hybrid-par) is
devised to dynamically select optimal partitioning for fur-
ther performance improvement. Extensive simulation re-
sults show that our proposal can improve throughput by
15.3% under NRU (11.0% under BT), and achieves 12.6%
(7.7% under BT) average improvement over recently pro-
posed stack-estimate. We further verify our proposal in
weighted speedup metric, and obtain the similar results. For
the cache configurations under study, the storage overhead
of hybrid-par is 0.44% and the area cost is about 5.2%,
compared to the 4MB last-level cache. To further reduce
the hardware overhead of hybrid-par, we observed that the
profiling logic with only one true LRU ATD (i.e. LRU-par)
also worked well for PLRU cache partitioning. Though this
scheme is not as adaptive as the hybrid-par scheme, it is
easier to implement in terms of hardware cost. This design
only increases area by around 1.8% compared to the area
of LLC. Hybrid-par and LRU-par posses different pros and
cons, which increases the design space for CPU designers to
explore.
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