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SUMMARY Rule engine technologies have been widely used in the
development of enterprise information systems. However, these rule-based
systems may suffer the problem of low performance, when there is a large
amount of facts data to be matched with the rules. The way of cluster or grid
to construct rule engines can flexibly expand system processing capability
by increasing cluster scale, and acquire shorter response time. In order to
speed up pattern matching in rule engine, a double hash filter approach for
alpha network, combined with beta node indexing, is proposed to improve
Rete algorithm in this paper. By using fact type node in Rete network, a
hash map about ‘fact type - fact type node’ is built in root node, and hash
maps about ‘attribute constraint - alpha node’ are constructed in fact type
nodes. This kind of double hash mechanism can speed up the filtration
of facts in alpha network. Meanwhile, hash tables with the indexes cal-
culated through fact objects, are built in memories of beta nodes, to avoid
unnecessary iteration in the join operations of beta nodes. In addition, rule
engine based on this improved Rete algorithm is applied in the enterprise
information systems. The experimental results show that this method can
effectively speed up the pattern matching, and significantly decrease the
response time of the application systems.
key words: Rete algorithm, double hash filter, beta node indexing, rule
engine

1. Introduction

Rule engine, also known as production system, is a com-
mon way to build expert systems. It has been widely used
in many fields such as business, science, engineering, man-
ufacturing, and medicine. The approach to distributed rule
matching and multiple firing based on MapReduce can pro-
mote the performance of rule engine for massive rules rea-
soning, and keep the consistency of working memory in the
process of distributed rule matching.

Business rule in rule engine usually defines or restricts
some aspects of enterprise business. It is used to identify
the business structure, control or influence business behav-
iors. There are two existing forms of business rule in enter-
prises. One form is coded in all kinds of enterprise informa-
tion systems (EISs), that makes these EISs hard to adapt to
the changes of business requirements, and causes the diffi-
culty in system maintenance and updation. The other form
not only contains the knowledge and business experiences
grasped by the employees, but also exists in all kinds of
non-formal documents, such as program operation manuals,
enterprise agreements and contracts. The second form lacks
of effective unified management, and will disappear with the
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turnover of employees and the damage of documents, result-
ing in the invisible loss of the enterprise soft power.

In order to solve these problems, more and more en-
terprise systems adopts Rule Engine [1] to realize the sep-
aration of business rules and business logics, and decou-
ple the frequent changes of business rules from information
systems, which greatly enhances the intelligence, robust-
ness and adaptability of systems, including expert systems
and EISs. The corresponding Business Rules Management
System (BRMS) [2] can uniformly define and manage all
kinds of business rules with the form of production rules,
which makes the business knowledge effective to maintain
and reuse. However, these rule-based systems may have a
performance bottleneck, when there is a large amount of
facts data to be matching with rules. So it is urgent to present
more efficient pattern matching algorithm to handle this per-
formance problem.

The Rete algorithm is so far considered as the most ef-
ficient pattern matching algorithm, and was first proposed
by Dr. Charles L. Forgy of Carnegie Mellon University in
1974. And he gave the more detail description of the Rete
algorithm in his Ph.D. thesis, and a paper in 1982 [3]. Rete
has been applied in numerous rules engines such as OPS5,
CLIPS, Jess and ILOG JRules, to realize efficient pattern
matching.

In order to meet some special requirements and appli-
cation scenarios, many researchers have made some adapt-
able improvement for Rete algorithm [4]–[11]. Dooren-
bos [4] added left unlinking and right unlinking to Rete,
which made the improved Rete more suitable to large scale
of rules. Liping Yan and Zhenyun Pan [5] speeded up pro-
cessing efficiency when the system deleted facts, through
storing parent records and children records in the items of
alpha memories and beta memories. Zhijun Ren and Ding
Xiao et al. Ref. [6], [7] made Rete support the ‘or’ connec-
tion of patterns, and use shadow proxy mechanism to update
fact data. For the problem of Rete lacking of support for
time-sensitive patterns, Ref. [8]–[11] have used timestamp
technology to extend Rete to deal with facts and events si-
multaneously, support relative temporal constraints and tem-
poral reasoning.

All the above improvement researches of Rete algo-
rithm haven’t solved the problem of slow propagation, when
large amounts of facts enter Rete network. This paper in-
troduces fact type node to Rete algorithm, and constructs
hash maps for successor nodes in root node and fact type
nodes, then speeds up the propagation of facts in alpha net-

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



2636
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

work. Meanwhile, it constructs indexes for facts in beta
node memories, and decreases unnecessary join tests. Fi-
nally, this improved Rete algorithm is deployed in the rule
engine based on MapReduce, and applied in several enter-
prise information systems. The experimental results show
that this algorithm can improve the speed of pattern match-
ing, and reduce system execution time.

2. Inferring Cycle of Rule Engine

A typical rule engine contains three parts: Production Mem-
ory (PM), Working Memory (WM) and Inference Engine.
The most important Inference Engine consists of three com-
ponents: Pattern Matcher, Agenda and Execution Engine.

As shown in Fig. 1, the rule engine will execute the fol-
lowing “Match-Resolve-Act” cycle. The rule engine loads
the facts input by users as the initial working memory ele-
ments (WMEs) into WM, which will match with the rules
of PM in pattern matcher. Those rules whose condition
parts match the contents of current WM are instantiated and
added into the Agenda. There may be more than one rule
instantiation, which form a conflict set. The Agenda selects
just one appropriate instantiation, according to some conflict
resolution strategies. The execution engine is responsible
for executing the action part of selected instantiation. The
involved operations include: adding new WMEs to WM,
deleting existing WMEs from WM, and modifying exist-
ing WMEs in WM. Afterwards, these changes of WM will
match with the rules. The rule engine will repeat the above
inferring cycle, until there is no instantiation in the Agenda.
The WM at this moment represents the terminal state of rule
engine, and contains the final processing results.

Because most rule engines consume about 90% of exe-
cution time in match phase of the inferring cycle [3]. When
the number of facts dramatically increases, the rule engine
will spend more time in matching WMEs with rules to ac-
quire firing rule instantiations. So the match phase becomes
the performance bottleneck of rule engine, and it needs effi-
cient pattern matching algorithm to solve this problem.

Rete algorithm is the most widely used pattern match-
ing algorithm, and applied in the pattern matcher to build a
pattern recognition network—Rete network, thus realizing
the efficient match of facts and rules. Rete uses the temporal
redundancy and structure similarity to match the rules with
the changes of WMEs, greatly decreasing the execution time
in the match phase of rule engine.

Fig. 1 The inferring cycle of rule engine.

3. A Novel Rete Algorithm Based on Double Hash Fil-
ter and Node Indexing

3.1 Overview of Rete Algorithm

The Rete algorithm compiles pattern elements in the condi-
tion parts of all production rules in rule base into a dataflow
recognition network, called Rete network, which acts as the
pattern matcher of the inference engine. Rete uses the tem-
poral redundancy to continuously store the matching states
of the match phase in the inferring process, and only deals
with the changing parts of WM. Rete also uses the struc-
ture similarity of rule-based systems, extracts similar pat-
terns or pattern set from several rules as the public compo-
nents to share with other distinct components, which greatly
decreases the computation in public parts.

The input of Rete network is a serial of tokens repre-
senting changes of WM, which includes the initial facts in-
serted into WM by the user, and the modification made by
the act phase of the inferring cycle. The output of this net-
work includes the changes to the conflict set, the addition
and removal of rule instantiations in the conflict set made
by the matching of facts and rules.

The original Rete network [3] contains five kinds of
nodes: root node, constant-test nodes, memory nodes, two
input nodes and terminal nodes. As shown in Fig. 2, the root
node is the input node of network. The constant-test nodes,
also called alpha nodes, lie in the first layer of Rete network.
They store these attributes having constant values, and per-
form the intra-condition tests, which judge whether WMEs
satisfies the constant value of the corresponding condition
elements or not. The tokens which pass all the constant
tests of a condition element are stored in the alpha mem-
ory. The two-input nodes are also named beta nodes or join
nodes. The two inputs of these nodes respectively connect
with a beta memory and an alpha memory. The token set
from the beta memory are compared the consistency of the
variable bindings with the tokens from the alpha memory,
and the results are stored in the subsequent beta memory.
There is at least one terminal node corresponding to each

Fig. 2 The Rete network based two sample rules.
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Fig. 3 The sample alpha network constructed by basic Rete algorithm.

rule in the rule base. When the condition part of a rule is
fully matched, the corresponding tokens will arrive at the
terminal node, representing that an instantiation of this rule
should be added into or removed from the conflict set. The
parts from root node to alpha memories in Fig. 2 constitute
the alpha network, which mainly does the intra-condition
pattern matching. The rest parts in Fig. 2 form the beta net-
work that primarily processes the inter-condition join op-
erations. The alpha network plus the beta network is the
integral Rete network.

3.2 Rete Algorithm Based on Double Hash Filter and
Node Indexing

In the original Rete, the root node is attached directly with
several alpha nodes, which are used to do the constant value
tests for attributes of the facts. When there are large amounts
of fact types respectively containing many attributes, this
kind of one-to-many relation between the root node and al-
pha nodes will result in slow propagation of tokens in the
Rete network.

For example, there are a fact type of Bird with at-
tributes of ‘fly’, ‘color’ and ‘legs’, a fact type of Person
with attributes of ‘gender’, ‘age’ and ‘city’, and a fact type
of Table with attributes of ‘height’, ‘width’ and ‘material’.
The alpha network is constructed according to the basic Rete
shown as Fig. 3, in which the root node is attached with al-
pha nodes of these nine attributes. When there are numerous
fact instances with the type of Bird, Person and Table, the
Rete network may test the value of ‘city’ for the instances of
Bird type, test the value of ‘fly’ for Person instances, or test
the ‘gender’ value for Table instances. When the Rete net-
work in Fig. 3 involves more fact types with more attributes,
the value tests of these unrelated attributes will spend more
time, which makes facts propagation slowly in the alpha net-
work.

In response to the above issue, this paper introduces
fact type node to the Rete network, and classifies the al-
pha nodes according to the involved fact type. A hash map
factType2NodeMap is constructed in root node, and uses the
fact type as key and the fact type node as value, to realize
quick searching and locating from the root node to the target
fact type node. Similarly, a hash map attConstr2NodeMap is
built in each fact type node, using the involved attribute con-
straint of the alpha node as key and the corresponding alpha
node as value. As presented in Fig. 4, when large amounts
of tokens propagate from root node to alpha nodes, the alpha

Fig. 4 The alpha network with the double hash filter mechanism.

Fig. 5 The pseudo-code of the alpha network building process adding
double hash filter mechanism.

network adopting this kind of double hash filter mechanism,
firstly uses some tokens of the fact type as key to find the
corresponding fact type node in root node. The token then
enters the alpha nodes corresponding to this fact type for fur-
ther processing. This filter mechanism avoids iteration tests
of large number of unrelated alpha nodes, and dramatically
reduces the propagation time of tokens in the alpha network.

The implementation of the hash map used in this
improved Rete algorithm is the ConcurrentHashMap in
java.util.concurrent. The factType2NodeMap used in root
node is with type of <Class<?>, FactTypeNode>, and the
attConstr2NodeMap used in fact type Node is with type
of <String, AlphaNode>. No matter what kind of domain
knowledge used by BRMS, the alpha network building pro-
cess with double hash filter mechanism is the same, and the
corresponding of the pseudo-code is presented in Fig. 5.

The construction of the Rete network begins with cre-
ating root node. Each rule in the production memory is
acquired its pattern elements. As for the pattern element
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p of the current rule r, if the corresponding fact type node
doesn’t exist in the factType2NodeMap of root node, a fact
type node factTypeNode will be created, and a map item will
be added into the factType2NodeMap using the correspond-
ing fact type as key and factTypeNode as value. Then as for
each attribute constraint c of the current pattern p, an alpha
node alphaNode is created, and a hash value hashKey is cal-
culated with the parameters of attribute name, operator and
attribute value of c. Then an item is added into the attCon-
str2NodeMap of fTypeNode, using hashKey as key and al-
phaNode as value. Pattern elements of all the rules will be
processed respectively, until the construction of the alpha
network is completed.

A beta node has two inputs: one accepts tuples (lists
of facts), and the other accepts facts. The former is placed
in the left beta memory of the beta node, and the latter is
held in the right alpha memory of the beta node. When tu-
ples enter into the left memory of the current beta node, they
need to do join tests with all the facts in the right memory.
Similarly, when facts enter the right memory, they will join
with all the tuples in the left memory. The join operations
in the beta node are consistency test of some variable bind-
ings. A new tuple will be created and propagated to the suc-
cessor node after the success of the join operation. When
the number of facts entering the two sides of the beta node
increases dramatically, it may cause the situation that each
fact in the alpha memory will compare with each tuple in
the beta memory. It is a time-consuming task, and forms
another performance bottleneck of the Rete network, which
can be effectively solved by using beta node indexing tech-
nology [12].

Figure 6 presents the process of constructing and us-
ing indexes for facts in the input memories of the beta node.
This paper adopts the element list to store specific facts or
tuples. Each element list corresponds with a unique index
value, and all the references of the first items in these el-
ement lists form a hash table. When a fact element factk

enters into the right alpha memory of the current beta node,
a hash value hashCode will be acquired with the parameter
of this fact element, and then an index number index will be
calculated corresponding to hashCode. If an element match-
ing hashCode in the element list related to index is found, it
will return the corresponding element list if found, and use
the containing facts to join with the tuples in the left mem-

Fig. 6 The application process sample of the beta node indexing.

ory. If the element list related to index is not found, it will
create a new one adding this fact, and return this element
list.

By this method, when new facts enter the current beta
node, it can use the facts of the element list satisfying some
specific constraints to join with the tuples in the left input
memory, which avoids unnecessary iteration tests by the
way of narrowing the data extent.

4. Application of Improved Rete Algorithm

4.1 Distributed Rule Engine Based on MapReduce

The rule engine based on the improved Rete algorithm pro-
posed in this paper can integrate with all kinds of enterprise
information systems as the form shown in Fig. 7. Originally,
the frequent changing business rules are coded in the appli-
cation systems, documented in the files with the paper or
electronic versions, or grasped by the business employees as
experiences. These forms of business rules lacking of uni-
fied management and maintenance are easily lost and dam-
aged. The situation changes when introducing the business
rule management platform including the rule engine. Busi-
ness rules and business knowledge are stored in rule base
with the form of production rules. The expression and edit-
ing process of this knowledge are done in the business rule
modeling tool. The Web-based business rule management
system uniformly manages and maintains the rule resources
in rule base. All kinds of enterprise information systems in-
teract with the rule engine through the engine APIs. The
rule engine receives the business data from the outside, uses
rules in the rule base to match and process it, and returns the
final results.

MapReduce [13] is a programming model used to pro-
cess and generate massive dataset in the circumstance of
distributed clusters in large scale. The programs based
on MapReduce have intrinsic parallelism, and can run
in the cluster of moderate commercial machines. These
MapReduce-based programs have two phases: Map and Re-
duce. In map phase, the master server gets inputs, splits
them into smaller subtasks and assigns them to the map
workers; then map workers receive and process the given
inputs, produce intermediate key/value pairs. Then into re-
duce phase, the intermediate results with the same key are
acquired by a specific set of reduce workers, and merge into

Fig. 7 The integration way of the EISs and the rule engine.
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Fig. 8 The distributed matching and multiple firing rule engine based on
MapReduce.

smaller set of key/value pairs; these outputs are sent to and
processed by the master server into the final results.

This paper aims at combining the multiple rule firing
method based on access control with the MapReduce-based
distributed rule matching, and developing a rule engine with
functions of distributed matching and multiple firing. This
rule engine adopts the master-salve pattern to build, consist-
ing of a master server and several workers. The workers
can be divided into two categories: map worker and reduce
worker. The architecture of the overall distributed system
is presented in Fig. 8. The master server needs not only to
monitor and manage the workers in the runtime and do the
pre-process of the rule set, but also to dispatch the match
tasks to the cluster, select and execute the compatible rule
instantiations generated by the multiple rule firing method
in this paper after the completion of the resolve phase. Map
workers are in charge of building the local Rete network,
and executing the specific distributed matching task. Re-
duce workers are responsible for resolving the intermediate
matching results, and sending the final results to the master
server.

The distributed rule engine will go through the follow-
ing phases:

• Build Phase: After the cluster starts up, the master
server firstly acquires some state information of the
workers in the distributed environment; secondly, it de-
composes the rules and reconstructs them into sub-rule
sets, and keeps related information preparing for merg-
ing the intermediate matching results, selecting and ex-
ecuting rules; then it selects and dispatches sub-rule
sets according to the running state of the map work-
ers. Map workers receive the rule sets from the master
server, and build them into the Rete network with dou-
ble hash filter mechanism and beta node indexing.
• Map Phase: Not only for the loading of initial fact

sets into the WM, but also for the adding, deleting and
modifying of WMEs in the inferring cycle, the mas-
ter server encapsulates all these WM changes as token
sets. Then according to some strategy, it dispatches
them to the appropriate map workers for matching.
Map worker receives the tokens and inserts them into
the local Rete network to generate the intermediate
matching results with the form of <key, value>, which

indicates some specific sub-rule has been matched suc-
cessfully.
• Reduce Phase: Reduce workers receive the location in-

formation of the intermediate results from the master
server, and read these results from the corresponding
map workers by remote procedure call. Then the in-
termediate results with the same key are merged, and
matching results with the form of <key′, value′> are
generated and sent to the master server.
• Select Phase: The results sent by reduce workers corre-

sponds with a serial of rule instantiations, which are put
into the agenda of master server. Master server selects
the compatible rule instantiation set from the conflict
rule set according to the multiple rule firing method
proposed in Sect. 3.
• Act Phase: Then master server executes the RHSs of

these compatible instantiations, which will add, delete
and modify the WMEs in the WM.

It will repeat the process from the map phase, until the
agenda is empty or there is an execution of some explicit
shutdown rules. Then the inferring cycle of this distributed
rule engine completes. The elements in the WM of master
server are just the final processing results, corresponding to
the terminal state of the distributed rule engine.

Comparing with the naive MapReduce-based pro-
grams, the MapReduce-based distributed rule engine firstly
has more phases in the processing cycle. Secondly, except
for the rule files are as one kind of the inputs and built into
Rete network in memories of map workers, the facts or busi-
ness data are as the other kind of inputs and processed and
stored in memories. The inputs and computations of native
M/R programs are based on files in most occasions, but the
data and computation of the proposed distributed rule en-
gine are based on memories, in view of the characteristics
of Rete algorithm and the process phases of the rule engine.

The rule engine illustrated in Fig. 8 can meet the pro-
cessing challenge of massive rules in certain extent. But
when the rule scale reaches to TB or even exceeds, the sys-
tem execution time will become much longer and the pro-
cessing stress of master server will dramatically increase.
So the system architecture with single master server will re-
sult in potential security risks. In order to avoid the system
performance bottleneck caused by the problem described
above, it needs to do further functional expansion for this
architecture.

The rules can be divided into many application cate-
gories according to the application domains, and each cat-
egory can be further divided into several more specific lev-
els with tree structures. This tree hierarchy existing in do-
main rules determines that the usage of domain rules also
has certain hierarchy. Therefore, we can keep the manage-
ment mechanism of single master server corresponding to
single cluster, and process the domain rules in current cat-
egory of the same application domain. It needs to expand
the system architecture by using the way presented in Fig. 8.
That will make the distributed rule engine better respond to
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Fig. 9 The rule engine architecture for the processing requirements of
massive rules.

the processing requirements of massive rules.
As shown in Fig. 9, we can construct rule engine

for massive rules according to the steps described below.
Firstly, it needs to construct several clusters in accordance
with the system architecture with single master server,
and build a supermaster server above the multiple master
servers. Secondly, in the supermaster, the rules with the
scale of TBs are divided according to the top application
domain, and rule sets with a moderate scale are dispatched
to the clusters managed by each master server. Thirdly, the
map workers in each cluster build the received rules into the
Rete network. Fourthly, the supermaster sends the fact set
to the appropriate master server according to the involved
application domain, the cluster managed by the latter will
process the specific rule reasoning. Finally, after some clus-
ters finish their reasoning, the belonging master server sends
the final results to the supermaster server. In the process de-
scribed above, the reasoning between the clusters managed
by the supermaster server is in parallel; that means the dis-
tributed matching in each cluster is also in parallel.

Additionally, the clusters in Fig. 9 can be classified into
two kinds. One is the cluster having the system architec-
ture with single master server, the workers in which do the
distributed rule matching based on MapReduce. The other
is the expanded cluster with the transform-master server,
which acting as forward node manages the belonging mas-
ter servers and dispatches the corresponding fact sets. This
kind of cluster with tree structure constructed through the
transform-master server is to meet the hierarchical applica-
tion requirements of the massive domain rules.

The expanded rule engine architecture can be adjusted
through the horizontal and vertical ways, enlarging the scale
and complexity of the clusters. Accordingly, the throughput
of the overall system will be increased, and the system exe-
cution time will be shortened. The rule engine architecture
illustrated in Fig. 9 accords with the hierarchical application
requirements of domain rules, and can effectively meet the
processing challenge of massive rules.

4.2 Application Result

In real business environments we involve and develop
such as the Automatic Generating Test Paper System
(AGTPS) [14], the Wage Tax Calculation System (WTCS)
and the Mobile Fee Calculation System (MFCS), the BRMS
is used as a basic midware component. It manages the busi-
ness rules applied in those EISs, and provides the rule en-
gine to support business decisions. The present and man-
ageable forms of business rules are all kinds of rule files, but
the usage of these rules in EISs are compiled into Rete net-
work to match domain data. In the application fields of the
EISs mentioned above, domain data or business data is en-
tered by user through web pages and stored in database. The
Rete network must exist in the memories access the process-
ing nodes of the distributed rule engine, so does the process
of rule computation. The I/O may happen just under these
circumstances: a) the rules are read by the distributed rule
engine, b) the domain data (facts) are sent into or returned
from the distributed rule engine, c) intermediate results are
sent between master and workers in the distributed rule en-
gine. The memories of expandable clusters can hold the rule
match network, business data as well as the whole process
of rule computation.

AGTPS is one of the research achievements of Excel-
lent Course Construction Project of the Zhejiang Univer-
sity of Technology, contains two subsystems for the com-
mon question base management and [14] generating test
paper management. The AGTPS uses 11 attributes such
as id, type, difficulty, cognitive level, subject, knowledge
point, content, key, score, answer time and exposure to de-
scribe a question in the system, which correspond to an 11-
dimensional vector (a1, a2, a3, . . . , a11). Generating a test
paper with n questions actually determines an n ∗ 11 ob-
jective matrix. The sum of the particular column elements
in this matrix should meet some constraints involved in to-
tal score, total time, and score distributions about question
type, cognitive level, difficulty and knowledge point.

After inputting the constraint values of a test paper, the
user selects “Computer Network” as the subject of the target
test paper, and enters the score distribution of the involv-
ing knowledge points: physical layer (15), data link layer
(15), network layer (30), transport layer (20), application
layer (10), network security (5), and introductions (5). Then
the “The Fifth Test Paper for Computer Network” is en-
tered as the test paper name, the test time is 120 minutes,
the total score is 100, and the expected average score is 75.
The score distribution of question type is: selection (20),
fill in black (22), judgment (8), correction (0), calculation
(30), programming (0) and explanation (20). Additionally,
the entered score distribution of the four cognitive levels is:
memorizing (30), understanding (30), application (20) and
synthesis (20). After pressing the “Generating” button, the
system will send these constraint values containing in this
web page to the background rule engine for processing.

The verification procedures of these constraint values
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Fig. 10 The sample Rete network constructed by the rule file.

Fig. 11 A test paper generated according to constraint values.

for generating the test paper are expressed by production
rule and stored in the rule file. When it needs to add a new
verification procedure or modify some existing ones, the
modification is only made in the rule file. The AGTPS can
adapt to the changes of the application requirements with a
few modification or none, which makes the system have a
better robustness and maintainability.

The AGTPS uses rule engine to compile the rule file
to build the Rete network presented in Fig. 10, and adopts
the improved Rete algorithm to verify the validation of the
parameters for generating test papers. It then combines with
the auto-generating test paper algorithm based on the im-
proved genetic algorithm to generate the objective test pa-
per, within an acceptable response time. Figure 11 shows an
example of generated test paper.

The personal income tax calculation module of the
WTCS accepts the pre-tax wage entered by users, and dis-
plays the tax and after-tax wage. The package fee calcula-
tion module of the MFCS receives the consuming informa-
tion of a mobile package, processes it according certain mo-
bile fee calculation rules, and represents the corresponding
billing information. The two modules of these application
system use rule engine to perform the corresponding busi-
ness processing.

Considering the application scenarios of improved
Rete algorithms mentioned in [4]–[11] are quite different
from the involved existing EISs mentioned above, and the
comparison between them with the proposed one is unnec-
essary, so this paper just compares the improved Rete de-
scribed in Sect. 3.2 with the basic Rete which already exists

Fig. 12 The execution time comparison of Rete algorithms in the form
of basic, only with double hash and with all the two improved approaches.

Table 1 The system configuration of the experiment.

in those EISs.
Figure 12 represents the total execution time spent

by the corresponding business modules of the WTCS and
MFCS, adopting the basic Rete and the improved Rete.
The system configuration of the experiment is shown in Ta-
ble 1. The system abbreviations ending with “1” are the
systems using the basic Rete algorithm, such as WTCS1
and MFCS1. The system abbreviations ending with “2”
are the one adopting the improved Rete algorithm only with
the double hashes, such as WTCS2 and MFCS2. The sys-
tem abbreviations ending with “3” are the one adopting the
Rete algorithm with the two improved approaches, such as
WTCS3 and MFCS3.

Overall, as for the WTCS and MFCS, under the same
scale of facts, the execution time of the systems using Rete
algorithm with the two improved approaches (serials ‘3’) is
generally lower than the original systems adopting the basic
Rete (serials ‘1’). For the fact scale of 1000∼4000, the for-
mer reduces slightly compared to the latter. But when the
fact scale expands from 5000 to 10000, the reducing extent
becomes more obvious. Under the condition of 10000 initial
facts, the execution time of the WTCS drops from 1822.6ms
to 1474ms, and the execution time of the MFCS decreases
from 1766.6ms to 1427.3ms. The overall performance of the
WTCS promotes about 14%-23%, and the one of the MFCS
increases about 19%-25%.

On the other hand, under the same scale of facts and
comparing with basic Rete (serial ‘1’), the execution time
of the WTCS and MFCS is firstly dramatically decreased
by the Rete only with double hashes (serial ‘2’), and then
further decreased by the Rete with the two improved ap-
proaches (serial ‘3’). As for the WTCS with 9000 initial
facts, the execution time of the three serials drops from
1661ms to 1412ms and 1348ms.Comparing to the basic
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Table 2 The system configuration of the cluster.

Rete, the Rete only with double hashes provides about 11%-
18% performance promotion for WTCS, and the one of
MFCS is approximately 15.4%-21.6%.

The experimental results show that the Rete algorithm
with the two improved approaches can speed up the prop-
agation of facts in the Rete network, and thus reduce the
time consumed in pattern matching for the rule engine; the
double hashes can promote the system performance dramat-
ically. Guaranteeing the systems have better flexibility and
maintainability, the proposed improved Rete can reduce the
execution time of the enterprise information systems.

4.3 Performance Evaluation

Hadoop [15] is the most popular and widely used implemen-
tation of the MapReduce programming model, but we im-
plement our prototype of the MapReduce-based distributed
rule engine without Hadoop based on the following reasons:
1) the inputs are always files in scale of TBs in Hadoop-
based programs, while the one in the proposed distributed
rule engine are the small rule files, which cannot make full
use of the advantage of HDFS; 2) the MapReduce imple-
mentation of Hadoop is based on HDFS and the computa-
tion of it is based on files, while the Rete algorithm and pro-
cessing cycle of the rule engine is based on Rete network
and facts in memories.

Because the value of MapReduce programming model
is that it can make best use of moderate commercial ma-
chines to operate distributed parallel computation, as well
as considering the available options in reality, this paper
uses the cluster consisting of several PCs to construct the
prototype system presented in Fig. 8, which contains mas-
ter server, map workers and reduce workers. The system
configuration of master server and workers is shown in Ta-
ble 2. The scale of the clusters with these configurations
which are obviously common and universal can be easily
expanded with relatively low cost.

Most of the available PCs are already installed Win-
dows series OS such as Win XP/Win 7, the performance
evaluation needs to operate in Linux. So usage of VMs is the
best way to construct a large amount of Linux environment
without making incommodity to the users of those PCs.

In order to guarantee the validation of the data, the
statistic of the experimental data is acquired by calculating
the average values of several tests. The experiments are di-
vided into two groups. The first group is under the condition

Fig. 13 The execution time of the system with the MapReduce-based
distributed rule matching.

Fig. 14 The speedup comparison of the distributed rule matching with
different cluster scale.

of giving the initial 600 facts, and evaluates the execution of
MapReduce-based distributed rule engine. In the first test,
the system uses some conflict resolution strategy to select
just one rule instantiation to execute, and does the opera-
tions similar to those described above. The second group of
test evaluates the execution of the system adding the multi-
ple rule firing method proposed in this paper, under the same
conditions.

After several tests, we find that each map worker of
the distributed rule engine in this paper only can compile
at most 10000 rules. Under the condition of the 600 initial
fact instances, the number of the sub-rules is increased from
2000 to 20000, the cluster is successively set as 2, 4, 6 and 8
map workers with 1 reduce worker, to evaluate the execution
of the distributed rule engine. That means the distributed
rule engine adopts the improved Rete algorithm proposed
in this paper. The corresponding experimental results are
shown in Fig. 13 and Fig. 14. Considering the available scale
of the cluster and the processing ability threshold of each
map worker, the scale of testing rules is enough to validate
the effectiveness and performance of the prototype system.

Under the condition of different number of map work-
ers and different size of subrules, the system execution time
without the proposed multiple rule firing method is shown
in Fig. 13, and the serial with the same color represents a
scale of cluster. It can be seen from Fig. 13 that, with the
growth in the number of map workers, the execution time
of the system drops notably; when the number of the sub-
rules increases continuously, this trend becomes more obvi-
ous. With the growth in the number of subrules, the execu-
tion time of the cluster with 2 map workers increases from
1733ms to 22315ms; while the one with 8 map workers in-
creases from 814ms to 8317ms. The execution time of the
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latter increases slowly because there are more map workers.
The distributed parallel matching offsets the execution time
brought by the growth of more rules.

Based on the comparison data of execution time in
Fig. 13, under the same scale of the sub-rules (ranging from
2000 to 20000), the speedup presented in Fig. 14 is derived
from dividing the system execution time with 2 map work-
ers by with other scale of map workers. There is a trend that
more map workers bring more speedup to the system, un-
der the condition of processing the same scale of sub-rules.
However, when the number of sub-rules reaches some scale,
the speedup of the system will slow or even decline in lo-
cal. There is more communication cost due to more map
workers in the cluster, which gradually offsets some speedup
brought by more map workers. Combining with Fig. 13, it
can be seen that this drop in speedup is not so important.
After all, the overall execution time of the system decreases
obviously with the increase of workers. Under the condi-
tion of inputting moderate scale of initial facts, the system
can meet the processing challenge brought by the dramati-
cally increase of rules through enlarging the number of map
workers.

5. Conclusion

This paper proposes a double hash filter approach for alpha
network, combined with beta node indexing to improve Rete
algorithm, with the purpose of speeding up pattern match-
ing in rule engine based on MapReduce, and reducing the
response time of EISs. This approach introduces the fact
type node to Rete network. A hash map about ‘fact type
- fact type node’ is built in root node, and hash maps con-
cerning ‘attribute constraint - alpha node’ are constructed
in fact type nodes. This double hash filter mechanism is
used to speed up the propagation of facts in alpha network.
Meanwhile, hash tables are built with indexes calculated by
the parameters of fact objects entering into the input memo-
ries of the beta nodes, to avoid unnecessary iteration of the
join operation in the beta nodes. The experimental result
shows that the improved Rete algorithm can make the rule
engine support efficient pattern matching in face of massive
facts, and reduce the overall execution time for the applica-
tion systems.
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