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SUMMARY Scheduling plays a key role in MapReduce systems. In
this paper, we explore the efficiency of an MapReduce cluster running lots
of independent and continuously arriving MapReduce jobs. Data locality
and load balancing are two important factors to improve computation effi-
ciency in MapReduce systems for data-intensive computations. Traditional
cluster scheduling technologies are not well suitable for MapReduce en-
vironment, there are some in-used schedulers for the popular open-source
Hadoop MapReduce implementation, however, they can not well optimize
both factors. Our main objective is to minimize total flowtime of all jobs,
given it’s a strong NP-hard problem, we adopt some effective heuristics to
seek satisfied solution. In this paper, we formalize the scheduling prob-
lem as job selection problem, a load balance aware job selection algorithm
is proposed, in task level we design a strict data locality tasks schedul-
ing algorithm for map tasks on map machines and a load balance aware
scheduling algorithm for reduce tasks on reduce machines. Comprehen-
sive experiments have been conducted to compare our scheduling strategy
with well-known Hadoop scheduling strategies. The experimental results
validate the efficiency of our proposed scheduling strategy.
key words: data-intensive computation, MapReduce, Hadoop, algorithm
design, scheduling, grid computing, data locality, cloud computing, flow-
time

1. Introduction

MapReduce [1] has emerged as one of the most popular
frameworks for data-intensive distributed cloud comput-
ing. The benefits of this simple yet powerful programming
model has been demonstrated on a wide spectrum of do-
mains, ranging from search and ads analysis (e.g., [2]–[4]),
bioinformatics (e.g. [5], [6]), to artificial intelligence, ma-
chine learning and data mining (e.g. [7]–[9]).

MapReduce defines a simple computation as a MapRe-
duce job, which is divided into two phases, named map and
reduce. A job starts from the map phase, which consists lof
a cluster of parallel map tasks, job’s inputs are divided into
several small pieces, named splits, each of which is used as
input of a map task and usually located in a computer to
prevent network cost. In map phase, a customized function
on input data is applied, converting each < k1, v1 > into
< k2, v2 > as intermediate output, which are sorted, parti-
tioned and optionally written into local disks if pull-based
data exchange strategy is used, finally each partition will be
copied to a corresponding reduce task. After all interme-
diate results are copied to reduce nodes, the job can start
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Fig. 1 The dataflow of a typical MapReduce job.

reduce phase, which also consists of a number of parallel
reduce tasks, each of which uses a partition of map phase
output as its input. Figure 1 illustrates the dataflow of a typ-
ical MapReduce job in detail.

Compared to other designs, MapReduce provides some
new features described as follows. (i) It abstracts an sim-
ple but expressive programming language interface. Al-
though MapReduce only provides two functions map() and
reduce(), a large number of data analytical workloads can be
expressed as a set of MapReduce jobs, including all kinds of
SQL query, data mining, machine learning and graph pro-
cessing etc. The programming model is also independent of
the underlying storage system and is able to process vari-
ous types of data, structured or unstructured. This storage-
independent design is considered to be indispensable in a
production environment where mixed storage systems are
deployed [10]. (ii) MapReduce achieves elastic scalability
through block level scheduling. The runtime system auto-
matically splits the input dataset into even-sized data blocks
and dynamically schedules them to the available compute
nodes for processing. MapReduce is proven to be highly
scalable in real systems. Installation of MapReduce on a
shared-nothing cluster with 4,000 nodes has been reported
in [11]. (iii) MapReduce provides fine-grained fault toler-
ance whereby only tasks on failed nodes have to be restarted.

However, the performance of MapReduce is still far
from state of the art parallel database systems. According
to a recent comparing study, Hadoop [12], the open source
implementation of MapReduce, is slower than two parallel
database systems by a factor of 3.1 to 6.5 [13]. Thereafter,
optimization problem for MapReduce systems has become
an active research topic in industry and academia.

Data locality is an important heuristic to improve sys-
tem efficiency on massive data processing, which means
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moving computation to where its input is located. The only
challenge of data locality is data location knowledge, in
MapReduce systems (such as Google’ MapReduce imple-
mentation or Hadoop MapReduce implementation), there is
a distributed file system (such as GFS [14] or HDFS [15]) to
maintain data location information, so data locality is very
easy to achieve, however, only high data locality does not
means high efficiency, the second challenge is load balance.
To achieve better load balance, current Hadoop schedulers
adopt a greedy resource allocation strategy, i.e. as soon as a
node becomes free, it requests a task from the central sched-
uler through a heartbeat message, then the scheduler assigns
a task to it according to “best effort” data locality (choose
a task whose input data is on the requesting node from a
task set, otherwise, a remote task is chosen). FIFO sched-
uler queues jobs by job submission time, when a free node
requests a task, the scheduler only find a task from the head
job of the job queue according to “best effort” data local-
ity. Hadoop Fair Scheduler (HFS) [16] is a more popular
scheduler under multi-user environment, which mainly con-
cerns on the fairness among users and jobs. As [17] pointed
out, FIFO and HFS both suffer from poor data locality, and
a simple scheduling strategy named “Delay Scheduling” is
proposed to tackle this issue.

In this paper, we pursue high efficiency of many in-
dependent jobs executing in MapReduce cluster rather than
only data locality as [17] does. Actually, we think efficiency
mainly depends on two aspects: rationality of resource al-
location and load balancing among the cluster. For MapRe-
duce clusters, network bandwidth is considered as scarce re-
source, so most MapReduce schedulers adopt data locality
during assigning map tasks as a rule to improve rationality
of resource allocation. Unfortunately, most schedulers adopt
“best effort” data locality strategy to achieve best load bal-
ancing under some job sequencing strategy, such as FIFO,
Fairness etc. We think this two important factors can be
achieved simultaneously through an sophisticated job se-
quencing strategy. To simplify the problem of data locality,
we adopt strict data locality rather than “best effort” strat-
egy when scheduling map tasks, i.e. pushing map tasks to
the places their inputs reside, regardless of whether comput-
ing nodes are busy or not. Under this premise, we dynam-
ically change job sequence to pursue better load balancing
among the whole cluster. We think this simple scheduling
strategy can achieve better efficiency than in-used Hadoop
schedulers, such as FIFO and HFS, no matter under “best
effort” data locality or strict data locality. Finally, we con-
duct comprehensive experiments to compare our efficiency-
aware scheduling strategy (denoted as EAS) with FIFO and
HFS, under “best effort” locality and strict locality respec-
tively, denoted as FIFO-BE, FIFO-S, HFS-BE, HFS-S re-
spectively.

2. Related Work

There are lots of research work on scheduling problem
of distributed and parallel systems. In high performance

computing (HPC) realm, schedulers like Torque [18] usu-
ally support job priority and resource-consumption-aware
scheduling and the workloads are always batch-oriented.
However, HPC jobs are usually CPU or communica-
tion bound, so data locality is not the key consideration.
Grid schedulers like Condor [19] also support locality con-
straints, but usually at the level of geographic sites, because
the jobs are more compute-intensive than MapReduce.

Recently, there are some studies on improving the per-
formance of MapReduce systems, A. Abouzeid et al. pro-
posed a hybrid parallel data management system named
HadoopDB [20], which combines local databases with
Hadoop, making databases be the underlying processing en-
gines to utilize sophisticated database technologies. Dittrich
et al. provides a customized index structure and the cor-
responding executing algorithms to optimize selection and
join operations on Hadoop, naming Hadoop++ [21]. Afrati
and Ullman worked on optimizing joins in MapReduce envi-
ronment [22]. These works all have improved the efficiency
of Hadoop significantly, however, they are mainly on how to
improve efficiency of a job execution. In contrast, our aim is
to study how to efficiently execute a cluster of independent
jobs on a given cluster of machines, which must be achieved
by efficient scheduling strategy.

Now, we introduce the most recently work on schedul-
ing optimization for MapReduce systems. Pietro Michiardi
et al. design a scheduler labelled FSP [23], which considers
both fairness and efficiency rather than ours efficiency-only
objective, and fairness-only scheduling as HFS [16], similar
as Delay Scheduling [17] expect for the job-level resource
provision like ours rather than task-level used in lots of cur-
rent Hadoop schedulers, what’s more, FSP permits preemp-
tion by job suspension. Joel Wolf et al. propose a schedul-
ing optimizer for MapReduce workloads with shared scans
named as CIRCUMFLEX [24], which aims on optimizing
concurrent jobs with share inputs, on the other hand, we
assume jobs are totally independent, however, we will do
this kind of optimization in future work. Hammoud et al.
propose center-of-gravity reduce task scheduling aiming to
lower MapReduce network traffic [25], which model reduce
input distribution as mass distribution model, by properly
assign reduce tasks to save network cost, so we can call
it data locality in reduce phase, which is not a considera-
tion in our study but in future work. Benjamin Moseley et
al. study the scheduling problem in MapReduce and Flow-
shops [26], which formalize job scheduling in map-reduce
as a novel generalization of the two-stage classical flexi-
ble flow shop (FFS) problem: instead of a single task at
each stage, a job now consists of a set of tasks per stage.
He et al. develop a new MapReduce scheduling technique
to enhance map task’s data locality named as MaBtchmak-
ing [27], which is a very good and efficient scheduling tech-
nique, motivated by improving data locality of map tasks on
the basis of well known in-used Hadoop schedulers, such as
FIFO and Hadoop Fair Scheduler. Like Delay Scheduling,
they all inherit the resource provision strategy on task granu-
larity rather than ours on job granularity, maybe this strategy
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is more flexible, however, we think it will hurt pipeline opti-
mization principle illustrated as Fig. 2, since too many jobs
contend the limited resource.

The closest work we know are Delay Scheduling [17].
In Delay Scheduling, when a node requires a task and cur-
rent selected job according to some job scheduling algo-
rithm has none local task, the scheduler will skip the job and
search for the next job in the light of the same job schedul-
ing algorithm. When there is a job which has a local task
at the requiring node after some round of skip or the delay
threshold is broken, this task assignment is finished. Though
this method can improve data locality, but it must sacrifice
some utilization while waiting, and in some bad conditions
it must wait much time to assign a local task or abandon
locality after sacrificing lots of CPU cycles. What is more,
Delay Scheduling achieves data locality in task level instead
of job level, i.e. it delays free slot allocation to a task from
the front job to the rear job in a given job sequence rather
than change the jobs order, which will result in too many
jobs compete for limited resource in their map phase and
reduce phase. This phenomenon has serious impact on the
resource utilization and throughput of reduce machines.

3. Problem Definition

3.1 Assumptions

To simplify discussion, we make some reasonable assump-
tions which is relevant to implementation rather than model.
These assumptions are summarized as follows.

(i) No pipeline between map and reduce phase, i.e. for
each job, only when all its map tasks finished, its reduce
tasks can be scheduled. (ii) A node either acts as map ma-
chine or reduce machine, i.e. computing nodes of the whole
cluster are divided into two disjoint sets, map machines and
reduce machines. Though this is not the fact in real sys-
tems such as Hadoop cluster, which consider a machine as
both map machine and reduce machine by abstracting a cer-
tain number of virtual map slots and reduce slots on phys-
ical processors, we think both settings perform nearly the
same, because map phase and reduce phase usually use dif-
ferent type of resource, the former is disk-bound, the latter
is network-bound. (iii) For all jobs, their input data in map
phase are uniformly distributed, i.e. if total input data size is
di, then each map machine has di/Nm data, where Nm repre-
sents the total map machines in the whole cluster as defined
in 3.3. Each map task uses a block as its input according
to current Hadoop input splitting strategy. (iv) Preemption
is not permitted as current Hadoop schedulers’s assumption,
given each task is very small and will finish in more or less
one minute. (v) We assume strict data locality, i.e. map tasks
are only permitted to execute on the node where its input
data is located.

3.2 Job Profile

A job consists of two sets of tasks, namely, map task set and

reduce task set, where tasks in a set can be run in parallel,
but the sets themselves have to be run sequentially, where
no reduce task can be started until all map tasks for the job
are completed. Thus, the scheduling problem is precedence
constrained.

There are n MapReduce jobs, denoted as J1, J2, . . . ,
Jn, with n ∈ N and n ≥ 1. Each job Ji consists of
mi map tasks (J1

i , J
2
i , . . . , J

mi
i ) followed by ri reduce tasks

(Jmi+1
i , Jmi+2

i , . . . , Jmi+ri
i ), with mi, ri ∈ N and mi ≥ 1, for all

1 < i < n. Let Bi be the input size of Jm
i , for all 1 ≤ m ≤ mi,

and Ri represents the number of input replicas of Ji.

3.3 Hardware Model

The cluster is consists of Nm identical map machines (used
to run map tasks), Nr identical reduce machines (used to run
reduce tasks), and a managing machine (used to monitor the
whole cluster and scheduling workloads.) For each map ma-
chine, its data processing speed is p bytes per second under
the condition of disk IO. For each reduce machine, its data
processing speed is q bytes per second in the case of network
IO.

3.4 Scheduling

Let π be a schedule of a batch independent jobs. Given
π, for a task of job Ji, let the function sπ(Jm

i ) denote its
starting time and the function fπ(Jm

i ) denote its completion
time, both with respect to the schedule π. We also define
sπ(Ji) = minm sπ(Jm

i ) and fπ(Ji) = maxm fπ(Jm
i ), as the start-

ing and finishing times for job Ji. Let mπ(Jm
i ) be the ma-

chine the task Jm
i is assigned under π. A schedule π for job

Ji is feasible if and only if the following conditions are sat-
isfied: (i) for each Jm

i , with 1 ≤ m ≤ mi, mπ(Jm
i ) ∈ Nm,

i.e. all map tasks of Ji are scheduled only on the map ma-
chines, (ii) for each Jr

i , with mi+1 ≤ r ≤ mi+ri, mπ(Jr
i ) ∈ Nr,

i.e. all reduce tasks of Ji are scheduled only on the reduce
machines, (iii) for each Jr

i and Jm
i , with mi + 1 ≤ r ≤ mi + ri

and 1 ≤ m ≤ mi, sπ(Jr
i ) ≥ maxm fπ(Jm

i ), i.e. each reduce task
for job Ji can not be scheduled until all map tasks for job Ji

are completed.
Let ai be the arrival time of job Ji. The flowtime of job

Ji with respect to a schedule π is f lowπ(Ji) = fπ(Ji) − ai;let
f lowπ =

∑n
i=1 f lowπ(Ji) be the total flowtime. Our objective

is to find a schedule π to minimizing the total flowtime for a
time interval I. Actually, the classical two-stage flow shop
problem (FlS) is an important special case of MapReduce
scheduling problem, where there is only one map machine
and one reduce machine, and FlS is known to be strongly
NP-hard [28]. So, in this paper, we want to utilize some
heuristics to improve our scheduling objective as far as pos-
sible. We divide the problem into two steps, one is map
tasks scheduling on map machines (denoted as πm), the other
is reduce tasks scheduling on reduce machines (denoted as
πr). We also divide the original objective into two indirect
objectives (maximize the throughput of map machines and
reduce machines). For each m ∈ Nm and r ∈ Nr, let T Pm

π
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and T Pr
π represent their throughputs under schedule π, Dm

π

and Dr
π are the total input data size of machine m and r re-

spectively under schedule π, T m
π and T r

π are the completion
times of the last map task and reduce task under schedule
π respectively, with T m

π < T r
π. Then, we can compute each

machine’s throughput according to (1) and (2).

T Pm
π = Dm

π /T
m
π (1)

T Pr
π = Dr

π/T
r
π (2)

Then, the total throughput of Nm and Nr can be ex-
pressed as (3) and (4).

T PNm
π =

Nm∑

m=1

T Pm
π (3)

T PNr
π =

Nr∑

r=1

T Pr
π (4)

Finally, we define our objective function as (5).

max
π
{T PNm

π + T PNr
π } (5)

During πm we adopt two heuristics to improve (1), one
is data locality, the other is load balance among map ma-
chines. During πr we also adopt two heuristics to enhance
(2), one is to balance the load dynamically among reduce
machines, the other is to increase the producing rate of
schedulable reduce tasks as soon as possible by confining
concurrent jobs in πm, given map phase and reduce phase of
the same job accord with producer-consumer model.

4. Scheduling Algorithms

In this section, we design our efficiency-aware scheduling
strategy based on the objective mentioned above, which can
be achieved by three algorithms: load balance-aware job se-
lection algorithm, strict data locality map task scheduling
algorithm, and load balance-aware reduce task scheduling
algorithm.

4.1 Algorithm Design

In job scheduling, we formalize it as a job selection problem
among a cluster waiting jobs to permit the selected job to
obtain resource, aiming to balance load among all map ma-
chines, here we specify a job can obtain as many resource
as it needs under the precedence of its map phase and re-
duce phase if it is scheduled, regardless there is free resource
or not. This requirement does not follow current Hadoop
schedulers, which assigned a resource to a task of a selected
job only when the resource is free, next resource will assign
to a task of another job, such as HFS [16] and Delay sched-
uler [17], except for the default FIFO scheduler. We think
scheduling the whole job by sequence can mitigate the con-
tention of the same type machines (map machines and re-
duce machines), enabling pipeline between map phase and

Fig. 2 Pipelined execution of two MapReduce jobs J1 and J2, Mi and
Ri are the map phase and reduce phase of job Ji, here we assume the size
of each Mi and Ri are big enough to occupy the whole map machines and
reduce machines.

Algorithm 1 Load balance-aware job selection algorithm
Input: J = {J1, . . . , Jn} *The waiting job set*
Output: J *The selected job*
1: for all Ji ∈ J do
2: computing LBNm ,i

π ;
3: if OPT LB > LBNm ,i

π then
4: OPT LB = LBNm ,i

π ;
5: J = Ji;
6: end if
7: end for
8: return J;

Algorithm 2 Map tasks scheduling algorithm
Input: Mi *The map task set of the selected job Ji*
Output: AM < a, b > *The assignment plan of Mi, a represents a map

machine, b is a list of map tasks assigned to a*
{Lmm} *Current load on each map machine*
{Lm} *The load of each map task in Mi*
t = φ *A pointer to a map machine*
when job Ji is selected:

1: for all m ∈ Mi do
2: MM=obtain input locations of m;
3: for all mm ∈ MM do
4: if t == φ then
5: t = mm;
6: else if Lt > Lmm then
7: t = mm;
8: end if
9: end for

10: append < t,m > to AM;
11: Lt = Lt + Lm;
12: t = φ;
13: end for
14: return AM;

reduce phase of different jobs (Fig. 2 illustrates this pipeline
feature by a simple example), resulting in higher efficiency
of the whole cluster.

Firstly, we describe our job scheduling algorithm by
Algorithm 1, which compute the load balance feature among
map machines by simulating to schedule each job in the
waiting job set according to map task scheduling strategy
(show as Algorithm 2), in each simulation, we estimate the
instant load of each map machine if all map tasks of the job
are scheduled, then compute the average load among all map
machines, finally compute the standard deviation of load as
load balance value, when all simulations finished, the algo-
rithm selects the job which make the best load balance.

Secondly, we give map tasks scheduling algorithm for
a selected job Ji (illustrated by Algorithm 2), which will
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Algorithm 3 Load balance-aware reduce tasks scheduling
algorithm
Input: Ri *The reduce task set of the selected job Ji*
Output: AR < a, b > *The assignment plan of Ri, a represents a reduce

machine, b is a list of reduce tasks assigned to a*
{Lrm} *Current load on each reduce machine*
{Lr} *The load of each reduce task in Ri*
t = φ *A pointer to a reduce machine*
when all map tasks in Mi are finished:

1: for all r ∈ Ri do
2: for all rm ∈ Nr do
3: if t == φ then
4: t = rm;
5: else if Lt > Lrm then
6: t = rm;
7: end if
8: end for
9: append < t, r > to AR;

10: Lt = Lt + Lr;
11: t = φ;
12: end for
13: return AR;

happen as soon as an appropriate job is selected, and it is
also used by Algorithm 1 for n times to estimate load bal-
ance feature of each job. In this algorithm, each map task
will be assigned to the map machine where its input data is
located, if there are more than one machine (a common case
in MapReduce systems, given data replicas), the task will be
assigned to the lowest load machine.

Finally, an load balance-aware reduce tasks scheduling
algorithm is proposed (see Algorithm 3 for details.), which
happens after all map tasks of the same job are finished.
For each reduce task, assign it to a reduce machine with the
lowest load, then update the load of this machine.

4.2 Discussions of Time Complexity

First of all, we discuss the time complexity of Algorithm 2
and Algorithm 3, which have impaction on time complexity
of Algorithm 1. Obviously, for a given cluster, Nm and Nr

are both constants, so the time complexity of Algorithm 2
and Algorithm 3 are O(M) and O(R), in which M and R
represent the task numbers of map phase and reduce phase
respectively of the selected job.

Then, we consider the complexity of Algorithm 1,
which contains a possible non-constant computation step
(step 2) in each loop. Given the load of each map ma-
chine can be acquired from each machine, the time com-
plexity of this computation step is actually the complexity
of Algorithm 2 plus O(Nm), so complexity of Algorithm 1
is O(n ∗ (Nm + O(M)), in which Nm is a constant for a given
cluster, and n is also a constant for off-line scheduling, in
which all jobs have arrive at the beginning of scheduling, so
Algorithm 1 has the same time complexity with Algorithm 2
under off-line scheduling; however, under on-line condition,
which is a more popular mode, n is a variable which depends
on the distribution of job arriving time, the job scheduling
frequency, so Algorithm 1 has O(n ∗ M) complexity for on-

line scheduling. Obviously, denser distribution of job ar-
riving time is, bigger n is, more frequently jobs are sched-
uled, smaller n will be. Smaller n makes smaller job selec-
tion space, resulting in smaller optimization space, however,
smaller n will make better time complexity of Algorithm 1.
So, we adopt an adaptive job scheduler opportunity, i.e. dy-
namically decide when to schedule the next job. We set a
threshold for n to prevent it is too big. Under this constraint,
we delay job scheduling so long as all map machines are
busy.

5. Evaluations

In this section, we do some simple experiments to evaluation
of our scheduling strategy. Two in-used Hadoop schedul-
ing strategies are chosen as comparing objectives, one is
FIFO scheduling and the other is Hadoop Fair scheduling
(HFS), for each scheduling strategy, we consider two sub-
strategies, one is “best effort” data locality and the other
is strict data locality. So, the actually comparing objec-
tives are FIFO with “best effort” data locality (denoted as
FIFO-BE), FIFO with strict data locality (denoted as FIFO-
S), HFS with “best effort” data locality (denoted as HFS-
BE) and HFS with strict locality (denoted as HFS-S). Our
efficiency-aware scheduling strategy (denoted as EAS).

5.1 Experimental Setup

The cluster consists of 21 identical computers, one of which
is the master, i.e. the JobTracker, responsible for manage-
ment and scheduling. The other computers act as slaves,
which are named TaskTrackers, 15 of which act as map ma-
chines and provide data service of HDFS (we configure the
block size as 128MB which is used and considered more
efficient than the default 64MB in Facebook as [17] said.)
and take care of map tasks running, the other 5 act as re-
duce machines and take the responsibility of executing re-
duce tasks. Each of the TaskTrackers has the cpu of Intel
(R) Xen (R) CPU x3220 2.40GHz, 4GB Ram, 500GB disk,
Ubuntu 10.10 server version operating system, jdk1.6.0.2
and hadoop-0.20.2-cdh3u0 distributed by Cloudera com-
pany.

In our evaluations, we adopt the default slot num-
ber defined in the configuration file named as ‘mapred-
default.xml’ in the ‘src’ directory, i.e. each map machine has
2 map slots, and each reduce machine has 2 reduce slots.

Actually, in real production environments, nearly all
MapReduce jobs have a common feature that map task num-
ber is much larger than reduce task number; especially, there
are some map-only jobs, which do not need reduce phase,
such as select operation in [21]. So we think 15 map ma-
chine plus 5 reduce machine can be a representation, which
maybe a small cluster instance, evaluations under large clus-
ter will be conducted in the near future. Given that we
choose a job from the waiting job set and assign map tasks
and reduce tasks of the appropriate job based on the real
time load on each machine, to simplify load computation,
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Table 1 A common workload in all evaluations.

Job type #Maps #Reduces #Jobs
wordcount 1 1 25

sort 2 1 14
wordcount 5 2 7

sort 30 10 4

we adopt dedicated workers, i.e. map machines and reduce
machines.

Now, we explain why the abovementioned settings will
not be disadvantageous to other scheduling algorithms. For
the configuration of slots, which defines the parallelizable
map tasks and reduce tasks per machine, though they can be
random configured, should consider the physical parallelism
of each machine, such as CPU core number and disk num-
ber. We think if slot number is too small, the inner parallel
capability can’t be perfectly utilized, on the other hand, it
will lead to the resource contention on some machines and
resource underutilization on other machines to set the slot
number too large. So, we think the impact depends on the
relationship between slots configuration and physical con-
figuration of each machine, rather than the scheduling al-
gorithms. We think map tasks are usually IO-bound while
reduce tasks are communication-bound, i.e. they use differ-
ent kinds of resource, so dedicated worker strategy and the
default mixed worker strategy have the same impact on dif-
ferent scheduling algorithms.

5.2 Simulated Workload

We choose two types of classical MapReduce jobs (word-
count and sort). For wordcount, we permit the combine
function during map phase to optimize network I/O, and for
both, pipeline between map and reduce of the same job is
forbidden, backup write of output in map phase is permit-
ted. Based on these two type of jobs, we generate a common
submission of a workload consisting of 50 jobs which are
depicted in Table 1, and the submission times are randomly
generated among the time interval [0,120]. We generate map
number, reduce task numbers and job number based on part
of the workload illustrated in [17] which said it is based on
real job distribution in Facebook production environment.

In our experiments, the overall map input is about
26GB, under our scheduling algorithm they are all from lo-
cal disks. However, other previous scheduling algorithms
cannot achieve this. Total output of map tasks, i.e. the to-
tal input of reduce tasks, which should be transferred over
network from map machines to reduce machines, is about
20GB, 91% of which is from sort MapReduce jobs and 9%
is from wordcount MapReduce jobs. Under our schedul-
ing algorithm, we try to make these intermediate data trans-
ferred over the network more evenly in the timeline and
among reduce machines at each time point according to the
pipeline principle illustrated as Fig. 2.

5.3 Data Locality Evaluation

In MapReduce environment, high data locality is consid-

Fig. 3 Data locality comparisons.

ered as a prerequisite to achieve high throughput. So, we
first compare data locality of different scheduling strategies.
Its metric is the percentage of local map tasks under a give
scheduling strategy, formalized as (6), where LM represents
the number of local map tasks and T M represents the total
number of map tasks.

Percentage = LM/T M (6)

Actually, our scheduling strategy and other strict data
locality scheduling strategies (such as FIFO-S and HFS-S)
always have the optimal data locality, the aim of comparison
is to study how data locality is for “best effort” data local-
ity scheduling strategies (such as FIFO-BE and HFS-BE),
and the relationship between the replication factor of input
and data locality. The comparison results are illustrated as
Fig. 3).

From Fig. 3, we see both of FIFO-BE and HFS-BE suf-
fer from poor locality problem. Increasing replication factor
can help to improve data locality, however, this is not an ad-
visable method, given huge storage space waste and cost of
data replication. For large MapReduce cluster which con-
sists of thousands of computing nodes like Google, Yahoo!
and Facebook, the default replication factor is only three.
Thus, we think data locality problem on current Hadoop
schedulers will prevent performance improvement.

5.4 Load Balance Evaluation of Map Machines

Except for data locality, load balance is considered as an-
other factor which has serious impact on throughput of map
machines. So, in this sub-section, we evaluate the load bal-
ance feature among map machines during system running.

Given all map machines have the same processing rate
if data is on local disk and all map tasks are strictly local, we
use the size of un-processed data of un-finished map tasks
on a map machine to represent its load. For “best effort” data
locality scheduling strategies, given map tasks will read data
from other machines, we assume the load of the a map ma-
chine as two parts, one is the input size of local map tasks,
the other is input data size of remote map tasks which is
reading data from it. For EAS, FIFO-BE and FIFO-S, when
there are t = i ∗ Nm (i ∈ N and i ≥ 1) map tasks scheduled,
we compute the load of each map machine (denoted as Lt

m,
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Fig. 4 Load balance comparison.

Fig. 5 Comparison of total throughputs on map machines.

where 1 ≤ m ≤ |Nm|), then compute the average load among
this machines (denoted as Lt

Nm
), next we compute the stan-

dard deviation as load balance value (denoted as LBt
Nm

) at
this time point, last we compute

∑
t LBt

Nm
as the final load

balance value. To simplify the representation, we normalize
final load balance value to [0,1]. Further, we study the rela-
tionship between load balance value and replication factor.
The results are illustrated through Fig. 4.

From the results, we can see EAS, FIFO-BE, and HFS-
BE have much better load balance feature than FIFO-S and
HFS-S. We think this is the reason why current Hadoop
schedulers all adopt “best effort” data locality, strict data
locality have serious load balance problem, resulting some
machines are overloaded while others are still not fully uti-
lized. However, we think the key reason is current job
scheduling strategies are not optimized for efficiency of the
cluster, through rational job sequencing, we can achieve
both data locality and load balance, EAS has nearly the same
load balance feature as “best effort” scheduling strategies.
When replication factor increases, load balance values of all
scheduling strategies become better, and FIFO-S and HFS-S
decrease much faster than others.

5.5 Throughput Evaluation of Map Machines

Now, we compare the throughput of map machines on dif-
ferent scheduling strategies. Throughput value is computed
according to (1) and (3).

Figure 5 illustrates the results, we can see EAS has the

Fig. 6 Comparison of total throughputs on reduce machines.

highest throughput of map machines. When replication fac-
tor is 1, FIFO-BE and HFS-BE have higher throughput than
FIFO-BE and HFS-BE; when replication factor is 7, FIFO-S
and HFS-S are better. Throughputs of all scheduling strate-
gies increase when replication factor increases, however,
strict data locality scheduling strategies grown faster than
“best effort” data locality schedulings, we think the reason
is in these schedulings, data locality depends not only on
replication factor but also on how a map task is scheduled,
when a free node request a task, scheduler try best to search
a local map task from the first job (in FIFO-BE) or the most
unfair job (in HFS-BE) rather than from all jobs, which con-
fines the possibility of finding a local task, so they still have
poorer data locality than strict data locality strategies. On
the other hand, when replication factor increases, strict data
locality schedulings can better balance the load among map
machines. So, their overall throughputs perform better.

5.6 Throughput Evaluation of Reduce Machines

In reduce tasks scheduling, given each task’s input usually
scatters all map tasks evenly, data locality is usually not con-
sidered, in which case load balance among reduce machines
will be easy to achieve if there are enough schedulable re-
duce tasks. However, reduce tasks only become schedulable
when all map tasks of the same job completes. So, we think
the productivity of schedulable reduce tasks has significant
impact on the throughput of reduce machines.

In our study, we allocate resource on job level to elimi-
nate resource contention, i.e. if a job is scheduled, all its map
tasks should be scheduled before next selected job, which is
like FIFO, instead of task level, such as HFS [16] and Delay
scheduling [17], in which too many jobs contend for limited
resource if there are lots of continuous jobs to be processed,
resulting in poor utilization and throughput of reduce ma-
chines. Now, we compare different scheduling strategies
on the throughput of reduce machines. Throughput value
is computed according to (2) and (4). Figure 6 gives the
comparison results, from which we can conclude that our ef-
ficiency aware scheduling has the best throughput of reduce
machines, although there is only 10 MB/s average through-
put on each reduce machines at best (when replication factor
is 7) .
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Fig. 7 Comparison of flowtimes.

5.7 Evaluation of flowtime

Above evaluations are indirect evaluations of efficiency of
the whole system which are based on the throughput of map
machines and reduce machines. For more really evaluat-
ing the efficiency of our scheduling strategy, we compare
the total flowtime for a cluster jobs under different schedul-
ings, the total flowtime metric has already been defined in
3.4. The results are described by Fig. 7, from which, we
find the total flowtime of EAS is always the best under the
same replication factor, however, when replication factor in-
creases, the total flowtime of EAS does not decrease as much
as others, FIFO-S and HFS-S have the most obviously re-
duction of flowtime.

6. Conclusion and Future Work

In this paper, motivated by current job scheduling strate-
gies have either poor data locality problem or poor load
balance problem, resulting in inefficiency, we proposed an
efficiency-aware scheduling strategy, to achieve this strategy
we designed a job selection algorithm based on load balance
feature, a strict data locality map tasks scheduling algorithm
and a load balance aware reduce tasks scheduling algorithm.
By comparing with two popular Hadoop scheduling strate-
gies, we find our strategy performs best on several metrics.

For simplicity, in this study, we adopt push-based task
scheduling. However, pull-based task scheduling is more
flexible, and easy to fault-tolerance, in fact, our strategy is
independent of the implementation of task scheduling. So,
in next work, we want to implement our job scheduling strat-
egy under pull-based tasks, in which how to estimate free
machine set will be very important when doing job selec-
tion. What is more, Fair scheduling strategy is an impor-
tant work under multi-user and multi-job environment, how-
ever, when job number is too big, fairness among all submit-
ted jobs will hurt performance seriously, in which case, our
scheduling strategy can combine with Fair scheduling strat-
egy to make fairness among a smaller job set, which will
improve the data locality of HFS, this is also my future di-
rection.
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