
2724
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

LETTER Special Section on Parallel and Distributed Computing and Networking

An Efficient O(1) Contrast Enhancement Algorithm Using Parallel
Column Histograms

Yan-Tsung PENG†, Student Member, Fan-Chieh CHENG†, and Shanq-Jang RUAN†a), Members

SUMMARY Display devices play image files, of which contrast en-
hancement methods are usually employed to bring out visual details to
achieve better visual quality. However, applied to high resolution images,
the contrast enhancement method entails high computation costs mostly
due to histogram computations. Therefore, this letter proposes a parallel
histogram calculation algorithm using the column histograms and differ-
ence histograms to reduce histogram computations. Experimental results
show that the proposed algorithm is effective for histogram-based image
contrast enhancement.
key words: contrast enhancement, parallel histogram construction, con-
stant time

1. Introduction

It is pervasive and of an essential part in our lives nowadays
that we uses high-resolution display devices. Hence, con-
trast enhancement plays an important role to further improve
visual quality in those devices. Based on two-dimension (2-
D) histogram calculation, a contextual and variational con-
trast enhancement (CVC) algorithm was presented to im-
prove image quality [1]. However, the calculation of 2-D
histogram definitely entails high time complexity.

To solve this problem, numerous methods can be em-
ployed to calculate histogram [2]–[4]. One of the prior
works used the past kernel histogram with modifying the
boundary information [2] for acceleration, but it still in-
volved O(r) time complexity, where r is the kernel ra-
dius. Inspired from integral images, a constant time O(1)
method uses a superset of the cumulative image formula-
tion, named integral histogram, to compute the kernel his-
togram [3], while it involves high space complexity. In or-
der to avoid utilizing huge storage, the distributive method
computes column histogram that disjoint column regions for
kernel histogram [4]. According to its characteristics, the
kernel histogram can be easily computed. In this letter, the
computation cost of column histograms can be further re-
duced using the proposed difference histograms.

2. Modified CVC Algorithm

Fig. 1 snapshots the principle of the proposed method for

Manuscript received January 5, 2013.
Manuscript revised April 7, 2013.
†The authors are with the Department of Electronic and Com-

puter Engineering, National Taiwan University of Science and
Technology, Taipei, Taiwan.

a) E-mail: sjruan@mail.ntust.edu.tw
DOI: 10.1587/transinf.E96.D.2724

Fig. 1 Histogram construction using column histograms: (a) traditional
column histograms; (b) updating kernel; (c) new column histograms; (d)
updating new column histograms.

column histograms. The kernel histogram contains the vis-
ited pixel and its neighbours. It can be disjointed to (2r + 1)
column histograms shown in Fig. 1 (a). As the visited pixel
is changed, the kernel histogram is easily updated by adding
the rightmost column histogram and subtracting the leftmost
column histogram shown in Fig. 1 (b). In order to further re-
duce the computation cost, the difference information can
be stored in difference histogram, which is expressed as fol-
lows:

Dx = Cx+r −Cx−r−1, (1)

where D is the difference histogram and C is the column
histogram.

In Fig. 1 (c), one past column histogram must be sub-
tracted from the visited one. After initialization, each pixel
does not contain the traditional column histogram but the
differential column histogram. Compared to the traditional
one, the proposed column histogram further adds left-top
pixel and subtracts left-bottom pixel visualized in Fig. 1 (d).
However, its computation cost is much lower than the sub-
traction operator in Fig. 1 (b). Suppose that I(x, y) is the in-
put image, and K is kernel histogram per pixel. The pseudo-
code is then listed below:

1: for y← 1 to h do
2: for x← 1 to w do
3: Add I(x + r, y + r) to Dx

4: Subtract I(x + r, y − r − 1) from Dx

5: Add I(x − r − 1, y − r − 1) to Dx

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



LETTER
2725

6: Subtract I(x − r − 1, y + r) from Dx

7: Add Dx to K
8: end for
9: end for

Note that Dx is able to be boosted by parallel computation
since all column histograms are data independence.

Based on the improved histogram construction method,
the 2D target histogram [1] can be constructed in constant
time. Let l be the gray-level of each pixel in the image I, the
2D histogram of each input image is formed as

T = {t(l, k)|0 ≤ l, k < L}, (2)

where L is the number of the gray-level, k is the gray-level
occurs in neighborhoods of each arbitrary pixel, and t(l, k)
is each element of T. Once the kernel histogram K has been
computed using the proposed column histograms, it can be
employed to accumulate T. For each visited pixel that has l-
th gray level, K is added to t(l, k) in O(1) complexity, where
k just represents each element in K.

3. Experimental Results

In general, updating each traditional column histogram
needs 1 addition and 1 subtraction, while the kernel com-
putation using traditional column histograms needs 256 ad-
ditions and 256 subtractions. In contrast, updating the pro-
posed column histogram needs 2 additions and 2 subtrac-
tions, but the computation of updating kernel is reduced to
only 256 additions.

In order to establish the improvement of the com-
putation in practice, the proposed method and the com-
pared method are implemented in C. All experiments
were conducted on the machine with 12GB RAM and two
multi-core processors. The processor information includes
Intel R©Xeon R©CPU E5520 @ 2.27GHz with 4 core counts,
8 thread counts, and 8MB cache.

Figure 2 shows the line chart of the execution time for
histogram construction. In this coordinate system, x-axis is
the radius and y-axis is the execution time (ms). As a result,
the proposed method almost reduces half of the computa-
tion cost of the compared method [4]. Figure 3 compares the
CVC algorithm [1] and the improved one using the proposed
method. It is easily observed that the CVC algorithm [1]
exhaustively visits all neighbours of each pixel to generate
2-D histogram. Hence, its time complexity is much higher
than the use of column histograms. Therefore, the overall
performance can be dramatically increased as the CVC al-
gorithm [1] is integrated with the proposed method.

4. Conclusion

This letter has proposed a histogram construction algorithm

Fig. 2 The execution time to histogram construction using 8 multi-
threads.

Fig. 3 The execution time to CVC algorithm using different histogram
construction methods.

which obtains O(1) complexity as the window radius varies.
Moreover, a parallel implementation has also been shown to
verify the high performance of the proposed algorithm with
the extent of our knowledge. Our experiments confirmed
that the proposed method really decreased the amount of
the computation related to histogram-based image process-
ing applications.

Acknowledgements

This work was supported by the National Science Council
of ROC under Contract NSC101-2221-E-011-164-MY3.

References

[1] T. Celik and T. Tjahjadi, “Contextual and variational contrast en-
hancement,” IEEE Trans. Image Process., vol.20, no.12, pp.3431–
3441, Dec. 2011.

[2] T.S. Huang, G.J. Yang, and G.Y. Tang, “A fast two-dimensional me-
dian filtering algorithm,” IEEE Trans. Acoust. Speech Signal Process.,
vol.ASSP-27, no.1, pp.13–18, Feb. 1979.

[3] F. Porikli, “Integral histogram: A fast way to extract histograms in
Cartesian spaces,” Proc. IEEE 2005 Int. Conf. Comput. Vis. Pattern
Recognit. (CVPR), pp.829–837.

[4] S. Perreault and P. Hebert, “Median filtering in constant time,” IEEE
Trans. Image Process., vol.16, no.9, pp.2389–2394, Sept. 2007.


