
2720
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

LETTER Special Section on Parallel and Distributed Computing and Networking

Synchronization-Aware Virtual Machine Scheduling for Parallel
Applications in Xen

Cheol-Ho HONG†a), Student Member and Chuck YOO†b), Member

SUMMARY In this paper, we propose a synchronization-aware VM
scheduler for parallel applications in Xen. The proposed scheduler prevents
threads from waiting for a significant amount of time during synchroniza-
tion. For this purpose, we propose an identification scheme that can identify
the threads that have awaited other threads for a long time. In this scheme,
a detection module that can infer the internal status of guest OSs was devel-
oped. We also present a scheduling policy that can accelerate bottlenecks
of concurrent VMs. We implemented our VM scheduler in the recent Xen
hypervisor with para-virtualized Linux-based operating systems. We show
that our approach can improve the performance of concurrent VMs by up
to 43% as compared to the credit scheduler.
key words: virtual machine scheduling, parallel application

1. Introduction

Recently, system virtualization has attracted noteworthy at-
tention as it has become the key enabling technology of
cloud computing, which is one of the new paradigms related
to distributed computing systems. Virtualization enables
multiple operating systems (OSs) to run simultaneously on
a single physical machine, thus achieving the effective uti-
lization of system resources in a cloud environment.

However, parallel applications, which perform large-
scale computationally intensive tasks, such as computational
fluid dynamics (CFD) applications, can suffer from perfor-
mance degradation when they are executed on the Xen hy-
pervisor. This is because Xen asynchronously schedules the
concurrent VMs that deploy parallel applications while the
synchronization primitives in parallel applications assume
the synchronous progress of the virtual machine (VM) [1].
Prior research [2], [3] has addressed this problem by adap-
tively co-scheduling the concurrent VMs. However, the co-
scheduling policy has certain drawbacks such as CPU frag-
mentation, priority inversion, and a lack of scalability [4].
Therefore, a new mechanism that can overcome the above-
mentioned disadvantages is required.

In this paper, we propose a synchronization-aware VM
scheduler for parallel applications hosted by Xen. For this
purpose, we first analyze the cause of the performance de-
terioration of the concurrent VMs in Sect. 2. Second, we
develop a new scheduler that can improve the performance
of parallel applications in Sect. 3. The proposed scheduler

Manuscript received December 27, 2012.
Manuscript revised April 19, 2013.
†The authors are with the Department of Computer Science

and Engineering, Korea University, Seoul, Korea.
a) E-mail: chhong@os.korea.ac.kr
b) E-mail: chuckyoo@os.korea.ac.kr

DOI: 10.1587/transinf.E96.D.2720

is based on the original credit scheduler of Xen. Finally,
we evaluate the performance of the proposed scheduler in
Sect. 4.

2. Performance of Concurrent VMs

A parallel application divides the total work into several
concurrent threads that can be executed in parallel. Each
thread in the parallel application consists of multiple phases,
each of which has one computation part and one subsequent
synchronization part. Through the synchronization part, all
operations in the same phase across all threads must be com-
pletely finished before the next step begins. This synchro-
nization procedure is required because the next step relies
on the data written during the previous phase. As the syn-
chronization method, barriers are commonly used. A barrier
denotes a point where all threads must wait until all other
threads arrive. The waiting threads then spin or are blocked
according to the wait policy configuration. In a non-virtual
environment, the waiting time is brief and acceptable.

For a virtual environment, however, the waiting time
can be comparatively long. Figure 1 illustrates an unde-
sired case where a concurrent VM has four virtual CPUs
(VCPUs), each of which runs a thread of a parallel applica-
tion. In this figure, the second phase of the thread running on
CPU2 cannot proceed until the operations of the first phase
on CPU3 are completed. Furthermore, the execution of the
second phase on CPU2 may be delayed because the VCPU
on CPU2 was inserted at the tail of the run queue when it
was unable to proceed. Thus, the thread on CPU2 may have
to wait for a significant amount of time before proceeding.

This long waiting time worsens the performance of the
parallel application. According to the proportional-share
scheduling model developed in our previous research [5],
the completion time of the parallel application is as follows:

TParallel =

⌊
Lag + �ET � − 1

RI

⌋
+ ET − (�ET � − 1) (1)

Fig. 1 Example of VM scheduling where a concurrent VM has four
virtual CPUs, each of which runs a thread of a parallel application.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

LETTER
2721

In Eq. (1), Lag is the upper bound of the difference be-
tween the ideally and the actually obtained CPU time of VM
Vi during execution. RI =

|P|×ω(Vi)
|C(Vi)| , where |P| is the number

of physical CPUs in the system, and ω(Vi) is the weight of
VM Vi. |C(Vi)| indicates the number of VCPUs in VM Vi.
ET is the maximum of the sum of the execution times of all
phases in any thread in the parallel application. According
to Eq. (1), only the Lag value affects the completion time of
the parallel application provided that other elements such as
|P|, ω(Vi), |C(Vi)|, and ET are fixed during the execution.

The completion time then increases with Lag. This
means that as the VM receives less time from the CPU at
any moment than what it ideally should, the performance
degrades further. When we return to the previous example,
as the waiting time of the threads increases above a certain
threshold, the allocated CPU time of these threads is yielded
to other non-concurrent VMs or is consumed by the idle do-
main; this situation is similar to the typical execution pattern
of an I/O bound program in a VM. When this occurs, the
Lag value increases because until this point, the CPU time
actually obtained by the VM is less than the ideally allocated
time. As Lag increases, the computation parts of the appli-
cation are then delayed and become long overdue because
of the lack of CPU time obtained. Consequently, the long
waiting time increases Lag and results in the degradation of
the performance of the parallel application.

3. Synchronization-Aware VM Scheduling

The proposed scheduler is based on the original credit
scheduler of Xen. Our scheduling algorithm consists of an
identification scheme and a scheduling policy. Before de-
scribing the scheduling algorithm, we make several simpli-
fying assumptions:

1. As parallel applications commonly run using a number
of threads equal to or less than the number of cores [6],
we assume that the number of threads does not exceed
the number of VCPUs in the VM. Under this assump-
tion, a thread and a VCPU can be mapped with a one-
to-one relationship.

2. Each parallel thread is assumed to be blocked rather
than spin when the thread has to await other threads
at a barrier. In virtualization, the wait policy is gener-
ally configured to such a condition in order to prevent
superfluous CPU spinning.

3. To avoid the cost of thread migration in the guest OS
and make our inference technique accurate, we assume
that each thread is fixed to a VCPU.

In the identification scheme, the hypervisor identifies
the threads that have awaited other threads for a significant
amount of time. For this purpose, we provide the detection
module for parallel applications by which the hypervisor can
infer the internal status of guest OSs. In the guest OS, when
a thread reaches a barrier, and other threads have not, the
thread makes a system call that puts itself to sleep in the
kernel according to the second assumption. When the last

Table 1 Synchronization information.

Element Description
dom id ID of a VM that executes the parallel application.
vcpu id ID of a VCPU on which the parallel thread executes

the sleep call.
call time Time when the sleep call is issued.

thread reaches the barrier, the thread makes a system call
that awakens all the blocked threads. Examples of such sys-
tem calls are futex wait() and futex wake() in Linux. The
detection module in the hypervisor then snatches the system
call by using the system call interception mechanism intro-
duced in [7].

Using the intercepted information, the module gener-
ates the synchronization information for the VM scheduler,
as shown in Table 1. In this table, the detection module can
directly utilize the ID of the VCPU to indicate the thread
that executes the sleep call because, according to the third
assumption, the guest OS scheduler cannot change the CPU
assignment of the thread after it has been blocked. An ele-
ment in the table is inserted when futex wait() is executed;
the elements that belong to the same VM are deleted when
futex wake() is executed because the occurrence of this call
denotes that all the threads have reached the barrier. The de-
tection module then periodically identifies the threads that
have been awaiting other threads for a long time by sub-
tracting call time in the table from the current time. The
advantage of utilizing the detection module is that we do
not have to install any instrumentation on the guest OSs to
know the synchronization phases in parallel applications.

In the scheduling policy, the hypervisor accelerates
bottlenecks of concurrent VMs when the parallel threads
have waited for a long time at the barrier. A bottleneck in the
VM consists of multiple threads that need to reach the bar-
rier before the waiting threads can proceed. Therefore, ac-
celerating bottlenecks allows the waiting threads to resume
execution in a short period of time and to obtain the CPU
time allocated to them. In this scheduling policy, the Lag
value illustrated in Sect. 2 decreases as compared to non-
synchronization-aware scheduling, and parallel applications
thus achieve improved performance.

When the hypervisor decides to accelerate a bottle-
necks in a VM, runnable VCPUs in the VM become the
bottleneck. In scheduling VMs, there are three states that
a VCPU can have: runnable, running, and blocked. When
the last thread reaches a barrier, it awakens all the blocked
threads. Then, the state of each VCPU is changed to
runnable from blocked, and the VCPUs are inserted into the
run queue. After that, when a certain VCPU is selected to
run, its state is changed to running. If this thread reaches
the barrier, it sleeps in the kernel. Then, the VCPU state is
changed to blocked. Because the bottleneck consists of the
threads that have not reached the barrier, the states of VC-
PUs to which the threads belong then have to be runnable.

The hypervisor accelerates the bottleneck when the
parallel threads have waited for a long time. The threshold
of the waiting time is determined by the ideal VM schedul-

2722
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

Fig. 2 Increases in performance for the synchronization-aware scheduler
with weights of 50%, 25%, 20%, and 16.66%.

ing interval. The ideal interval is obtained under the assump-
tion that each VCPU consumes exactly one time quantum in
the interval and that value is |C(V)|

|P| × T . |C(V)| represents
the total number of VCPUs in the system. |P| denotes the
number of physical cores in the system, and constant T in-
dicates the size of the time quantum. Therefore, when any
thread has waited for a time equal to the ideal VM schedul-
ing interval, the bottleneck is accelerated. This acceleration
is conducted by the boost mechanism in Xen [8]. To main-
tain system-wide fairness, however, we conditionally accel-
erate the bottleneck only when all VCPUs in the concurrent
VM have still not consumed the allocated amount of CPU
time.

4. Evaluation

We have implemented a synchronization-aware VM sched-
uler on an Intel Xeon E5-2620 hexa-core platform that has
six 2.0-GHz cores with a disabled hyper-threading mech-
anism. The system is hosted by the recent Xen 4.1.3 hy-
pervisor and para-virtualized Linux-2.6.32. We compile the
Linux kernel with an enabled paravirt spinlocks option in
order to tolerate the lock holder preemption problem [9]. For
the benchmark programs, we select the OpenMP version of
sp.A and lu-hp.A from NAS Parallel Benchmarks (NPB) that
are utilized to help evaluate the performance of parallel su-
percomputers [10].

First, we observe the performance impact of the
synchronization-aware scheduler when the weight of the
concurrent VM decreases. For this purpose, a target VM ex-
ecuting either sp.A or lu-hp.A with six VCPUs is run individ-
ually. To decrease the weight of the target VM, we deploy
other multiple-CPU-bound VMs that simulate background
workloads. The performance improvements compared to
the original credit scheduler, where the weight is varied from
50% to 16.66%, are shown in Fig. 2. The results indicate
that both programs can benefit from synchronization-aware
scheduling, improving their speed by up to 49%.

Second, we evaluate the performance of the mixed
workloads that consist of multiple single and parallel tasks.
This experiment utilizes six VMs, each of which has six
VCPUs. For the first three VMs, we run single-threaded
CPU-bound programs to stress the CPU. In the other VMs,

Fig. 3 Completion time for sp.A, lu-hp.A, and lu-hp.A.

Fig. 4 Completion time for sp.A, sp.A, and lu-hp.A.

we deploy sp.A and lu-hp.A to measure the performance of
the parallel applications. The completion times of the paral-
lel applications are shown in Figs. 3 and 4. Figure 3 shows
that our scheduler improves the performance of each sp.A
by up to 26% and lu-hp.A by up to 22%. Similarly, in Fig. 4,
our scheduler improves the performance of sp.A for each
VM by up to 14% and lu-hp.A by up to 43% as compared to
the credit scheduler.

5. Related Work

Uhlig et al. [11] proposed two techniques, intrusive and non-
intrusive, to avoid CPU spinning incurred by the preemption
of VCPUs that hold the kernel locks. The intrusive tech-
nique modifies the locking primitive in the guest OS and
informs the hypervisor how long a lock should be held by
a VCPU, thus avoiding preemption of the VCPU that holds
the lock. The non-intrusive technique is for operating sys-
tems distributed in binary form. This technique avoids pre-
emption of the VCPU that is in the unsafe state. In this state,
kernel locks may be held by the VCPU currently executing
at the kernel level. Friebel et al. [9] later investigated the
influence of lock holder preemption in the Xen hypervisor.
They proposed a technique to tolerate lock holder preemp-
tion by preventing unnecessary active waiting. They modi-
fied the spin lock code in the guest OS to issue a sleep hyper
call when the wait period of any VCPU grows longer than a
certain threshold.

These methods can successfully prevent CPU spinning

LETTER
2723

at the kernel level. However, as pointed out in [11] and [9],
they cannot handle synchronization methods utilized at the
user level. In practice, the parallel application domain in vir-
tualization environments relies on block-based synchroniza-
tion barriers at the application level. Although we adopt the
technique suggested by Friebel et al. [9] at the kernel level,
we find that the long waiting time of parallel threads dur-
ing the barrier synchronization worsens the performance of
parallel applications. To alleviate this situation, our sched-
uler prevents threads from waiting for a significant amount
of time throughout synchronization. Therefore, we further
improve the performance of parallel applications compared
to the methods of previous research.

6. Conclusion

In our synchronization-aware VM scheduler, we presented
an identification scheme and a scheduling policy to achieve
acceptable performance for parallel applications. We also
presented a performance evaluation that shows that our
scheduling algorithm is more efficient than the original
credit scheduler in Xen.

Acknowledgment

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MEST) (No.2010-0029180).

References

[1] C. Xu, Y. Bai, and C. Luo, “Performance evaluation of parallel

programming in virtual machine environment,” Sixth IFIP Inter-
national Conference on Network and Parallel Computing, 2009,
NPC ’09, pp.140–147, 2009.

[2] C. Weng, Z. Wang, M. Li, and X. Lu, “The hybrid scheduling
framework for virtual machine systems,” Proc. 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution En-
vironments, pp.111–120, 2009.

[3] C. Weng, Q. Liu, L. Yu, and M. Li, “Dynamic adaptive scheduling
for virtual machines,” Proc. 20th International Symposium on High
Performance Distributed Computing, pp.239–250, San Jose, 2011.

[4] O. Sukwong and H. Kim, “Is co-scheduling too expensive for SMP
VMS?,” Proc. Sixth Conference on Computer Systems, pp.257–272,
2011.

[5] C.H. Hong, Y.P. Kim, S. Yoo, C.Y. Lee, and C. Yoo, “Cache-
aware virtual machine scheduling on multi-core architecture,” IEICE
Trans. Inf. & Syst., vol.E95-D, no.10, pp.2377–2392, Oct. 2012.

[6] Y. Nishitani, K. Negishi, H. Ohta, and E. Nunohiro, “Implementa-
tion and evaluation of OpenMP for hitachi sr8000,” High Perfor-
mance Computing, pp.391–402, 2000.

[7] F. Beck and O. Festor, “Syscall interception in Xen hypervi-
sor,” Technical report, Institut National Polytechnique de Lorraine
(INPL), 2009.

[8] D. Ongaro, A. Cox, and S. Rixner, “Scheduling I/O in virtual
machine monitors,” Proc. Fourth ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments, pp.1–10,
2008.

[9] T. Friebel and S. Biemueller, “How to deal with lock holder preemp-
tion,” Presentation at Xen Summit North America, 2008.

[10] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of
NAS parallel benchmarks and its performance,” Technical Report,
NAS-99-011, NASA Ames Research Center, 1999.

[11] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski, “Towards
scalable multiprocessor virtual machines,” Proc. 3rd Virtual Ma-
chine Research and Technology Symposium, pp.43–56, 2004.

