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SUMMARY This paper presents a study of the applicability of clusters
of GPUs to high-resolution 3D simulations of cardiac electrophysiology.
By experimenting with representative cardiac cell models and ODE solvers,
in association with solving the monodomain equation, we quantitatively
analyze the obtainable computational capacity of GPU clusters. It is found
that for a 501×501×101 3D mesh, which entails a 0.1mm spatial resolution,
a 128-GPU cluster only needs a few minutes to carry out a 100,000-time-
step cardiac excitation simulation that involves a four-variable cell model.
Even higher spatial and temporal resolutions are achievable for such simpli-
fied mathematical models. On the other hand, our experiments also show
that a dramatically larger cluster of GPUs is needed to handle a very de-
tailed cardiac cell model.
key words: GPU cluster, simulation of cardiac electrophysiology, high
resolution, monodomain equation, cardiac cell model

1. Introduction

Simulating the cardiac bioelectric activity at the tissue level
can be a demanding computational task, due to a spatial res-
olution requirement down to 0.1 mm and a temporal reso-
lution requirement down to 0.01 ms (or even below), see
e.g. [7]. At the same time, sophisticated cardiac cell models
can involve up to one hundred state variables, thus requir-
ing robust and computationally intensive solvers for the re-
lated systems of ordinary differential equations (ODEs). If
quick turnover time (say, a few hours) is desirable for sim-
ulating an entire heart cycle with the above computational
details, use of very large parallel computers is mandatory.
In [8], near-realtime monodomain simulation of human car-
diac electrophysiology (within one minute) was achieved,
leading to a scalable parallelization on up to 16,384 CPU
cores.

With the relatively recent advent of general-purpose
GPUs, which can deliver massive computational power,
many subjects in computational science have started to
adopt this hardware technology. Computational cardiol-
ogy is no exception for GPU computing. The monodomain
equation and ODEs of cardiac tissues were solved on a
single GPU in [10], running 20 times faster than a quad-

Manuscript received December 26, 2012.
Manuscript revised June 7, 2013.
†The authors are with School of Computer, National University

of Defense Technology, 410073, Changsha, P. R. China.
††The author is with the Department of Informatics, University

of Oslo, P.O. Box 1080 Blindern, NO-0316 Oslo, Norway.
∗Presently, with Simula Research Laboratory, P.O. Box 134,

NO-1325 Lysaker, Norway.
a) E-mail: chaijun200306@nudt.edu.cn

DOI: 10.1587/transinf.E96.D.2587

core CPU for 2D cardiac simulations. Bartocci et al. [2]
showed that through careful and model-specific optimiza-
tions, 2D/3D simulations involving realistic and detailed
cardiac cell models now can be performed in times that are
close to real time using one GPU. Previous studies have
also investigated for cardiac simulations using a small num-
ber of GPUs. The cardiac monodomain simulations in [12]
demonstrated the speedup of a 3D code with four GPUs by
a factor of 1.6 compared with 32 CPU cores. Vigmond et
al. [14] showed that solving a set of non-linear ODEs with
the cardiac monodomain model on four GPUs could be sped
up by a factor in the range of 9–17 compared with four CPU
cores. In [9], the cardiac bidomain model was ported to
a four-GPU platform, where effective architecture-specific
optimizations of the underlying explicit numerical methods,
together with fine grained parallelization strategies, gave a
drastic improvement (a factor of 2460) of a 3D simulation,
compared with using a single CPU core. In [6], by using
a state-of-the-art model of rabbit ventricles, the benefits and
scalability of cardiac bidomain simulations running on 6–20
GPUs were demonstrated. The most recent work in [1] par-
allelized a 2D monodomain model using a hybrid CPU-GPU
approach, and showed that the hybrid implementation (using
64 CPU cores and 16 GPUs) was nearly 7 times faster than
the CPU-only implementation (using 64 CPU cores) when
running on an 8-node cluster.

To the best of our knowledge, however, there exists no
quantitative study of the performance of GPU clusters with
more than 20 GPUs, when applied to cardiac electrophys-
iology. This paper thus aims to investigate this topic by
looking at several relevant issues about programming and
performance tuning. The purpose is to provide the readers
with a realistic expectation of achievable cardiac dynamics
simulations on large clusters with more than 100 GPUs.

In this paper, we start with explaining the mathemati-
cal model and numerical strategies. Then our parallel imple-
mentation is described with details of CUDA programming.
In the subsequent numerical experiments, we analyze the
performance of three types of parallel simulations that have
run on up to a 2001 × 2001 × 401 spatial mesh and used up
to 128 GPUs.

2. Mathematical Model

The propagation of bioelectric activity in the heart can be
mathematically described by either the monodomain equa-
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tion or the bidomain equations. As argued in [4], these two
mathematical models can produce almost identical propa-
gation sequences, proivded that no current is injected into
the extracellular space. We therefore adopt for this paper
the monodomain model as the underlying partial differential
equation (PDE).

More specifically, the monodomain equation is a PDE
of the following form:

∂v

∂t
= ∇ · (σ∇v) + f (v, s, t), (1)

where v denotes the transmembrane potential, which is the
primary unknown of the monodomain model. The conduc-
tivity tensor is denoted by σ. Moreover, the known f func-
tion is related to the total ionic current, which depends on v
and s, with the latter denoting a set of state variables.

The dynamic relationship between v and s is further de-
scribed by a system of ODEs, which give a mathematical de-
scription of the bioelectric properties of cardiac cell tissues.
For this paper, we will adopt two cell models, one developed
by Bueno-Orovio et al. [3] and the other by Grandi et al. [5].
The first cell model has four state variables (including v),
whereas the latter has 39 state variables (including v). For
simplicity, we will refer to these two cell models, respec-
tively, as the Bueno model and the Grandi model throughout
the following text. The rationale behind choosing these two
cell models is that they span a reasonable spectrum of math-
ematical (and numerical) complexity, with the Bueno model
being the simplest model for describing human ventricular
action potentials, whereas the Grandi model is very detailed.

3. Numerical Strategies

A standard splitting technique is applied to the monodmain
Eq. (1), with the purpose of separating the numerical treat-
ment of the diffusion term ∇ · (σ∇v) and the reaction term
f (v, s, t). The latter is incorporated into the system of ODEs.
Finite differences and forward-Euler temporal discretization
are applied to the purely diffusive PDE arised from split-
ting. More specifically, during each time-step, the following
formula is used to first compute an intermediate v solution:

ṽ�i, j,k = v
�
i, j,k +

σxΔt
Δx2

(
v�i−1, j,k − 2v�i, j,k + v

�
i+1, j,k

)

+
σyΔt

Δy2

(
v�i, j−1,k − 2v�i, j,k + v

�
i, j+1,k

)

+
σzΔt
Δz2

(
v�i, j,k−1 − 2v�i, j,k + v

�
i, j,k+1

)
, (2)

which is then used as the initial v condition for solving the
system of ODEs from t = �Δt until t = (�+1)Δt. Note, in the
above formula, the superscript � is the index for the temporal
direction, whereas the subscript (i, j, k) contains the spatial
mesh point indices. Moreover, we have also assumed in the
above formula that the conductivity tensor σ has only three
nonzero constant diagnoal values.

When solving the involved system of ODEs, we have

Fig. 1 An algorithmic overview of the PDE-ODE numerical scheme.

adopted two strategies. One is the very simple forward-
Euler method, the other is a generalized 2nd-order extension
of the Rush–Larsen method [11]. The generalized Rush–
Larsen solver [13], denoted GRL2, is both more stable and
accurate than the forward-Euler solver. However, with re-
spect to the computational cost, the GRL2 solver is 3m times
more expensive than the simple forward-Euler solver, where
m denotes the number of state variables involved.

The main computational work of this PDE-ODE nu-
merical scheme is a time-stepping procedure, which is the
while-loop shown in Fig. 1. As the data structure, there are
totally 5 or 40 three-dimensional arrays, of which the key ar-
rays are U and U PREV , representing the v solution on two
consecutive time levels. There are three tasks per time-step.
First, a seven-point stencil is applied to array U PREV as
the PDE part. Second, either forward-Euler or GRL2 works
as the ODE solver, to update all the state variable arrays
(including array U). At last, the surrounding ghost-point
layer of array U is updated for the enforcement of zero-flux
boundary conditions.

4. Parallel Implementation

There is massive parallelism in the PDE-ODE numerical
scheme, suiting very well for parallel computing. Data ex-
change is only needed between the nearest neighbor pairs,
in connection with solving the PDE part.

4.1 Using Multiple GPUs

The entire 3D spatial domain is divided into box-shaped
subdomains, matching the available GPUs. MPI is used
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Fig. 2 Flowchart of cardiac simulations on a GPU-enhanced cluster.

to enable the needed inter-subdomain data exchange. For
the current hardware architectures, the GPUs have to go
through their host CPUs for each MPI communication. Nev-
ertheless, comparing with only using CPUs for the com-
putations, the performance can be greatly enhanced on a
GPU-enhanced cluster, by offloading the computations to
the GPUs. In this host-slave parallel implementation of a
GPU-enhanced cluster, the CPUs are responsible for all MPI
communications, whereas GPUs do the computations using
CUDA threads, as shown in Fig. 2.

The detailed flowchart of our cardiac simulations on a
GPU-enhanced cluster is shown in Fig. 2. Each host CPU
first initializes the data structure for its subdomain. Then,
all the 3D arrays are transferred to the GPU side, which is
responsible for all the computations. At the end of each
time-step, MPI communication between pairs of the near-
est neighbors is invoked by the host CPUs. This incurs the
overhead of GPU-CPU-GPU data copy, which only touches
the outermost boundary layer of each subdomain array U.

Fig. 3 Thread block granularity and use of GPU’s memory hierarchy.

In addition to the above-mentioned overhead of shuf-
fling boundary data between CPUs and GPUs, another lim-
iting factor is that the GPUs usually have a smaller memory
size than that on the host CPUs.

4.2 Computational Kernel on GPU

One detail of GPU programming for our case is about map-
ping the PDE-ODE computation to the CUDA threads. Data
processing thread granularity and on-chip data locality have
a major impact on a GPU kernel’s performance. Figure 3
shows the organization of thread and data for the GPU com-
putation kernel. Supplying a basic GPU implementation
without extensive performance optimization, our purpose is
to reveal a baseline performance to cardiac researchers, who
may not be skilled at GPU programming.

First, at the top level, we partition a subdomain mesh
of U that is assigned to a GPU into several sub-blocks of
size (n + 2) × (m + 2) × (k + 2), as shown in Fig. 3. Each
such sub-block has an inner n × m × k region plus a sur-
rounding boundary layer. Due to no need of communi-
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cation, the other state variable arrays need only to be di-
vided into n × m × k sub-blocks, i.e., without overlapping
boundary layers. Then, on the second level, we assign each
thread block of the GPU to perform computations on one
sub-block, making use of the massive parallelism of multi-
ple Stream Multi-processors (SMs) that constitute a GPU.
Memory access locality should be carefully considered. Us-
ing the global memory of a GPU is costly, whose access
latency is around 400 ∼ 600 cycles, while those of the on-
chip shared memory and registers are less than 10 cycles. As
shown at the bottom of Fig. 3, we elaborately distribute data
to the global/shared/register memory respectively. Data pro-
cessed by a thread block are loaded into the shared and local
memory, on which the threads operate. In our 7-point sten-
cil computations, each point value of U is used seven times.
The seven global memory references can thus be replaced
by seven shared memory references.

In our current implementation, each CUDA thread pro-
cesses one mesh point, including its 7-ponit stencil compu-
tation and ODE solver. In total, 256 threads constitute a
thread block, running on a SM of the GPU. This setting
of thread granularity is to make as many thread blocks as
possible to feed the 448 SPs in 14 SMs on a Tesla M2050
GPU.

5. Numerical Experiments and Discussion

Similar to [7], we have also chosen a cuboid as the 3D ge-
ometry of the cardiac tissues. Zero-flux boundary conditions
are assumed. The size of our spatial domain is 5 × 5 × 1cm.
The value of σx is chosen as 3.2×10−4 cm2/ms, and σy = σz

has value 1.3× 10−4 cm2/ms. We have mostly experimented
with three spatial meshes: 501×501×101, 1001×1001×201
and 2001 × 2001 × 401, which have 0.1mm, 0.05mm and
0.025mm as the spatial resolution, respectively.

5.1 Simulation Setup and Results

As the hardware platform for all of our numerical experi-
ments, we have used one portion of the Tianhe-1A Hunan
Solution supercomputer [15], which is currently ranked as
the world’s No. 30 supercomputer according to the TOP500
list published in November 2012 [16]. This supercomputer
consists of 2048 nodes connected via a customized THNI
network. Each node is equipped with two six-core In-
telX5670 (Nehalem-EP) 2.93 GHz CPUs and one Tesla
M2050 GPU, together with 24GB DDR3 main memory
and 3GB GPU global memory. Each GPU is attached to
a dedicated PCI Express 2.0 bus (16 lanes, 16GB/s of bi-
directional bandwidth). All the nodes are connected to a fat-
tree interconnect with custom network interface and switch
chips, where each channel has 160 Gbps bi-direction band-
width. We used MPICH2 version 1.3.2 for inter-node com-
munication, and CUDA v3.2 for GPU programming.

We have run three types of cardiac simulations, which
are denoted by BF (Bueno cell model with forward Euler
ODE solver), BG (Bueno cell model with GRL2 solver) and

Fig. 4 2D cross-section of a 3D solution involving the Bueno cell model.

Table 1 Hardware counter statistics per mesh point and time step of a
CPU implementation.

#DP #MEM #L1 cache #L2 cache #L3 cache
FLOPs OPs miss miss miss

BF 235 234 0.967 0.107 0.061
BG 2956 2354 1.020 0.125 0.075
GG 202068 172347 8.159 2.097 1.246

GG (Grandi cell model with GRL2 solver). It is remarked
that the simple forward Euler solver often cannot produce
stable numerical solutions for the Grandi cell model, there-
fore not used in connection with this advanced model. First,
we tried a small mesh size on a single GPU and a single
CPU core for obtaining a reference performance. Then we
ran larger mesh sizes using multiple GPUs. Figure 4 shows
a 2D cross-section of the 3D solution from BF, obtained at
t=690ms.

5.2 Single GPU v.s. Single CPU Core

We ran the three simulations on a single GPU and a sin-
gle CPU core, respectively. Because of the limited size of
GPU’s global memory, we set the data mesh to 126×126×26
for these small runs. The number of time steps was fixed at
100.

For the purpose of understanding the performance dif-
ferences between BF, BG and GG, we used PAPI [17] to
get the hardware counter statistics on CPU. The measure-
ments are shown in Table 1. On one hand, due to the com-
plex cell model with 39 states and the GRL2 solver, GG
needs 202068 floating-point operations per mesh point at
every time step, about one thousand times more than BF,
which has the simplest combination of cell model and ODE
solver. On the other hand, with the same ODE model, the
computation efforts of BF and BG differ because the GRL2
solver is drastically more expensive. Despite a large amount
of floating-point and load/store operations, the numbers of
L1/L2 data cache misses are relatively low because of good
data locality, which is proper for achieving high perfor-



CHAI et al.: SIMULATING CARDIAC ELECTROPHYSIOLOGY
2591

Table 2 Statistics of memory usage by a single GPU (126 × 126 × 26 mesh, 100 time steps).

Amount of memory allocated # memory accesses
registers shared memory local memory constant memory shared memory local memory global memory
per thread per block per thread per kernel per warp per warp per kernel

BF 62 13232 bytes 32 bytes 44 bytes 415296 256032 1708108
BG 66 13232 bytes 160 bytes 56 bytes 415296 2820384 1708685
GG 77 13232 bytes 1632 bytes 124 bytes 437472 594472032 35640718

Table 3 Performance comparison between a single CPU core and a sin-
gle GPU (126 × 126 × 26 mesh, 100 time steps).

CPU GPU GPU/CPU
Time GFLOPS Time GFLOPS speedup

BF 9.4s 1.02 0.4s 23.05 23
BG 113.7s 1.07 2.3s 54.28 51
GG 5610.0s 1.46 258.3s 31.68 22

mance.
Table 3 compares the performance between a single

GPU and CPU core, where GFLOPS denotes 109 double-
precision floating-point operations per second. We can see
that using a GPU is much faster than using a CPU core,
achieving about 20× ∼ 50× speedup. BG gets the largest
speedup, and the reason is discussed below.

Comparing with CPU, the advantage of GPU comes
from thousands of threads running on hundreds of cores,
where the threads can utilize zero-cost context switching to
hide the memory access latency. Hence, the GPU compiler
allocates private on-chip registers for each thread. When
there are insufficient registers, the GPU compiler will use
the local memory in addition. However, GPU’s local mem-
ory is off-chip, as expensive as accessing the global memory,
which requires 400 ∼ 600 clock cycles of memory latency.
The achievable performance is thus limited by the memory
latency. We have summarized in Table 2 the GPU’s mem-
ory usage reported by CUDA Profiler. The complex Grandi
cell model, which has 39 state variables, requires using more
registers, local memory and constant memory, as is evident
by comparing BG and GG in Table 2. Consequently, the
numbers of accesses to the local and global memory by GG
are dramatically larger. This explains why the obtained per-
formance of GG (in terms of GFLOPS) is lower than BG.
The reason for the inferior performance of BF is due to a
relatively low computation intensity.

Comparing BG with GG, their performance difference
on a single CPU core is opposite to that on a single GPU.
This is due to the architectural differences. When there are
not enough registers on CPU, data is held in the caches,
which are much faster to access than the off-chip local mem-
ory of GPU. As shown in Table 1, hardware and software
data prefetch on CPU keeps the cache miss ratios very low.
Therefore, a higher computation intensity makes GG more
advantageous than BG on the CPU architecture.

5.3 Performance on Multiple GPUs

Now, we will investigate the strong-scaling property of
multi-GPU simulations that ran on three spatial meshes:

Table 4 Time usage (in seconds) of BF, BG and GG (501 × 501 × 101
mesh, 100 time steps).

# GPUs
16 32 64 128

BF-total 1.709 1.034 0.629 0.418
copy 0.648 0.338 0.185 0.087

compute 0.838 0.433 0.227 0.110
comm 0.223 0.263 0.217 0.221

BG-total 8.952 4.611 2.482 1.345
copy 0.665 0.336 0.180 0.087

compute 8.058 3.955 2.062 0.973
comm 0.229 0.320 0.240 0.284

GG-total 1011.594 507.593 253.722 127.088
copy 0.644 0.346 0.184 0.087

compute 1010.717 506.842 253.255 126.685
comm 0.233 0.405 0.283 0.316

File I/O 0.076 0.044 0.034 0.021

Table 5 Time usage (in seconds) of BF and BG (1001×1001×201 mesh,
100 time steps).

# GPUs
16 32 64 128

BF-total 14.32 9.27 4.63 2.85
copy 4.83 2.44 1.24 0.60

compute 6.48 3.32 2.05 1.01
comm 3.02 3.51 1.34 1.23

BG-total 71.50 38.12 22.99 12.07
copy 4.85 2.44 1.27 0.62

compute 63.52 32.64 20.40 10.16
comm 3.14 3.04 1.32 1.29

Table 6 Time usage (in seconds) of BF and BG (2001×2001×401 mesh,
100 time steps).

# GPUs
32 64 128

BF-total 81.53 43.50 27.08
copy 19.30 9.92 5.60

compute 25.83 15.86 7.51
comm 36.40 17.72 13.97

BG-total 312.30 186.54 96.87
copy 19.20 9.79 5.59

compute 254.14 158.55 73.95
comm 38.96 18.21 17.33

501×501×101, 1001×1001×201 and 2001×2001×401. The
detailed time usages are shown in Tables 4-6, which include
the intra-node CPU-GPU data copy overhead, GPU kernel
overhead and inter-node MPI communication overhead.

We can see in Table 4 that all the time costs decrease al-
most linearly with the increasing number of GPUs used. For
a fixed mesh size, when more GPUs are used, the speedup
achieved by GG is the best because the overheads have the
least impact.
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(a) Mesh Size=501 × 501 × 101 (b) Mesh Size=1001 × 1001 × 201 (c) Mesh Size=2001 × 2001 × 401

Fig. 5 Strong scaling characteristics (in terms of GFLOPS) of BF, BG and GG.

(a) BF (b) BG (c) GG

Fig. 6 Breakdown of the computation time of BF, BG and GG into the PDE and ODE parts, with
mesh size=501 × 501 × 101 and 100 time steps.

According to Table 4, BF spends only 0.418 second to
finish one hundred time steps using 128 GPUs. To simulate
an entire heart cycle, supposing 105 time steps are needed
(using Δt = 0.01ms), 418 seconds (seven minutes) are suf-
ficient. On the other hand, GG spends 127 seconds for ex-
ecuting 100 time steps on 128 GPUs, which can be trans-
lated to 35 hours for a 105-time-step simulation of an entire
heart cycle. The scalability of GG for using more GPUs
will, however, be better than that of BF.

For practical studies, it is important to regularly store
the computed results to files. If an entire simulation takes
105 time steps, i.e., Δt=0.01ms, it might be necessary to save
to the files every 100th time step. We have therefore listed,
as the bottom row of Table 4, the time spent on storing the
v solution for one time step. It should be noted that this I/O
cost does not depend on the particular numerical scheme,
and is negligible in comparison with the total cost of 100
time steps. Moreover, the cost of I/O decreases as more
GPUs are used, because the amount of subdomain data that
each GPU stores to file decreases. In the Tianhe-1A sys-
tem [15], several I/O management nodes and hundreds of
I/O storage nodes are connected with all the compute nodes
via a high-speed interconnect network with low latency and
high bandwidth, leading to parallel and fast file I/O opera-
tions.

For Table 5, the spatial mesh was enlarged 8 times
in comparison with Table 4. As expected, the property of
strong scaling prevails in Table 5, as is also confirmed by

Table 6 that used a global mesh of 2001 × 2001 × 401. The
reason of not showing measurements of GG in Tables 5
and 6 is simply because running 100 time steps on these
two huge meshes took too much time for GG. Also, for the
2001 × 2001 × 401 mesh, the aggregate global memory of
16 GPUs was not large enough for running BF or BG, thus
no measurements for 16 GPUs in Table 6.

We have also translated the time measurements of Ta-
bles 4-6 into GFLOPS rates in Fig. 5. It can be seen that
all the simulations got increased rates of GFLOPS as more
GPUs were used. We can also see that BG achieved the
highest GFLOPS rates among the three numerical schemes,
corresponding to the same observation in Table 3. In partic-
ular, BG achieved 5565 GFLOPS using 128 GPUs, translat-
ing to an average of 43 GFLOPS per GPU, which is more
than 8% of the theoretical peak performance of the M2050
GPU (515 GFLOPS).

To further dissect the computation time usage, we have
plotted in Fig. 6 a breakdown into two parts: PDE time us-
age and ODE time usage. This dissection is associated with
running 100 time steps on the 501 × 501 × 101 mesh. On
average, the time used by the ODE solver amounts to 75%,
97% and almost 100% of the total computation time, asso-
ciated with BF, BG and GG, respectively.

5.4 Discussion of Communication Cost

The overhead incurred by the inter-subdomain MPI com-
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(a) Mesh Size=501 × 501 × 101 (b) Mesh Size=1001 × 1001 × 201 (c) Mesh Size=2001 × 2001 × 401

Fig. 7 Accumulated MPI communication overhead over 100 time steps.

Table 7 The maximum amount of MPI communication (in MBytes) per
GPU at every time step.

Mesh size # GPUs
16 32 64 128

501 × 501 × 101 2.4 1.28 0.74 0.41
1001 × 1001 × 201 16.4 8.4 4.5 2.4
2001 × 2001 × 401 128 64.8 33.6 18.8

munication is worth a closer look. To this purpose, we have
plotted in Fig. 7 the time spent on the MPI communication
by 100 time steps. It should be noted that the MPI overhead
should be independent of the numerical scheme, because the
frequency and amount of MPI data exchange are the same
for BF, BG and GG. Therefore, the differences between the
three numerical schemes in Fig. 7 are due to noises in the
time measurement and also because of the dynamic status
of network contention. Nevertheless, there are some inter-
esting observations.

First, for a given number of GPUs, the MPI overhead
increases with the increased global mesh size. This fol-
lows naturally from the fact that the amount of MPI data
exchange increases, as illustrated by Table 7. The reason of
not seeing an increasing factor of 4 between two consecutive
global mesh sizes in Table 7 is because different partition-
ing strategies were adopted. Take the case of 16 GPUs, we
partitioned the 501× 501× 101 mesh into a [1, 4, 4] decom-
position, whereas the 1001×1001×201 mesh used a [1, 2, 8]
decomposition and the largest 2001×2001×401 mesh used a
[1, 1, 16] decomposition. The varying decompositions were
motivated by the wish to maintain an appropriate size of the
thread blocks, while satisfying an old version of the CUDA
driver that only allows one thread block per GPU in the z-
direction.

Second, for a fixed global mesh size, the MPI overhead
fluctuates as the number of GPUs increases. This is because,
although the amount of MPI data exchange per GPU de-
creases as more and more GPUs are in use, the factor of
communication latency may still be influential, especially
for the smallest 501 × 501 × 101 mesh. The influence of
latency decreases as the mesh size becomes larger. More-
over, the topological structure of the Tianhe-1A intercon-
nect network is a hierarchical fat tree [15]. At the bottom
level, 16 nodes are connected with each other through the

switch board in each rack. This means that communication
within 16 GPUs has a higher bandwidth than that involving
32 GPUs or more.

5.5 Predicting Time Usage

Considering the observed linear trend of total time usage
with respect to the mesh size, while assuming good scalabil-
ity, we can derive a simplistic formula for roughly predict-
ing the time cost of cardiac simulations on a GPU enhanced
cluster as follows:

Te=
MS × Fa × Nt

P × R × NG
, (3)

where Te denotes the expected total time usage. Ms is the
mesh size and Fa is the average floating-point operations
per point at every time step, which can be measured by a
performance tool such as PAPI (running a small simulation
on CPU). Nt denotes the number of time steps. P is the
theoretical peak performance of one GPU. R is the realisti-
cally achievable fraction of the peak, which can be estimated
such as between 5% and 8% from our experiments. NG is
the number of GPUs used in the simulation.

6. Conclusion

In this paper, we have looked at multi-GPU simulations of
cardiac electrophysiology, from the angle of achievable per-
formance and scalability on up to 128 GPUs. By choos-
ing two representative cell models and two representative
ODE solvers, we believe that our investigation can pro-
vide cardiac researchers with a realistic estimate of the ac-
tual capability of GPU-enhanced clusters for such computa-
tions. Painstaking and model-specific GPU code optimiza-
tions have thus not been our focus in this paper. We also
believe that, for sophisticated cell models that involve many
state variables, scalability can be achieved on even larger
numbers of GPUs, giving the hope of efficiently carrying
out demanding simulations of cardiac electrophysiology.
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