
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013
2765

PAPER

Window Memory Layout Scheme for Alternate
Row-Wise/Column-Wise Matrix Access

Lei GUO†, Yuhua TANG†, Yong DOU†, Nonmembers, Yuanwu LEI†a), Student Member, Meng MA†,
and Jie ZHOU†, Nonmembers

SUMMARY The effective bandwidth of the dynamic random-access
memory (DRAM) for the alternate row-wise/column-wise matrix access
(AR/CMA) mode, which is a basic characteristic in scientific and engineer-
ing applications, is very low. Therefore, we propose the window memory
layout scheme (WMLS), which is a matrix layout scheme that does not re-
quire transposition, for AR/CMA applications. This scheme maps one row
of a logical matrix into a rectangular memory window of the DRAM to
balance the bandwidth of the row- and column-wise matrix access and to
increase the DRAM IO bandwidth. The optimal window configuration is
theoretically analyzed to minimize the total number of no-data-visit oper-
ations of the DRAM. Different WMLS implementationsare presented ac-
cording to the memory structure of field-programmable gata array (FPGA),
CPU, and GPU platforms. Experimental results show that the proposed
WMLS can significantly improve DRAM bandwidth for AR/CMA appli-
cations. achieved speedup factors of 1.6× and 2.0× are achieved for the
general-purpose CPU and GPU platforms, respectively. For the FPGA plat-
form, the WMLS DRAM controller is custom. The maximum bandwidth
for the AR/CMA mode reaches 5.94 GB/s, which is a 73.6% improvement
compared with that of the traditional row-wise access mode. Finally, we
apply WMLS scheme for Chirp Scaling SAR application, comparing with
the traditional access approach, the maximum speedup factors of 4.73X,
1.33X and 1.56X can be achieved for FPGA, CPU and GPU platform, re-
spectively.
key words: window memory layout scheme (WMLS), alternate row-
wise/column-wise matrix access, SDRAM, GPU, FPGA

1. Introduction

Matrix is one of the most fundamental data representations
in scientific and engineering applications, such as Linpack
benchmark [1], synthetic aperture radar (SAR) [2] and two-
dimension fast Fourier transform (2D FFT) [3]. A larger ma-
trix size requires higher memory bandwidth demand. With
the development of the very large scale integration technol-
ogy, the speed gap between processor and memory is con-
tinuously growing. Lower memory bandwidth utilization
further exacerbates this so-called “memory wall” [4] phe-
nomenon, which increasingly becomes a bottleneck for ma-
trix applications.

The dynamic random-access memory (DRAM) is a
major storage media characterized by high density and low
cost. DRAM is widely used in various computing platforms,
such as CPU, field-programmable gate array (FPGA) and
graphic processing unit (GPU) platforms. From SDRAM to

Manuscript received December 27, 2012.
Manuscript revised June 12, 2013.
†The authors are with the National Laboratory for Parallel and

Distribution Processing, National University of Defense Technol-
ogy, Changsha, 410073, P. R. China.

a) E-mail: yuanwulei@nudt.edu.cn
DOI: 10.1587/transinf.E96.D.2765

DDR3, the theoretical peak bandwidth has improved signif-
icantly with the increase of the transmission frequency and
the advent of double data transfer.

However, DRAM bandwidth utilization is quite differ-
ent for different access modes. DRAM is organized as a
large memory cell matrix and adopts a high-speed cache
unit as row buffer between DRAM memory cells and pro-
cessor. DRAM has large IO bandwidth for accessing data
in the same physical row. When data in different rows are
accessed, the data in the row buffer are written back into
the physical memory matrix and then reloaded from a new
physical row. This process takes a long time, thus reducing
the practical bandwidth. The bandwidth to access a matrix
in the row-wise order is one order of magnitude larger than
that in column-wise order [5]. Therefore, the DRAM band-
width utilization for alternate row-wise/column-wise matrix
access (AR/CMA) mode is very low.

Many applications characteristically access matrixes
under the AR/CMA mode. For example, the row-wise of
data matrix represents the position direction in the SAR ap-
plication, whereas the column-wise of data matrix repre-
sents the distance direction. In the process of SAR appli-
cation, the data matrix calculations are performed both in
the position and distance directions. High bandwidth uti-
lization can be achieved in position direction when the ma-
trix is arranged in traditional row-wise order. However, for
the distance direction, the data in one column of the ma-
trix are distributed in the different physical rows of DRAM.
Therefore, the bandwidth utilization is very low, which is in
contrast with the traditional row-wise order.

In this paper, we analyze the DRAM characteristics and
the matrix access by using the AR/CMA mode. To match
the memory continuity of DRAM and access continuity of
the AR/CMA mode, we propose the window memory lay-
out scheme (WMLS), which is a matrix layout scheme that
does not require transposition, and identify the optimal win-
dow size of WMLS. WMLS reduces the total number of no-
data-visit operations in the DRAM and balances the band-
width of the row- and column-wise matrix access. Finally,
we implement the WMLS and CS SAR applications on the
basis of the memory structure features in the FPGA, CPU
and GPU platforms and achieve significant improvement in
the DRAM bandwidth for AR/CMA applications.

The remainder of this paper is organized as follows.
Section 2 presents a brief background of AR/CMA and
DRAM. Section 3 introduces the procedure of AR/CMA.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

2766
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

Section 4 presents several related works. Section 5 intro-
duces the proposed WMLS and its optimal window size. Fi-
nally, Sect. 6 presents the implementation WMLS in FPGA,
CPU, and GPU platforms.

2. Background

2.1 Characteristics of Matrix Access

The 2D matrix, which uses two indexes (i, j) to access a
given element, is one of the most fundamental data repre-
sentations. Figure 1 (A) shows that element ai, j in matrix A
is identified by row index i and column index j. Matrix A
can be regarded as M row vectors of size N or N column
vectors of size M.

The successive data in the row or column vector are
usually accessed as a pseudo code (sections R and C) in ma-
trix computations, as shown in the Fig. 1 (B). For example,
in matrix multiplication [6], each element in the resultant
matrix is the inner product of the row and column vectors.
The LU and QR decomposition [7] is a process that con-
tinuously updates the row and column data. In the Chirp
Scaling (CS) SAR application [8], Azimuth FFT (or inverse
FFT (IFFT)) performs FFT (or IFFT) operations for the row
vector of the data matrix, whereas range FFT (or IFFT)) per-
forms FFT (or IFFT) operations for the column vector of the
data matrix.

2.2 DRAM Characteristics

The capacity and performance of DRAM families (e.g.,
SDRAM, DDR2, and DDR3) and the GDDR dedicated to
the GPU platform have significantly improved in recent
years. However, the physical architecture and access prin-
ciple of DRAM and GDDR remain the same. As shown
in Fig. 1 (C), DRAM is organized as a memory cell matrix
and uses the row-buffer model to access data. Each mem-
ory cell stores one-bit of data and comprises one extremely
small transistor and a capacitor. Therefore, billions of mem-
ory cells can be fitted in a single memory chip and high
densities can be achieved. The row-buffer model uses two
steps to access a given memory cell: reading the physical
row into the row buffer according to the bank and row ad-
dress and accessing the element according to the column
address. Basic DRAM operations can be classified as AC-
TIVE, PRECHARGE, READ, WRITE, and REFRESH. In
the current paper, we define ACTIVE, PRECHARGE, and

Fig. 1 Concept, access, and storage of a matrix.

REFRESH as no-data-visit operations.
DRAM has two key features in its structure and ac-

cess mode. First, DRAM is internally configured as a
multi-bank DRAM with a synchronous interface, where
each bank is organized into R rows by C columns. Sec-
ond, read and write DRAM are burst-oriented. Burst ac-
cess begins with an ACTIVE command; then, a burst com-
mand (READ or WRITE) follows to access the data; fi-
nally, the PRECHARGE command is used to deactivate the
opened physical row. The overhead of burst access can be
attributed to three factors: the delay time between ACTIVE
and burst commands (TRCD); the delay between the reg-
istration of a READ command and the availability of the
first piece of output data (TCL); the minimum time inter-
val between PRECHARGE command and a subsequent row
access (TRP). These overheads are specified by manufac-
turers and similar under different DRAM series. Several
burst commands can be executed after one ACTIVE com-
mand in the row-buffer model. However, the PRECHARGE
and ACTIVE commands should be performed to access two
elements in different physical row. Therefore, several op-
timal methods are proposed to minimize the overheads of
PRECHARGE and ACTIVE commands.

DRAM bandwidth utilization is determined by data
distribution. When N data are accessed from one physical
row (accessing the row vector of a matrix), one ACTIVE,
one PRECHARGE and N burst commands are executed.
The bandwidth utilization is expressed as

Urow =
N/(2FreqDRAM)

TRCD + TCL + N/(2FreqDRAM)
(1)

where FreqDRAM is the frequency of DRAM interface.
When N data are read from N physical rows (accessing

the column vector of a matrix), the N ACTIVE, N BURST,
and N − 1 PRECHARGE commands are executed. These
physical rows can be distributed in a multi-bank, and the
access operations can be executed in parallel. The maximum
bandwidth utilization in this case is

Ucolumn =
B/FreqDRAM

TRCD + TCL + B/TCCD
(2)

where B is the number of banks in DRAM, and TCCD

(TCCD = 4 ∗ TCK) is the minimal delay between two access
commands, and TCK is clock period of DRAM.

Taking the latest DDR3-1600, as example, TRCD=11
cycles, TCL=11 cycles, TCK=3 cycles, and B=8. Given that
N=1000, the latency for the row-vector access is 522 cy-
cles, and the utilization is 96%. The latency for the column-
vector access is 14750 cycles, and the availability is only
6.8%. Therefore, the DDR3 bandwidth utilization for row-
vector access is theoretically 14 times more than that for the
column-vector access.

3. Alternate Row-Wise/Column-Wise Matrix Access

3.1 Data Continuity

Data continuity is manifested in two aspects: storage and

GUO et al.: WINDOW MEMORY LAYOUT SCHEME FOR ALTERNATE ROW-WISE/COLUMN-WISE MATRIX ACCESS
2767

access continuity. High bandwidth availability can be ob-
tained only if the data access continuity of a program can be
well integrated with its storage continuity.

Data storage continuity, which is a characteristic of a
memory structure, implies that memory cells could be ac-
cessed successively and quickly. We define a memory cell
set R to have a data storage continuity, if it can be read or
written successively with high IO performance. If the data
in one physical row of a DRAM can be accessed quickly due
to the row-buffer and burst-oriented scheme, the the DRAM
has data storage continuity in the physical rows.

Data access continuity is a memory access character-
istic of programs, in which data sets can always be succes-
sively accessed in a program. As analyzed in Sect. 2.1, the
row or column vector is always accessed continuously in
matrix application programs; thus, this program has data ac-
cess continuity in row and column vector, which is defined
as row and column continuity respectively

3.2 Alternate Row-Wise/Column-Wise Matrix Access

AR/CMA is the process of accessing all matrix elements in
a row-wise order and then in a column-wise order, or vice
versa. As shown in Fig. 2 (A), the double-arrow (RM) and
single-arrow (CM), called RM access and CM access, refer
to the matrix access with row and column vector, respec-
tively. RM performs program section R in Fig. 1 (B) from
Rx=0 to Rx=M-1 to access all elements in the matrix. Sim-
ilarly, CM performs program section C in Fig. 1 (B) from
Cx=0 to Cx=N-1.

AR/CMA is a basic characteristic of many matrix ap-
plications. In the SAR application, two AR/CMAs are em-
ployed to transform the raw data into a gray image. The 2D
FFT also includes an AR/CMA procedure to compute the
data in two dimensions.

The significantly different utilization of the memory
bandwidth for RM and CM access seriously affects the per-
formance of AR/CMA applications. In the traditional row-
wise storage pattern, the matrix row is located in the contin-
uous cell in a physical row, as shown in Fig. 2 (B). The dis-
tribution of the row data is parallel with the physical row, so
one row exists in as least physical row as possible. The data
access continuity of RM access matches well with its stor-
age continuity; thus, the bandwidth utilization for RM ac-
cess is very high, as shown in Sect. 2.2. Conversely, for the

Fig. 2 Traditional row-wise mapping between logical matrix and
DRAM.

CM access, the column data are distributed in many physical
rows, and the distribution direction crosses with the physical
rows. In addition, many ACTIVE and PRECHARGE oper-
ations are executed. Therefore, the real bandwidth for the
CM access is very small.

4. Related Works

Several memory optimization schemes have been proposed
to improve bandwidth utilization on the basis of the features
of applications and platforms. First, methods for program
transformation have been explored to improve the cache
hit rate in uniprocessor systems, or to improve the data
locality in distributed-memory parallel computers [9], [10].
Gottschling [11] proposed a representation-transparent ma-
trix algorithm for multicore chip and developed matrix tem-
plate library (MTL) for matrix application, such as matrix
multiplication. Ruetsch [12] and Podlozhnyuk [13] combine
features of the GPU warp access memory and the shared
memory structure to enhance matrix transpose performance.
However, their methods require additional memory space
and lacks theoretical analysis and guidance on the optimal
data layout.

Second, a special Corner Turn memory has been de-
signed to shorten the latency for transposing matrix. How-
ever, this method introduced overhead, which consumed a
considerable portion of the total running time. Tu [14], and
Kim [15] presented a matrix-transpose memory controller
in the FPGA platform to eliminate the transpose opera-
tion in the calculation process. However, their methods re-
quire many hardware resources and are only adaptable to the
FPGA platform.

Third, special-purpose hardware designs have been
proposed to implement AR/CMA applications without data
transpose. Mo [16], Onoe [17], and Yu [18] proposed an
SAR image system without data transpose. However, the
memory access in their methods still span among many
physical rows, and the DRAM IO bandwidth utilization for
AR/CMA applications has not significantly improve. Their
works are only suitable for the FPGA-based platform. The
related work in [5] proposed an array-address translation al-
gorithm, that maps a logic window matrix into a physical
row of SDRAM. This approach is the reverse of our pro-
posed scheme.

The proposed WMLS is presented in the succeeding
sections. The optimal window configuration of the proposed
approach is also analyzed theoretically and verified in the
FPGA, CPU, and GPU platforms, respectively.

5. Window Memory Layout Scheme (WMLS)

A common data layout scheme called WMLS is presented
to improve the bandwidth utilization for AR/CMA appli-
cations. This scheme maps one row of logical matrix into
a rectangular memory window in the physical banks of
DRAM in order to improve the match between the data ac-
cess continuity of AR/CMA applications and data storage

2768
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

continuity of DRAM. This approach enables us to access
effectively both row and column vectors while eliminating
the overhead of matrix transposition.

5.1 Memory Windows of Matrix

We consider an M × N logical matrix as an example to
introduce mapping between logical matrix and DRAM in
WMLS. As shown in Fig. 3, DRAM is organized as a rect-
angular memory space, and the physical rows from different
banks are placed in the proper order. For description, we
define the following notations:

• D[b][R][C]: physical memory space of DRAM. The
number of banks is equal to b.
• LM[M][N]: M × N logical matrix with size smaller

than that of DRAM, i.e. b × R ×C > M × N.
• W(r, c): A × B rectangular area (i.e., window) in the

physical bank. Here, A∗B∗b = N. DRAM contains M
windows, organized as a T × S window matrix. W(r, c)
is the window with row index r and column index c
(0 ≤ r ≤ S , and 0 ≤ c ≤ T).
• E[x][y]: element in the window (0 ≤ x < A and 0 ≤
y < B).

The window data layout scheme organizes rows of log-
ical matrix LM into consecutive memory windows in se-
quence, as shown in Fig. 3.

Step 1: We divide the elements LM[i][j] (i = 0,0 ≤
j ≤ N − 1) in the first row of logical matrix into b × B
segments, and place these segments into the first memory
windows in b physical banks in accordance with the bank
order and column order.

Step 2: We repeat Step 1 S times to place the succes-
sively S row of logical matrix into form the row of memory
windows.

Step 3: The other matrix rows are arranged according
to Step 1 and 2 until all the matrix elements are mapped into
DRAM physical row.

In this scheme, each physical row contains B elements
from one logical matrix row and contains S elements from
one logical matrix column. Each logical matrix row is
mapped into b A×B continuous memory windows in b banks

Fig. 3 Mapping relationship between the logical matrix and DRAM.

and each logical matrix column is mapped into a T × S dis-
crete storage windows. This process balances the distribu-
tion of the row and column vectors of matrix in one physical
row, thereby improving match between data access continu-
ity of row and column in the ARM/CM application and the
physical row of the DRAM.

The physical address of DRAM (D[t][r][c]) has a one-
to-one correspondence with the logic address of matrix LM
(LM[i][j]). The relationship between physical address and
logic address is analyzed as follows, in which W(m, n) is
used as springboard.

• Window select function: W(m, n) = W(i/S , i%S),
which shows that the window is determined by the row
number of logical matrix;
• Window position function: E[x][y] = E[j/(b ∗

B)][j%B], which shows that the position in the win-
dow is determined by the column number of the logi-
cal matrix. The bank of this window is (j/B)%b, i.e.
t = (j/B)%b.

Therefore, the mapping relationship between the logi-
cal matrix and the DRAM is: LM[i][j]↔ D[(j/B)%b][i/S ∗
A + j/(b ∗ B)][(i%S) ∗ B + j%B].

5.2 Optimal Window Configuration of WMLS

WMLS improves the match between data access continu-
ity and storage continuity of DRAM. The available DRAM
bandwidth is improved by reducing the no-data-visit oper-
ations in AR/CMA applications. In the AR/CMA process,
the amount of data is equal in both CM and RM access.
Therefore, the available bandwidth is determined by the
number of no-data-visit operations, such as ACTIVE and
PRECHARGE commands.

Optimal window configuration aims to minimize the
number of no-data-visit operations. As shown in Fig. 3,
a row of logical matrix is distributed alternately in multi-
ple physical rows from different banks. The ACTIVE and
PRECHARGE commands for different physical rows can
be executed in parallel and only the latency of one AC-
TIVE and PRECHARGE commands is needed. To access
one row, the number of ACTIVE and PRECHARGE com-

GUO et al.: WINDOW MEMORY LAYOUT SCHEME FOR ALTERNATE ROW-WISE/COLUMN-WISE MATRIX ACCESS
2769

mands should be equal to A, i.e., the window height. To
access one column, the data are distributed in every window
in the same bank. Thus, the total number of no-data-visit
operations is 2 ∗ M ∗ N/S = 2 ∗ M ∗ N ∗ B/C. The total
number of no-data-visit operations in one AR/CMA access
for an M ∗ N matrix is:

Z = 2 × A × M +
2 × M × N × B

C
(3)

Theorem 1: In the AR/CMA mode, the optimal win-

dow for WMLS is A = N ×
√

1
b×C and B =

√
C
b , where the

logical matrix is M × N, and the width of physical row is C,
and the number of banks is b.

Proof. According to (1), the total number of ACTIVE
and PRECHARGE operations is a function of the height A
and length B of memory window, and A × B × b = N. We
replace A with N/(B × b) in (1) and obtain:

Z =
2 × M × N

B × b
+

2 × M × N × B
C

(4)

To fulfill the condition for minimal number of Z, we
obtain the derivative of Z:

dZ
dB
= −2 × M × N

B2 × b
+

2 × M × N
C

(5)

Given that dZ
dB = 0, only the positive value is valid, and

the following condition holds:

B =
√

C/b (6)

Therefore the optimal window is A = N/
√

b ·C and
B =
√

C/b, and the minimal number of Z is 4 ·M ·N/√b ·C.
Taking a 4K × 4K logical matrix as an example, the

optimal window of the DRAM with 8 banks and 2048 el-
ements in physical row is 32 × 16, according to Theorem
1.

For the traditional row-wise order storage scheme, each
matrix row is stored in a DRAM physical row. M and
M×N

b ACTIVE and PRECHARGE commands are needed
to access the entire matrix for RM and CM access, re-
spectively. The total number of no-data-visit commands is
2(M+ M×N

b), which is larger than Z with an optimal window

when C > 2
√

b.
In some applications, the number of the RM access and

CM access is unequal. Therefore, we must adjust the opti-
mal window to achieve high bandwidth utilization.

Deduction 1: The optimal window configuration for

WMLS is A = N ×
√

y
b×C×x and B =

√
C×x
b×y , where x

and y are the number of RM and CM access, respectively.
Therefore, the traditional row- and column-wise order stor-
age schemes are simply the extreme cases of WMLS.

Proof. As analyzed above, for x times RM access and
y times CM access, the total number of no-data-visit opera-
tions is

Z = 2 × A × M × x +
2 × M × N × B × y

C
(7)

By replacing A with N/(b ∗B) in Eq. (5), we can obtain

Z =
2 × M × N × x

B × b
+

2 × M × N × B × y
C

(8)

We obtain the derivative of Z to find the condition for
the minimal number of Z:

dZ
dB
= −2 × M × N × x

B2 × b
+

2 × M × N × y
C

(9)

When dZ
dB = 0, we obtain

A = N ×
√

y

b ×C × x
, B =

√
C × x
b × y (10)

If a program contains only the RM access mode and it
is said y = 0, then the optimal window is as small as possi-
ble for A, which is traditional row-wise order storage mode.
Conversely, if a program contains only the CM access mode,
then the optimal window is traditional column-wise order
storage mode.

6. Implementation of WMLS

WMLS is a common optimization technique for AR/CMA
applications and can be used to improve the DRAM band-
width utilization in a variety of computing platforms, such
as FPGA, CPU and GPU, as shown in Fig. 4. In this section,
we combine the characteristics of various computing plat-
forms to implement WMLS. Based on the reconfigurable
features of the FPGA platform, the DRAM controller with
an optimal window is customized. However, the mem-
ory controller is fixed in CPU and GPU general-purpose
computing platforms. Therefore, a software optimization
method is used for the effective mapping between logical
matrix and memory window in DRAM.

6.1 WMLS Implementation in FPGA Platform

Recently, FPGAs have become an important platform in
building application-specific hardware systems, particularly
for matrix applications [6], [19]. The computational capa-
bility FPGAs has increased rapidly. FPGAs can be used to
build a large number of custom processing element units.
Given that high IO bandwidth is needed for FPGA, low
bandwidth utilization significantly affects the performance
of FPGA.

A custom WMLS DRAM controller is implemented

Fig. 4 Implementation of WMLS on different computing platforms.

2770
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

on the FPGA platform to improve the match between ma-
trix data and window memory. This controller provides a
simple interface for users to access matrix data in a row- or
column-wise mode. The matrix access is decomposed into
a series of burst operations and these operations are further
decomposed into basic commands for DRAM modules.

6.1.1 Structure of the WMLS DRAM Controller

Figure 5 shows that the WMLS DRAM controller is mainly
composed of the Window Configure, Command Parsing,
Burst Operation FIFO, DRAM Basic Control Signal Gen-
erate, Read Data FIFO and Write Data FIFO modules. Win-
dow Configure module stores the configured information of
memory window, such as the width and length of the win-
dow and the size of physical page in DRAM. Command
Parsing module decomposes the matrix access into a series
of burst access operations and the burst operations are stored
in the Burst Operation FIFO. Burst Operations FIFO, Read
Data FIFO, and Write Data FIFO are used to buffer the burst
operations, data of reading, and data of writing, respectively.
Moreover, they play a role in separating the different clock
domains to alleviate the computation logic from the con-
straints of DRAM clock, or vice versa.

Control Signal Generate module was developed from
the Xilinx IP core, which is used to complete the initial-
ization, refreshing, and control of state machine, as well as
the issuing of access command of DRAM. According to the
memory state and the current burst operation, this module
generates corresponding commands (CS, RAS, CAS, WE,
and addresses A0-A12), such as ACTVE, PRECHAREDE,
READ and WRITE to DRAM modules.

The WMLS DRAM controller provides the matrix row
and column command to access a continuous or discrete
storage window in DRAM, to achieve high bandwidth uti-
lization for AR/CMA applications. The command to access
matrix data includes two parameters: the starting address
(addr), row or column access (sel RC). Here, addr is the
starting physical row and column addresses in DRAM for
the matrix access commands. The Command Parsing mod-
ule decomposes the row or column access command into a
series of short burst access operations according to window
configuration. Figure 6 shows the decomposition principles.
To access the matrix row, we use serial burst operations to
access a continuous A×B rectangular window with addr for

Fig. 5 Structure of the WMLS DRAM controller.

the upper left corner. To access the matrix column, we use
the serial burst operations to access a discrete T ×S window.
The intervals for row and column are B and A, respectively.

6.1.2 Performance

We implement the WMLS DRAM controller on Xilinx
Virtex-5 FPGA platform based on the Memory Interface
Generator for DDR2 SDRAM memory. The usage of hard-
ware resources are shown in Table 1. WMLS controller uses
more slice to support optimal window access mode. Six
block RAMs are used to build read/write data FIFO. The
final operating frequency of tradition and WMLS DRAM
controller is 200 MHz.

We first test the effect of window configuration on the
bandwidth of external DRAM and prove the optimal win-
dow theory. By using a 200 MHz clock, we determine that
the peak bandwidth of DRAM module was 6.4 GB/s. As
shown in Fig. 7, the available bandwidth of the DRAM is a
function of A, which is the width of storage window. Based
on Theorem 1, the bandwidth of AR/CMA reach the optimal

value when A = N ×
√

1
b×C , where C = 1024, and b = 8.

For 1K×1K and 4K×4K logical matrices, the optimal win-
dows are A = 8 and A = 64, respectively, as shown in Fig. 7.
The vertex in each curve represents the practical peak band-
width and the corresponding windows size, thus verifying

Fig. 6 Commands decomposition from logical matrix to burst opera-
tions.

Table 1 Resource usage of WMLS DRAM controller.

Slice Register Slice LUT Block RAM Frequency
Tradition 1888 2712 6 200 MHz
WMLS 2563 3733 6 200 MHz

Fig. 7 Available bandwidth with different size window for ACM/RM.

GUO et al.: WINDOW MEMORY LAYOUT SCHEME FOR ALTERNATE ROW-WISE/COLUMN-WISE MATRIX ACCESS
2771

Theorem 1.
Figure 8 shows the bandwidth comparisons of CM and

RM access between WMLS and traditional row-wise or-
der scheme for different matrix size. The optimal window
configuration was used under different conditions. A sharp
decrease in the bandwidth was observed for the col access,
along with the enlargement in the matrix. Because, for small
matrices, such as 16× 16 and 32× 32, the whole matrix can
be fitted into one physical row of DRAM, incurring no over-
heads for no-data-visit operations. However, for large ma-
trices, the column data are stored in different physical row;
thus, the bandwidth is only 500 MB/s (8% of the peak band-
width). WMLS balances the performance between CM and
RM access. The bandwidth utilization of CM and RM ac-
cess is gradually stabilized at 94.7% and 91%, respectively.
Compared with the col access mode, the performance in-
creased by a factor of 11.4. The average bandwidth of
AR/CMA with WMLS improved by 73.6%, compared with
the traditional row-wise order access mode.

6.2 WMLS Implementation in CPU Platform

The hardware structure of CPU platform is fixed. The com-
putation unit achieves high operating frequency with deep
pipeline organization and achieves high performance with
superscalar, hyper-threading, out-of-order, and speculative
techniques. The storage wall problem becomes increasingly
significant with increasing difference between CPU perfor-
mance and DRAM performance. For AR/CMA applica-
tions, the low DRAM bandwidth utilization further limits
the play of CPU performance.

6.2.1 WMLS Layout Scheme

In general-purpose CPU platform, storage hierarchy based-
on cache structure is employed, according to the temporal
locality and spatial locality of data. This hierarchical stor-
age structure is transparent to the programmer. When a data
is accessed from DRAM, the corresponding block of data
is read into a cache line first. The size of that block is the
length of cache line. Then, data is read from cache. For
the CM access, the continuous data of matrix column can-
not be prefetched into a cache line, since the line-space of
two continuous data in one column is very large. Therefore,

Fig. 8 Bandwidth comparison of the CM and RM access between tradi-
tional row-wise order and WMLS.

the DRAM bandwidth utilization will be further reduced for
AR/CMA access applications.

A similar WMLS can be applied in the CPU platform.
Each program reserves a physical storage space as virtual
space for data arrangement in WMLS. The operating system
dynamically maps the virtual space into different DRAM
physical spaces according to the current operating environ-
ment. The mapped unit is composed of multiple physical
rows and is aligned with physical pages. Therefore, the vir-
tual space can be regarded as a 2D storage structure, where
width is equal to the size of DRAM physical page. In the
CPU platform, the memory access mechanism is fixed, but
the access behavior in high-level programs is flexible. We
can modify the matrix program to realize mapping from log-
ical matrix to DRAM space.

The implementation of WMLS in the CPU platform in-
volves the modification of the data layout of matrix and the
access algorithm. The unit of data in Cache is set to be the
same as the size of a cache block according to the cache lo-
cality principle. The size of storage window is several times
that of the cache block. Figure 9 shows the data layout of the
matrix, where the storage window is A×B, and the length of
physical row is C. A row in the logical matrix is stored in a
window and the window W(0, S − 1) corresponds to the S th

row. The first column of logical matrix corresponds to the
first element in all windows, as shown by red dotted line.

The relationship between the starting address of
virtual space (P addr) and address of window data
W(t, s)[i][j](P w) is expressed as

P w = P addr + (t ∗ A + i) ∗C + s ∗ B + j (11)

In application, a pointer is used to realize the algorithm
that accesses the matrix in the storage window mode, such
as the double loops Rc and Cc shown in Fig. 9. Code section
Rc accesses a row of logical matrix, as well as the storage
window. Code section Cc accesses the data in a fixed posi-
tion of each storage window, as well as column vector.

6.2.2 Performance

We implement the WMLS layout scheme in a Linux server
with Intel Core2 Quad Q8400 CPU, 32GB memory and the

Fig. 9 WMLS map scheme in CPU platform.

2772
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

Federo10 operating system. In the experiments, the matrix
layout is optimized according to WMLS, and the matrix is
read, modified, and written by the CM access mode and RM
access mode, respectively. The 4K×4K matrix is divided in
accordance with 64B, which is the size of cache block. Fig-
ure 10 shows the speedup of actual effective bandwidth for
different window size. A significant performance increment
is observed when the width of the storage window changed
from 4 to 64. When the window width was 8, we have ob-
tained the maximum speedup with a factor of 1.6.

6.3 WMLS Implementation in the GPU Platform

GPU includes many computing cores and has high comput-
ing performance. The ratio of computing performance to
IO performance is very low. Therefore, the actual mem-
ory bandwidth utilization will decide the play of GPU and
memory wall phenomenon is further exacerbated in GPU
platform. The optimization of data layout scheme become
main work in transplanting an algorithm into GPU platform.

6.3.1 WMLS for the Warp Mode

The GPU platform employs the warp mode to access mem-
ory. Each GPU kernel execution is a thread block and is
mapped to a streaming multiprocessor (SM). The block is
divided into multiple Warps, which contain 32 threads, as
shown in Fig. 11. The program, which is executed in GPU,
utilizes hundreds and thousands of threads, which are or-
ganized in a linear, 2D or 3D structures. Warp is the basic
scheduling unit in SM and is the access unit in the process of
accessing the memory. The access request of the 32 threads
is issued together and data are returned from memory at the
same time. If any thread of the warp is delayed during mem-
ory access, then the entire warp will suffer a delay.

Fig. 10 Performance improvement with WMLS in CPU platform.

Fig. 11 GPU thread scheduling Wrap unit.

In traditional data layout scheme, the GDDR band-
width utilization in the AR/CMA applications is very low.
The global memory, which is composed of GDDR SDRAM,
is the main storage structure of GPU. GDDR has the same
basic characteristics as DDR2 or DDR3 does. Therefore,
for the RM access, the data, which are accessed by using a
warp with 32 threads, are stored contiguously in the same
physical page, thus enabling high memory bandwidth uti-
lization. However, for the CM access, the warp has to access
the data in multiple physical rows, which results in signif-
icant decline in memory bandwidth utilization. Thus, the
whole performance of AR/CMA will be greatly limited.

In GPU platform, WMLS is implemented with 2D
dynamic memory, by using the cudaMallocPitch function.
The 2D memory ensures continuous data in the row to en-
able quick access and to obtain a high memory bandwidth.
Therefore, each row in the 2D memory can be treated as a
physical row in DRAM. Figure 12 shows the 32 × 32 2D
data space that stores the 32 × 32 matrix M, where the stor-
age window is set as 8×4. The logical matrix is mapped into
the 2D space according to WMLS, where C = 32, A = 4,
B = 8, and S = 4. The matrix element M[i][j] is mapped to
the GData[i/S ∗a+ j/B][i%S ∗B+ j%B]. Similar to FPGA
and CPU, the row data in WMLS in GPU platform are also
distributed in the storage window, whereas the column data
is distributed in a fixed position in each window.

In the CUDA programming model, block ID and thread
ID are used to realize mapping between logical matrix and
GDDR. Given that the basic access unit is warp with 32
threads, the aim of WMLS is mainly to balance the access of
each warp and to improve the average performance of warp
for AR/CMA applications, as evident in the example pro-
vided in Fig. 9. The GPU threads can also be organized into
a 2D window, as shown in Fig. 12. The storage size is equal
to or larger than that of the thread window. We can move
the thread window in the storage window to access every el-
ement. The storage window of column can be processed in
the same manner. The thread windows are discrete and are
distanced from each other.

6.3.2 Performance

In our GPU platform experiments, the programming envi-
ronment was the vs2008+CUDA, and the hardware was the

Fig. 12 Example of data arrangement and access with window width of
4.

GUO et al.: WINDOW MEMORY LAYOUT SCHEME FOR ALTERNATE ROW-WISE/COLUMN-WISE MATRIX ACCESS
2773

Nvidia Geforce480. We implement four kernel functions,
namely row line rw (RM access with traditional row-first
model), col line rw (CM access with traditional row-first
model), row window rw (RM access with WMLS scheme)
and col window rw (CM access with WMLS). All matrix
elements are read, modified, and written using these four
kernel functions. The running time and memory perfor-
mance are analyzed by the CUDA profile.

We use a the matrix size of 1K × 1K to test the per-
formance of WMLS. The width of window varies from 1 to
256 as a power of 2.Each kernel block has 1204 threads.
As shown in Fig. 13, the performance of col line rw is
the worst, among all kernel functions, whereas that of the
row line rw is the best. When the window width is in-
creased from 1 to 32, the performance of col window rw
significantly declines and that of the row window rw signif-
icantly increases. The performance of row window rw im-
proves gradually with window width, because the row data
accessed by warp are more continuous. When the window
width is more than 32, the performance of col window rw
and row window rw changes slightly. Because the row data
accessed by warp are completely continuous, and the col-
umn data were not continuous at all. More than one set of
data can be accessed in a burst. The window width in the
intersection between row window rw and col window rw
is either 4 or 8. We have determined the balance of
theAR/CMA process, and have obtained the window width
in which the overall memory performance of the AR/CMA
is the highest.

Figure 14 shows performance improvement of AR/CMA

Fig. 13 Comparison of running time of four kernel functions with differ-
ent window width.

Fig. 14 Speedup of WMLS scheme with different window width.

with different window width, when the matrix size is 1K ×
1K and 2K × 2K respectively. When the window width is
between 2 and 32, the storage performance acceleration is
higher than 1. When window width is 4, we can achieve the
highest speedup by a factor of 1.7X and 2.0X.

7. Performance Evaluation for CS SAR Application

In this section, the Chirp Scaling (CS) application [18],
which is a SAR radar image processing algorithm, is used to
evaluation the performance improvement of WMLS scheme
on FPGA, CPU, and GPU platforms, respectively.

7.1 CS Algorithm

As shown in Fig. 15 (A), the program flow diagram of CS
algorithm consists of four 2D FFT (azimuth FFT, range FFT,
range IFFT, and azimuth IFFT) and three factor compression
computations, which is the complex element multiplication
of two matrixes. The data access mode of CS application is
shown in Fig. 15 (B). The first step is FFT operation in the
azimuth direction, which carries the raw SAR data into the
range domain. The access mode of step 4 (azimuth IFFT)
is similar to step 1. The range operations are embedded in
the middle of two azimuth transforms. The Chirp Scaling
range compression operation (Range FFT) is followed with
the first step. In this step, the raw SAR data matrix is read
with column-wise and result matrix is written with column-
wise. The access mode of step 3 (Range IFFT) is similar
to step 2. Thus, the access mode of range operations (both
range FFT and range IFFT) is to read data matrix and write
result matrix with row-wise, and the access mode of azimuth
operations (both azimuth FFT and azimuth IFFT) is to read
data matrix and write result matrix with column-wise.

Fig. 15 Program flow chart and data access mode of CS application.

2774
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

7.2 Performance Comparison for CS Application

Table 2 shows the performance comparison of CS applica-
tion between normal access scheme and WMLS scheme for
FPGA, CPU, and GPU platforms, respectively.

For FPGA platform, we implement a CS accelerator,
equipped with a cluster of FFT-PEs, on Xilinx Virtex-5
XC5VLX330T FPGA chip, as shown in Fig. 16. The struc-
ture of FFT-PE is similar to that in [5], which is composed
of four double-precision floating-point multipliers and six
double-precision addition and only one RAM to buffer the
intermediate data. The FFT-PE can perform the computa-
tion of 1D radix-2 FFT/IFFT and complex multiplication in
compression operations with dynamic configurable pipeline
scheme. Due to the limitation of DSP48E resource, only
eight FFT-PE units could be integrated into CS accelera-
tor. The achieve maximum frequency and run frequency are
213.9 MHz and 200 MHz, respectively.

The speedup of WMLS scheme is increased with the
size of CS application, when the size is not greater than
1K. This is because the computation bandwidth is greater
than DDR bandwidth and the computation is overlapped
with data access, so the performance of WMLS scheme is
proportional to the IO bandwidth utilization. When size is
4K, the maximum computation bandwidth for 8 FFT-PEs is
about 4300 MB/s, and the IO bandwidth of WMLS for row
access and column are 5978 MB/s and 5703 MB/s, respec-

Table 2 Performance comparison of CS SAR application between nor-
mal access scheme and WMLS scheme for FPGA, CPU, and GPU.

Size of CS 128 256 512 1024 2048 4096

FPGA1
Normal 0.63 3.46 17.96 78.45 327.4 1344.1

WMLS 0.36 1.10 4.01 16.58 72.35 313.5

Speedup 1.74 3.15 4.49 4.73 4.52 4.29

CPU2
Normal 6.1 24.1 162.0 652.0 2667 16188

WMLS 5.2 21.8 133.9 509.4 2136 12171

Speedup 1.15 1.16 1.21 1.28 1.29 1.33

GPU3
Normal 1.3 3.7 14.5 53.4 211.7 866.8

WMLS 1.1 3.2 10.3 38.4 138.1 556.7

Speedup 1.18 1.15 1.36 1.40 1.53 1.56

Note 1: Xilinx Virtex-5 XC5VLX330T FPGA, 8 FFT-PE units

Note 2: Intel Core 2 Quad Q8400 CPU, 128K L1 Cache, 4M L2 Cache

Note 3: Nvidia Tesla C2070 GPU, 448 thread processors

Fig. 16 FPGA accelerator structure for CS application.

tively. So, the IO bandwidth was not made full use and the
speedup of WMLS scheme is 4.29. However, more FFT-PE
units can be integrated into new FPGA chips, such as Xil-
inx Virtex-6 or Virtex-7, and the IO bandwidth of WMLS
scheme will make full use to achieve higher performance.

For CPU and GPU platforms, the optimal window con-
figuration of WMLS scheme is employed in CS SAR ap-
plication and the results are shown in Table 2. Due to the
similar memory hierarchy structure in CPU and GPU plat-
forms, the performance of WMLS scheme is improved with
the increase of the size of CS application. Compare with
the traditional access method, the maximum speedup factors
are 1.33X and 1.56X for CPU and GPU platform, respec-
tively. Each step in CS application, as shown in Fig. 15, is
composed of three parts: read of matrix data, calculation of
FFT/IFFT and factor compression, and write of results ma-
trix. However, these parts can not be effectively overlapped
and the run time for calculation is larger than that for access
matrix, especially for CPU platform. Thus, the speedups of
WMLS scheme are smaller than that in Fig. 10 and Fig. 14.

8. Conclusions

This paper has presented the data layout scheme (WMLS)
and the optimal window layout of WMLS to improve
the practical DRAM bandwidth for AR/CMA applications.
The proposed scheme combined the DRAM characteristics
and the access feature of AR/CMA. This scheme matched
the storage continuity of DRAM and access continuity of
AR/CMA. The different implementations of WMLS were
presented according to the memory structure of FPGA,
CPU, and GPU platform, respectively. The experimental re-
sults show that the proposed WMLS can achieve a DRAM
bandwidth improvement ranging from 1.6X to 2.0X.

Finally, we apply WMLS scheme for Chirp Scaling
SAR application, comparing with the traditional access ap-
proach, the maximum speedup factors of 4.73X, 1.33X and
1.56X can be achieved for FPGA, CPU and GPU platform,
respectively.

Acknowledgment

The authors would like to thank the anonymous reviewers
for their constructive comments and suggestions. This work
is partially supported by NSFC (61125201).

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J.
Dongarra, J.D. Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide, SIAM, 1999.

[2] W.M. Brown, “Synthetic aperture radar,” IEEE Trans., Aerosp.
Electron. Syst., vol.AES-3, no.2, pp.217–229, 1967.

[3] M. Coskun, K. Donglok, and K. Yongmin, “Efficient 2D FFT imple-
mentation on mediaprocessors,” Parallel Computing, vol.29, no.6,
pp.691–709, 2003.

[4] A.W. Wm and A.M. Sally, “Hitting the memory wall: implications
of the obvious,” ACM SIGARCH Computer Architecture News,
vol.23, no.1, pp.20–24, 1995

GUO et al.: WINDOW MEMORY LAYOUT SCHEME FOR ALTERNATE ROW-WISE/COLUMN-WISE MATRIX ACCESS
2775

[5] Y. Dou, J. Zhou, Y. Lei, and X. Zhou, “FPGA SAR processor
with window memory accesses,” IEEE International Conf. on Ap-
plication -specific Systems, Architectures and Processors (ASAP),
pp.95–100, 2007.

[6] Y. Dou, S. Vassiliadis, G.K. Kuzmanov, and G.N. Gaydadjiev, “64-
bit floating-point FPGA matrix multiplication,” Proc. 2005ACM/
SIGDA 13th International Symposium on Field-programmable Gate
Arrays (FPGA), pp.86–95, 2005.

[7] Q. Yi, K. Kennedy, H. You, K. Seymour, and J. Dongarra, “Au-
tomatic blocking of QR and LU factorizations for locality,” Proc.
ACM SIGPLAN Workshop Memory System Performance, 2004.

[8] H. Runge, R. Bamler, I.G. Cumming, and F.H. Wong, “Precision
SAR processing using chirp scaling,” IEEE Trans. Geosci. Remote
Sens., vol.32, no.4, pp.786–799, 1994.

[9] J. Suh and S.P. Crago, “PIM- and stream processor-based processing
for radar signal applications,” Proc. 3rd Workshop on Media and
Streaming Processors, pp.77–85, Dec. 2001.

[10] Y. Pi, H. Long, and S. Huang, “A SAR parallel processing algorithm
and its implementation,” Proc. FIEOS Conf., pp.211–214, 2002.

[11] P. Gottschling, D.S. Wise, and M.D. Adams, “Representation-
transparent matrix algorithms with scalable performance,” Proc.
21st Annual International Conference on Supercomputing (ICS ’07),
pp.116–125, 2007.

[12] G. Ruetsch and P. Micikevicius, “Nvidia optimizing matrix trans-
pose in CUDA,” pp.1–24, 2009. Available: http://www.cs.colostate.
edu/˜cs675/MatrixTranspose.pdf

[13] V. Podlozhnyuk, “FFT-based 2D convolution,” NVIDIA White Pa-
per, June 2007.

[14] B. Tu, D. Li, and C. Han, “Two-dimensional image processing with-
out transpose,” Proc. 7th International Conference on Signal Pro-
cessing, vol.1, pp.523–526, 2004.

[15] H. Kim and I.C. Park, “Array address translation for SDRAM-
based video processing applications,” Electron. Lett., vol.35, no.22,
pp.1929–1931, 1999.

[16] Z. Mo, J. Han, Z. Wang, and C. Han, Study and Implementation
of Parallelized SAR Imaging Without Transposing Data Matrix, J.
Computer Research and Development, vol.40, no.1, pp.19–25, 2003.

[17] M. Onoe, “A fast digital processing for synthetic aperture radar with-
out transposing data matrix,” 13th Int’l Symp on Space Technology
& Science, 1982.

[18] C. Yu and C. Chakrabarti, “Transpose-free SAR imaging on FPGA
platform,” 2012 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pp.762–765, 2012.

[19] G. Wu, Y. Dou, J. Sun, and G.D. Peterson, “A high performance and
memory efficient LU decomposer on FPGAs,” IEEE Trans. Com-
put., vol.61, no.3, pp.366–378, 2012.

Lei Guo was born in 1987. He received
his M.S. degree in Computer Science and Tech-
nology at National University of Defense Tech-
nology in 2010, and now he is a Ph.D. candidate
at National University of Defense Technology.
His research interests include high performance
computer architecture.

Yuhua Tang was born in 1962, profes-
sor, Ph. D. supervisor in Computer Science
and Technology at National University of De-
fense Technology. His research interests include
high performance computer architecture, paral-
lel computation.

Yong Dou was born in 1966, professor,
Ph. D. supervisor, senior membership of China
Computer Federation (E200009248). He re-
ceived his BS, MS, and PhD degrees in Com-
puter Science and Technology at National Uni-
versity of Defense Technology in 1995. His re-
search interests include high performance com-
puter architecture, high performance embedded
microprocessor, reconfigurable computing, and
bioinformatics.

Yuanwu Lei was born in 1982. He received
his M.S. degree in Computer Science and Tech-
nology at National University of Defense Tech-
nology in 2007, and now he is a Ph.D. candidate
at National University of Defense Technology.
His research interests include high performance
computer architecture.

Meng Ma was born in 1986. He received
his M.S. degree in Computer Science and Tech-
nology at National University of Defense Tech-
nology in 2011, and now he is a Ph.D. candidate
at National University of Defense Technology.
His research interests include high performance
computer architecture.

Jie Zhou was born in 1980, assistant re-
searcher. He received his B.S., M.S. and Ph.D.
degrees in Computer Science and Technology
from the National University of Defense Tech-
nology in 2002, 2005, and 2011. His research
interests include high-performance computer ar-
chitecture, parallel computing, and reconfig-
urable computing.

