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SUMMARY Most of scientists except computer scientists do not want
to make efforts for performance tuning with rewriting their MPI applica-
tions. In addition, the number of processing elements which can be used
by them is increasing year by year. On large-scale parallel systems, the
number of accumulated messages on a message buffer tends to increase
in some of their applications. Since searching message queue in MPI is
time-consuming, system side scalable acceleration is needed for those sys-
tems. In this paper, a support function named LHS (Limited-length Head
Separation) is proposed. Its performance in searching message buffer and
hardware cost are evaluated. LHS accelerates searching message buffer by
means of switching location to store limited-length heads of messages. It
uses the effects such as increasing hit rate of cache on host with partial off-
loading to hardware. Searching speed of message buffer when the order
of message reception is different from the receiver’s expectation is accel-
erated 14.3 times with LHS on FPGA-based network interface card (NIC)
named DIMMnet-2. This absolute performance is 38.5 times higher than
that of IBM BlueGene/P although the frequency is 8.5times slower than
BlueGene/P. LHS has higher scalability than ALPU in the performance
per frequency. Since these results are obtained with partially on loaded lin-
ear searching on old Pentium R©4, performance gap will increase using state
of art CPU. Therefore, LHS is more suitable for larger parallel systems.
The discussions for adopting proposed method to state of art processors
and systems are also presented.
key words: network interface, MPI, message passing, queue management,
low latency communication, scalability

1. Introduction

Development of future-generation supercomputers whose
1Exa Flops peak performance requires hundreds of thou-
sands of nodes or more is underway in the U.S. and Japan.
In these systems, keeping scalability is the key to perfor-
mance. On massively parallel computers, MPI (Message
Passing Interface) is widely used for parallel programming.
In typical MPI implementations, the Eager Protocol and
the Rendezvous Protocol are used selectively. A sender
sends messages without respect to the state of a receiver
in the Eager Protocol. In this case, performance degrada-
tion occurs when the sequence of message receptions differs
from the receiver’s expectation. The message that reached
the receiving side before calling receiving function such as
MPI Irecv( ) is called an unexpected message.

In Brightwell’s work [4], a significant portion of the
messages received by the NAS Parallel Benchmarks (NPB)
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are unexpected messages. Some of them have long maxi-
mum queue depth or average queue depth which increases
with increasing number of nodes. Table 1 shows the average
search depth of MPI unexpected messages queue on appli-
cations reported by Brightwell [4], [20]. The last column for
16K nodes is estimated from the reported values with linear
approximation.

For traversing a long unexpected message queue on
massively parallel machines, it is necessary to keep both
low-latency and high-scalability. For example, if the number
of unexpected messages increases in MPI over QsNET-II [1]
using Tports, it is reported that delay time increases in pro-
portion to it [3]. It consumes 100ns per the depth. Minimum
MPI communication latency over QsNET-II using Tports is
only 1.3 micro seconds [1]. The latency is far better than
that of NIC(Network Interface Card)s for Ethernet with fat
layer for TCP/IP. If MPI over QsNET-II is implemented us-
ing hashing algorithm, the minimum latency becomes over
4micro second [3]. This shows that hashing spoils the most
important minimum latency like over Ethernet. Lower la-
tency of NICs for PC cluster such as QsNET-II using Tports
contributes for the scalability of many applications. How-
ever, a message at 3,837th in the depth of messages queue
may be searched in NPB FT on a massively parallel ma-
chine with 16K nodes. In this case, the searching time with
QsNET-II using Tports for a message will be 383.7 micro
seconds. Balaji [8] measured unexpected message overhead
up to 4,096th in the depth on IBM BlueGene/P which is
one of brand new massively parallel computers. The re-
sult shows that it takes huge 7,000 micro seconds message
matching time for only one message reception. This over-
head is 17 times bigger than QsNET-II. Most of all commu-
nication latencies in these cases are time for searching mes-
sage queue. Therefore, we have to prepare the long commu-
nication latency on huge massively parallel supercomputers
or rewriting such applications with this feature from scratch.
In order to minimize rewriting such applications, scalable
low-latency MPI communication architecture is needed for
the supercomputers in the future.

One of the prior works for this problem is ALPU [5].

Table 1 Average search depth of MPI unexpected messages queue on
applications with bad scalability (*: estimated with linear approximation).
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It is a hardware acceleration unit for MPI queue processing.
However, ALPU does not have enough scalability because
of the needs of many logic gates.

The objective of this paper is acceleration of MPI
by means of hardware supports on the NIC with higher
scalability without spoiling minimum latency. NICs such
as QsNET-II [1], SeaStar [2] and ALPU [5] are off-loading
MPI queue processing on a slow embedded CPU or limited
hardwired logic. On the other hand, we try to off-load MPI
queue processing more partially than ALPU to a small ac-
celerator on a NIC.

The contribution of this paper is showing the collabo-
ration of a small accelerator on NIC and a cache based high-
performance CPU with prefetching functions. The authors
propose LHS on NIC in this paper. This is a simple hard-
wired message receiving function to separate key data block
for fast and reasonable queue searching.

The following section identifies the scalability prob-
lems on MPI queue processing. The proposed hardware sup-
ports for MPI are described in Sect. 3. We also describe per-
formance evaluation with DIMMnet-2 employing our pro-
posed mechanisms in Sect. 4. The discussions for adopting
proposed method to state of art processors and systems are
presented in Sect. 5. Related works are described in Sect. 6.
The paper wraps up with conclusions and future work in
Sect. 7.

2. Scalable Low Latency Communication

In this section, in considering hardware supports for MPI,
we describe scalability problems on MPI queue processing.

2.1 Unexpected Message Searching Latency

In MPI, data are transferred between function peers with
the same rank, communicator and key for a sender and
a receiver. On the other hand, in a parallel program, it is
generally difficult to guarantee the order in which data are
received from multiple nodes with low overhead. When
a message sent by the Eager Protocol, the sequence of mes-
sage receptions may differ from the receiver’s expectation.
If a function specifying location to receive in a receiver is
not yet executed, the message is buffered in a system buffer
named unexpected message queue.

Processing of MPI, such as handling of message buffer,
is off-loaded into the firmware on NIC in QsNET-II [1]. In
the message buffer searching with it, the penalty of 100ns
per accumulated message is required. This is an excellent
value at which the low-latency communication is achieved
in the state with a small number of accumulated messages.
On the other hand, a lot of messages comparable to the num-
ber of nodes stay in the unexpected message queue in some
case. For example, FT and IS of NAS Parallel Benchmarks
(NPB) is so according to the research by Brightwell [4]. He
reported that in FT the average search length for the unex-
pected message queue at 128 nodes is 20% or more than
the number of nodes, and that it increases in proportion to

the number of nodes. He also reported that 50% of the re-
ceiving is unexpected receiving. Therefore, the communi-
cation delay increases in proportion to the number of nodes,
because of an increase in time to search the message with
the corresponding key. Many accumulated messages tend to
be generated on a large-scale parallel system. In this situa-
tion, there is a problem in that the delay time of QsNET-II
becomes larger than that of the system without off-loading
MPI processing.

2.2 Hardware Cost

In Underwood’s work [5], a hardware acceleration unit
named ALPU for MPI queue processing is proposed. ALPU
has high performance for searching message buffer. How-
ever, the number of ALPUs on FPGA is limited to a rela-
tively small number such as 128 or 256. Moreover, when
unexpected message queue length exceeds the number of
ALPUs, the latency for traversing a long unexpected mes-
sage queue becomes larger. When performing an applica-
tion like NPB FT, the number of accumulated messages is
expected to increase according to the number of processing
nodes. Therefore, a method of preventing or reducing dra-
matic performance degradation on a large-scale system with
a reasonable amount of hardware is desired.

3. Limited-Length Head Separation: LHS

The main target system of this paper is assumed the mas-
sively parallel systems consisting of a very large number of
nodes, such as Exa FLOPS machines. Latency is very im-
portant system feature in such systems in order to keep scal-
ability. The NICs in such system are connected to CPU with
high performance channel or connected on the same chip.
Therefore, those are accessed with small latency compared
with the NICs plugged into the general-purpose-I/O such as
PCI express. If the NIC is implemented on the same chip
as CPU, NIC is a location that can be accessed with low
latency from the CPU than the main memory.

We propose Limited-length Head Separation (LHS) for
such system in order to reduce latency by a short message.
Short messages must be executed by Eager protocol and la-
tency for searching data in a system message buffer of a re-
ceiver. The basic concept of LHS is shown in Fig. 1. Fig-
ure 1 The basic concept of Limitedlength Head Separation
(LHS).

In LHS, the head part of a message with limited length

Fig. 1 The basic concept of Limited-length Head Separation (LHS).
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Fig. 2 Basic configuration of LHS.

is stored in a low-latency small memory (LH buffer). This
can hold envelopes of MPI systems and short payloads. The
rest of the message is stored in a large-capacity memory.

The basic configuration of LHS is shown in Fig. 2. In
LHS, a length of a received message is checked by Receive
Message Dividing Controller. When a length of a received
message is shorter than the threshold length, the message
is stored in an LH buffer. When a length of a received mes-
sage is longer than the threshold, the message is divided into
two parts. The former part of the message and a pointer
to the latter part of the message are stored in an LH buffer
by a low-latency memory controller. The latter part of the
message is stored in a high-latency large memory by a high-
latency memory controller. We recommend using PIO (Pro-
grammed I/O) for the access of the first part which is stored
in LH buffer whose entry size is the same as a cache-line.
The reason is the setup-overhead of DMA is larger. In the
setting of the situation at the beginning of this chapter, the
delay to access the LH buffer on the NIC is less than the
delay to access the main memory.

The location of the size information on the message
header can be varied by a register (Size Information Loca-
tion Register). It is convenient for various header formats
defined in various MPI implementations or future commu-
nication protocols.

The threshold length can be varied by a register (Entry
Length Register). To accommodate a wide variety of cache
line size, Entry Length Register is recommended for op-
tional components of the LHS. If the cache line size of CPU
is 128 bytes, there is no problem even if the entry length is
fixed to 128 bytes.

In original MPI implementation, unexpected message
buffer is searched from top to end in reading envelopes one
by one. Each envelope is usually 16 bytes in length. Three
integers are compared for key matching on host CPU. Be-
fore key matching, envelope is copied to main memory of
host PC. Host CPU fetches envelope with the three integers
to cache memory using Read-instructions, then host CPU
compares specified key and key in the envelope.

In using LHS case, host CPU fetches the head part
of a message with envelope from low-latency LH buffer to

Fig. 3 Latency reduction of unexpected messages by LHS.

cache memory of host CPU. This operation is done by one
of the means shown as below.

(a) Read-instructions of host CPU
(b) Hardware prefetching invoked by (a)
(c) Software prefetching using prefetching instructions

In Brightwell’s work [4], a significant portion of the
messages received by the NAS Parallel Benchmarks (NPB)
are unexpected messages. Some of them have long maxi-
mum queue length. Latency reduction of unexpected mes-
sages by LHS is shown in Fig. 3.

Messages are sent to a receiver in the order of B1, B2,
A1 and A2. If MPI IRecv( ) is posted at first, whole mes-
sages of B1, B2 and A1 buffered in the MPI system buffer
(unexpected message queue). Buffered messages are read
and written from/to high-latency large memory before read-
ing A2. However, since all transfers of envelope parts are
sent from low-latency LH buffer, communication using LHS
can be significantly improved. If entry length is selected ap-
propriately, MPI envelopes are stored in the same or follow-
on cache line in order of arrival. This situation makes hard-
ware prefetching of CPU effective in searching unexpected
message queue. This feature reduces searching time per
stored message in unexpected message queue dramatically.

Here, large-capacity buffer can be kept in pin-down re-
gion in main memory or it can be kept in off-chip mem-
ory such as SO-DIMM on DIMMnet-2 [12], [14]. There-
fore, in principle, this mechanism can be implemented by
firmware such as Myrinet or QsNET-II [1]. Since fast buffer
is supposed to be implemented mainly in on-chip memory in
a network controller LSI, it has low latency compared with
large-capacity buffer. However, its capacity is small.

4. Evaluation

This section presents the results of the evaluation for LHS
and discusses the effects of it on MPI.

4.1 Evaluation Environment

The main target of this study is the Exa FLOPS machine
environment. It is an environment which has a NIC near
the CPU. DIMMnet is used as the experimental environ-
ment of this chapter. This is a NIC plugged into a DIMM
slot which is far closer to the CPU compared with NIC
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Table 2 Environment for accessing DIMMnet-2.

Table 3 Environment for emulating DIMMnet-3.

on PCI express. Therefore, DIMMnet is a better ex-
perimental environment compared with NIC on PCI ex-
press. We have developed three kinds of prototypes of
DIMMnet which are NICs plugged into SDR DIMM, DDR
DIMM and DDR2 DIMM. These prototypes are called
DIMMnet-1 [11], DIMMnet-2 [12]–[16] and DIMMnet-3
respectively. DIMMnet can realize higher bandwidth and
lower latency than NICs plugged into general I/O slot of
each generation. In order to adopt newer DIMM slots
with higher frequency, on-board DIMM of DIMMnet-2 and
DIMMnet-3 cannot be accessed from host CPU directly.
DIMMnet-2 and DIMMnet-3 have Read Window, which is
a kind of vector register accessed from host CPU directly.
The host CPU has to access on-board DIMM of DIMMnet-2
and DIMMnet-3 using vector load commands such as VL
command before accessing the Read Window. VL com-
mand copies a data block from on-board DIMM to Read
Window. DIMMnet-2 is a working prototype with LHS pro-
posed and investigated in this paper.

Table 2 and Table 3 show the evaluation environments
used for the evaluations in this section. Because of evalu-
ations using real prototypes of FPGA-version DIMMnet-2,
the frequency of operation is low, including that of the host
side. Therefore, performance of the hardware portion and
the software portion must be higher in the ASIC based im-
plementation or newer FPGA based implementation. The
evaluation in Sects. 4.2 and 4.3 uses environment for higher
frequency DDR2 based DIMMnet-3 which is a successor of
DIMMnet-2. The logic of FPGA for DIMMnet-3 is under
development. Since memory part of LH buffer acts as main
memory from host, a part of main memory on the environ-
ment shown in Table 3 can emulate a LHS on DIMMnet-3
accurately.

4.2 Unexpected Message Searching Latency with LHS

We have measured the unexpected message searching la-
tency. We have evaluated the following five conditions:

†Pentium and Intel are trademarks of Intel Corporation in US
and other countries.

Fig. 4 Comparison of unexpected message searching latency of NICs.

(1) Without LHS on 100MHz working DIMMnet-2 proto-
type: Reading envelopes from SO-DIMM with Read Win-
dow and Vector Load command (VL)
(2) On 200MHz QsNET-II with Tport reported by Un-
derwood (i.e. 100ns per message for unexpected message
queue) [3]
(3) ALPU with 128 cells reported by Underwood [5]
(4) 100MHz working DIMMnet-2 prototype with LHS
(5) 200MHz virtually emulated DIMMnet-3 with LHS: Em-
ulated by mapping virtual LH buffer on DDR2 (PC2-3200)
based main memory which has the same latency of LH
buffer on DIMMnet-3 plugged into a PC2-3200 slot. This
is an actual time measurement on a real PC without working
DIMMnet-3.

In this experiment, the number of entries on an LH
buffer is 1024 on DIMMnet-2. All entries of LH buffer are
0-cleared in advance except for the location of x-th enve-
lope. Unexpected message buffer is searched from top to
end in reading envelopes one by one. Each envelope is 16
bytes in length.

Three integers are compared for emulating key match-
ing on host PC. Before key matching, envelope is copied
to main memory of host PC. Bodies of unwanted messages
received earlier are not evacuated from unexpected message
queue in this experiment.

The results of this evaluation are shown in Fig. 4.
Horizontal axis means the buffer depth from top of unex-
pected message queue to envelope of specified message in
MPI Irecv( ).

Without LHS on DIMMnet-2 is the slowest. In this
case, an envelope is read using a VL command from
SO-DIMM via Read Window which is a kind of vec-
tor register mapped on user space. VL command is not
suitable for small data block such as envelope. Using
LHS on DIMMnet-2, acceleration ratio of time for search-
ing unexpected message queue is 14.3. 44.4ns per mes-
sage for searching unexpected message queue is needed on
DIMMnet-2 with LHS. DIMMnet-2 with LHS operating at
100MHz can search unexpected message queue 2.3 times
faster than QsNET-II operating at 200MHz. This is 38.5
times higher than that of IBM BlueGene/P [8] although the
frequency is 8.5times slower than BlueGene/P. 500MHz
ALPU with 128 cells always a little faster than 100MHz
DIMMnet-2 with LHS. When the depth on 500MHz ALPU
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with 128 cells becomes more than 600, it takes more time
than 200MHz DIMMnet-3. That is, even though LHS oper-
ates at lower frequency, its scalability is higher than ALPU
with respect to performance.

Memory accesses with vector load commands have
high latency on DIMMnet-2. This is a reason why the im-
provement of latency in searching long unexpected message
queue is significant with LHS. The above-mentioned per-
formances of QsNET-II and ALPU are achieved by higher
frequencies. These frequencies are twice and five times than
that of DIMMnet-2 by implementation based on ASIC, re-
spectively. Therefore, if a comparison is performed at the
same frequency, the effect of LHS would be bigger than
what was illustrated by Fig. 4.

Very large memory on next version hardware named
DIMMnet-3 will achieve good scalability for large node
number and avoid latency increase. SO-DIMM access la-
tency using vector load command is about 600ns. Main
memory and LH buffer access latency is about 100ns.
Therefore, acceleration ratio caused by the special memory
organization is about 6. This cannot entirely explain the ac-
celeration ratio of 14.3. There is other reason why the ac-
celeration ratio of 14.3 is achieved. 44.4ns is smaller than
access latency for main memory. This shows that LHS in-
creases cache hit ratio. The program used does not have
explicit software prefetching. Therefore, LHS makes cache
and hardware prefetching of host CPU effective.

Moreover, we can use IPUSH in addition to LHS.
IPUSH can reduce the number of traverses of the unex-
pected messages queue by grouping. Because reduction in
the number of traverses is executed at 14.3 times higher
speed with IPUSH and LHS, significantly low-latency un-
expected queue traversing can be achieved on DIMMnet-2.

4.3 Effect by Setting of Prefetching in Searching Unex-
pected Message with LHS

We have measured the unexpected message searching
latency with the effect of hardware prefetcher (HWP)
and software prefetching instructions (SWP). “Hardware
prefetcher” means hardware-based implicit data prefetching
mechanism of many CPU such as Intel Pentium 4/D. “Soft-
ware prefetch instructions” mean Intel’s SSE prefetch in-
structions (e.g. prefetchnta, prefetcht0, and so on). We have
evaluated on DIMMnet-2 in the following six conditions:

(1) HWP is off, SWP is off.
(2) HWP is on, SWP is off.
(3) HWP is on, SWP is on. (Offset of Software prefetching

address is 0byte. Timing of prefetching is late.)
(4) HWP is off, SWP is on. (Offset of Software prefetching

address is 0byte. Timing of prefetching is late.)
(5) HWP is off, SWP is on. (Offset of Software prefetching

address is 256byte.)
(6) HWP is off, SWP is on. (Offset of Software prefetching

address is 512byte.)

We have evaluated on environment shown in Table 3

Fig. 5 Effect by several settings of prefetching in searching unexpected
message on DIMMnet-2.

Fig. 6 Effect by several settings of prefetching in searching unexpected
message on DIMMnet-3 (emulated by main memory of PC shown in
Table 3).

for DIMMnet-3 in the following four conditions:

(1) Cache attribute of LH buffer is Uncacheable.
(2) HWP is off, SWP is off. Cache attribute of LH buffer

is Writeback.
(3) HWP is on. Cache attribute of LH buffer is Writeback.
(4) HWP is on. Cache attribute of LH buffer is Writeback.

All access for LH buffer is forced on cache by deleting
cache-line flushing instructions.

The results of this evaluation for DIMMnet-2 and
DIMMnet-3 are shown in Fig. 5 and Fig. 6 respectively.

For DIMMnet-2, condition (2) which uses only hard-
ware prefetcher was best. The performances vary according
to the setting of prefetching.

For DIMMnet-3, performances in condition (2) and (3)
do not have big difference from that in condition (4) in
which all access for LH buffer is forced on cache. LHS acts
very effectively in order to enhance cache hit ratio of host
CPU.

On the environments using DIMMnet-2 and
DIMMnet-3, positive effects on cache of host processor
by LHS are confirmed with the experiments in this sec-
tion. Since DIMMnet-2 does not have enough host interface
bandwidth, sensitivity of the setting of prefetching is bigger.

On the other hand, since DIMMnet-3 has enough host
interface bandwidth, sensitivity of the setting of prefetch-
ing is smaller. The difference between cache-enabling or
not is very big. The bandwidth of dual channel 200MHz
DDR2 host interface is 6.4GB/s for DIMMnet-3 with dual
channel DIMM interfaces. This is enough for MPI queue
processing with LHS and a single core of Pentium D 840
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(3.2GHz). This shows that farther acceleration on frequency
of LHS does not contribute on performance well. The
performance bottleneck on DIMMnet-2 environment was
DIMMnet-2. On the other hand, the performance bottle-
neck on DIMMnet-3 environment becomes host CPU. Us-
ing other commercial compiler or multi CPU cores for the
acceleration of software part is a subject for future work.

5. Adopting to State of Art Systems

Since main parts of this research are done in the middle
of the decade of the 2000s, the environments of evalua-
tions are a little old. The circumstances surrounding have
been changed. In this section, the discussions for adopting
proposed method to state of art processors and systems are
presented.

5.1 Multi-Core or Many-Core Environments

Multi-core or many-core environments are widely used re-
cently and in near future. Multi-core or many-core environ-
ments are better than single core environments on our partial
on loading strategy for queue processing. Figure 7 shows
concept of an enhanced NIC for host CPU with multicore.

Multi-cores or many-cores can execute liner searching
for queue with shorter depth in parallel, if NIC can exe-
cute grouping messages. Grouping -using the rank which
is bound to a core and a sub-queue make the depth shorter.
We can implement simple hardwired hashing functions to
select a sub-queue based on the rank of MPI message.

In addition, production cycle of CPU is shorter than
that of NIC. Therefore, replacing by newer CPU can im-
prove performance of queue processing easier than improv-
ing hardware or firmware on NIC.

5.2 One Sided Communication and PGAS Environments

One sided communication and PGAS (Partitioned Global
Address Space) environments will be used more widely in
near future. In some cases, the problem to be solved with
proposed method can be avoided with one sided commu-
nication semantics. However, changing semantics means
rewriting and re-optimizing applications. MPI is widely
used because it is standardized and foremost de-fact stan-
dard on HPC environments. Though many PGAS languages

Fig. 7 The concept of an enhanced NIC for host CPU with multicore.

have been proposed, there is no de-fact standard such as
MPI. Most of scientists do not want to concentrate into re-
writing and re-optimizing their MPI applications but their
scientific matters. In these circumstances surrounding, MPI
applications are going to remain as de-fact standard for at
least a few years.

Some of one sided communication and PGAS envi-
ronments are implemented as a translator to MPI program,
since MPI can be used on most of all HPC platforms. For
example, ARMCI (Aggregate Remote Memory Copy Inter-
face) [21], [22] and Global Arrays (GA) [23]–[25] are ported
based on such strategy. In such case, user cannot optimize
translated MPI programs. Fine grained MPI communica-
tions are easily generated on such system with large number
of processors. Therefore, there are some situations which
need proposed method even if it is one sided communica-
tion and PGAS based environment.

In some PGAS environments such as XcalableMP [26],
[27], MPI is used with PGAS environments in order to opti-
mize performance. In such environment, performance cen-
tric parts will be written in MPI preferably. There is a possi-
bility that the proposed method helps performance of PGAS
based environment.

5.3 Exa FLOPS Class Systems

Exa FLOPS class systems in the end of the decade of the
2010s have been actively discussed for a few years in US
and Japan. In such systems, they say that hundreds of thou-
sand socket processors will be used. The need of strong
scaling situation and low latency communication between
many processors will be increasing. In US, IAA (Institute
for Advanced Architectures and Algorithms) is one of the
developers of Exa FLOPS machine supported by Sandia Na-
tional Laboratory and OakRedge National Laboratory. It
lists the improving MPI latency and scalability of MPI mes-
sage throughput as a focused area [28] in their web page and
presentation [29]. ALPU for MPI queue processing is writ-
ten as a starting point of this focused area. The problems
to be solved by ALPU and our LHS are the same. In the
context of Exa FLOPS machine, accelerating scalable MPI
queue processing with these technologies is important.

5.4 Application Trends

Not only the conventional HPC applications, but also the
graph processing is having higher attention recently. Al-
though Top500 lists have been had high attention from HPC
users, character of graph applications is far different from
Linpack used for Top500. Graph500 lists are established
several years ago in order to cover such new kind of de-
mands for HPC. This kind of application easily generates
fine grained communications on systems with large num-
ber of processors. Communication patterns of them are
not uniform because of the character of each graph. In the
real graph processing, for example PageRank for web sites,
some sites such as Google’s toppage have huge number of
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connections. This means the existence of communication
hot-spots which need help of proposed method.

6. Related Work

In order to reduce latency of sending short messages, several
trials have been performed with commercial NICs such as
QsNET-II and Infiniband. They use the firmware running
on on-chip CPU with lower performance than host.

QsNET-II [1] supports a quick sending mechanism for
short messages called STEN, which is similar to BOTF [8],
[14], [16] in DIMMnet-2. However, in such systems, re-
ceiver has no performance enhancement techniques such as
LHS proposed here. The only exception is the firmware
of on-chip CPU called “Thread Processor” for off-loading
the matching process on QsNET-II, but the improvement is
limited. If the number of unexpected messages increases
in MPI for QsNET-II using Tports, it is reported that delay
time increases in proportion to it. About 100ns per message
for searching unexpected message queue is needed on Qs-
NET and QsNET-II even if their processing speeds are dif-
ferent [3]. This operation may need external memory access
per message on them. On the other hand, LHS increases
cache hit ratio for searching unexpected message queue.
DIMMnet-2 with LHS operating at 100MHz can search un-
expected message queue 2.3 times faster than QsNET-II op-
erating at 200MHz.

Hashing is also an effective method in the case only to
implement scaleable searching unexpected message queue
with less hardware. However, hashing degrades communi-
cation latency under almost all situations in MPI commu-
nications. Minimum communication latency is one of the
most important items in a catalogue of an NIC, thus the
degradation of the latency may lead to commercial dam-
age. On the other hand, applications and situations in which
time of searching unexpected message queue causes trou-
bles are limited. Therefore, we suppose that implementa-
tion of low latency under any situation should take highest
priority. The improvement of time of searching unexpected
message queue should take the second priority.

As regards research on acceleration for MPI queue pro-
cessing with hardwired logic, two approaches can be distin-
guished. In Underwood’s work [5], a hardware acceleration
unit named ALPU for MPI queue processing is proposed.
However, ALPUs consume many logic gates by using many
hardware comparators. The number of ALPUs on FPGA
is limited to a relatively small number such as 128 or 256.
Moreover, when unexpected queue length exceeds the num-
ber of ALPUs, the latency for traversing long unexpected
message queue becomes larger. The K-computer and Exa
scale machine require about tens of thousands of nodes or
more. In some applications, queue length grows to 20%
of the number of nodes. Therefore, ALPU does not have
enough scalability. In this approach the searching process
is done by NIC. On the other hand, searching process with
LHS is done by host computer. Superior performance is ex-
pected for our approach using high performance host CPU

based on multi-core technology. Our LHS-based method is
different from theirs because envelope needed for searching
is sent to host at low latency without processing on NIC.
ALPU consists of random logic gates. Main part of LHS
(i.e. LH buffer) does not consist of them but a simple on-
chip memory. Hardware cost of ALPU [30] is far higher
than LHS. For a large system, LHS can enlarge the number
of entries or the number of groups in unexpected message
queues more easily than with ALPU.

Ternary Content Addressable Memory (TCAM) is
a hardware that is mainly used for the Table look-up in TCP /
IP based communication. The structure of TCAM is similar
to that of ALPU. If this is used for matching in MPI, there
is a possibility that problems caused by insufficient capacity
of ALPU may be relaxed. However, the strategy to achieve
higher capacity by replacing the ALPU to the TCAM is not
for massively parallel machines. The reason is high cost,
power consumption (Example: 23W [31] for 100K words,
128bit key length) and an increase of latency for off-chip
access even on good situation. In addition, since the struc-
ture is simpler than ALPU, the configuration using TCAM
can not guarantee FIFO feature between pair of RANK by
itself. Therefore, to achieve the semantics of MPI in the
configuration using TCAM, it is necessary to add a software
tasks. As a result, the overhead such as present in TCP / IP
is added.

In Tanabe’s work [15], a hardware acceleration unit
named IPUSH for MPI queue processing is proposed.
IPUSH realizes multiple unexpected queues associated with
the key information such as RANK. This will reduce the
length of each unexpected message queue to be traversed.
However, in the DIMMnet-2 case, the latency for each ac-
cess to traverse unexpected message queue on SO-DIMM
seemed larger than that for conventional -PCI-based NICs.
Our LHS-based method is different from theirs because
envelope needed for searching is sent to host not from
SO-DIMM but from low latency on-chip LH buffer.

MX [32] supports a variable threshold message length
to switch between the Rendezvous protocol and the Eager
protocol. In addition, if the Rendezvous protocol is selected,
the information stored in unexpected queue is only match-
ing information of MPI. For this reason, readers might think
that LHS with optional registers to implement the variable
threshold is similar to the MX. On the other hand, LHS is
aimed for further acceleration of short messages transported
with Eager protocol which is chosen by MX etc. MX’s
variable-threshold function and Rendezvous protocol which
sends only matching information at first can not achieve the
objective of speeding up of short messages. In addition, the
behavior is different from each other in many ways. For ex-
ample, the splitting place, the storing location of the second
part of the message, and the ability to include payload in the
first part of the message are different.

Header splitting is an existing method that is eas-
ily confused with LHS. It is used in TCP Offload En-
gine (TOE) [6] and Intel I/O Acceleration Technology
(IOAT) [7]. Differences between LHS and Header Splitting
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are the following five points.

(1) Header Splitting just divides a header and its payload.
On the other hand, LHS can accelerate short messag-
ing with dividing the message including a part of its
payload.

(2) LHS creatively uses fast memory and slow memory ac-
cording to the location in the message.

(3) In LHS, dividing packets are conducted with hardwired
logic based on a simple rule instead of software in
a CPU on an NIC.

(4) Header Splitting is an off-loading approach. On the
other hand, LHS is an on-loading approach. Compar-
ing with LHS is processed in a host CPU instead of
a CPU on an NIC.

(5) Header splitting involves splitting and storing the
header and payload of a transport layer. LHS accel-
erates handling of envelope in MPI, which is a kind of
header of the application layer processed by a message
passing library.

There have been no previous reports of research on the
effect of separation of an envelope in MPI and a payload for
short message which is used with Eager Protocol. This re-
search clarified for the first time the effect of the separation
in searching a buffer of MPI is very high. Our paper first de-
scribes the right way of using hardware or software, an NIC
or a host and kinds of memory. It first describes dividing
packet in a different layer of Header Splitting. Moreover,
our paper first describes its quantitative evaluations about
scalability of searching queue by separating a packet into
two parts.

7. Conclusions and Future Work

In this paper, network interface architecture for scalable
message queue processing named LHS is presented. LHS
can be applied to NICs without extended memory such as
DIMMnet.

The acceleration ratio for searching message queue by
LHS on DIMMnet-2 is 14.3. The acceleration ratio caused
by the special memory organization of DIMMnet-2 is about
6. The remaining acceleration is caused by the effects of
caching and prefetching. The absolute searching perfor-
mance of DIMMnet-2 with LHS is 2.3 times higher than that
of QsNET-II [1]. It is 38.5 times higher than that of IBM
BlueGene/P [8] although the frequency is 8.5times slower
than BlueGene/P.

ALPU [5] which is a hardware accelerator for search-
ing message buffer has better searching performance than
QsNET-II. Even though LHS operates on at lower fre-
quency, its scalability is higher than ALPU in with respect
of a performance. We confirmed the best setting of prefetch-
ing for LHS is using hardware prefetcher without software
prefetching.

LHS has higher scalability than ALPU in the perfor-
mance per frequency. However, the searching latency for
unexpected messages queue with 1000 messages is about 30

microseconds using LHS without grouping. This latency is
too large to be hidden by overlapping computation and com-
munication. Therefore, one order of magnitude improve-
ment from this latency is desired in order to keep better ap-
plication scalability. Further improvement of this latency us-
ing several LH buffers which hold parts of unexpected mes-
sages classified properly with hardware supports is promis-
ing. For example, coupling LHS and a mechanism of group-
ing messages into multiple queues with hardware such as
IPUSH [14] can overcome defects of linear searching. The
investigation about the combination of these mechanisms is
the future work.

It is needed to evaluate with a large number of nodes
in order to realize such situations with real applications.
Therefore, benchmarking overall application speedup by
LHS with NPB etc. on a small system is not very mean-
ingful for evaluating scalability. Meaningful evaluations of
scalability with real applications can not be executed on our
small experimental environment. It must be a future work.
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