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PAPER

A Practical and Optimal Path Planning for Autonomous Parking
Using Fast Marching Algorithm and Support Vector Machine

Quoc Huy DO†a), Nonmember, Seiichi MITA†, Member, and Keisuke YONEDA†, Nonmember

SUMMARY This paper proposes a novel practical path planning
framework for autonomous parking in cluttered environments with narrow
passages. The proposed global path planning method is based on an im-
proved Fast Marching algorithm to generate a path while considering the
moving forward and backward maneuver. In addition, the Support Vec-
tor Machine is utilized to provide the maximum clearance from obstacles
considering the vehicle dynamics to provide a safe and feasible path. The
algorithm considers the most critical points in the map and the complexity
of the algorithm is not affected by the shape of the obstacles. We also pro-
pose an autonomous parking scheme for different parking situation. The
method is implemented on autonomous vehicle platform and validated in
the real environment with narrow passages.
key words: path planning, autonomous parking, fast marching, support
vector machine

1. Introduction

Recently, several automotive manufacturers have introduced
the concept of a “self-parking car” whereby a car can be
maneuvered into a parking spot under automated control.
An autonomous parking assistance system generally per-
forms complicated tasks including environment mapping,
path planning, and path tracking. Path tracking is composed
of two components: a local path planner which generates
a short range (a local path) to follow a globally planned
path, and a lower level motion command (e.g. accelerating,
steering, braking and so on) controller. On account of wide
demand for autonomous parking, many parking path plan-
ning algorithms have been developed. The path planning for
autonomous parking, mainly operated in a semi-structured
environment is different from the normal on-road path plan-
ner which mainly runs in the structured environment. In [1],
Pradalier designed a parking assistance system with the help
of a database for storing the pre-calculated control profile
parameters and the resulting movement. However, it is too
heavy for an on-board system to maintain such a database
or the resolution is limited considering the computing re-
source constraints. In [2], Paromtchik presented an itera-
tive algorithm for parking maneuver based on ultra-sonic
range data processing and sinusoidal function to control
the steering angle and longitudinal velocity of the vehicle.
A velocity and steering command generation method for
autonomous parking was presented by same author in [3].
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Oetiker [4] presented a low-cost and memory efficient algo-
rithm based on navigation-field for a semi-autonomous ve-
hicle parking assistant. Taix [5] presented a multi-level so-
lution which separates the planning task into holonomic and
non–holonomic problems and the main idea was adapted to
the vehicle parking problem by Muller in [6]. Such paths
are feasible to vehicles with limited steering speed and al-
low for parking maneuvers at continuous longitudinal mo-
tion. In [7], M.F. Hsieh proposed an arcs-based parking
path planning method which was used by OSU-ACT team in
the DARPA Urban Challenge 2007. However, these above
mentioned methods perform autonomous navigation only in
a short range and are not able to plan complex navigation
tasks through entire parking structures. K. Kondak [8] ap-
plied numerical methods and artificial potential field to solve
the nonlinear optimization for autonomous parking but the
algorithm is very time consuming. In [9], M. Wada pre-
sented a multilevel driver assistance system based on path
planning and human interface to assist parking. A contin-
uous curvature trajectory design and feed-forward control
for parking method based on two-step path planning was
proposed by B. Muller [10]. Dubins [11] presented an al-
gorithm for computing a shortest path between two pos-
tures in the plane for a vehicle having a limited curvature.
Reed and Sheep [12] extent Dubin’s work with the consid-
eration of moving forward and backward maneuvers. The
weakness of these methods is that the appearances of the
obstacles are not considered while a path is being gener-
ated. Other planners [13]–[15] have been successfully deal-
ing with vehicle’s dynamic constraints by using probabilis-
tic path planning methods. In [14] L. Han proposed a uni-
fied autonomous parking planner based on bi-directional
RRT but this method does not consider the number of gear
transition. Kuwata [15] developed algorithm of closed loop
rapidly-exploring random tree (CL-RRT) for the path plan-
ning task running in real time. The CL-RRT is able to plan
motions on different scenarios. Nevertheless, these meth-
ods does not provide optimal result. In [16], Likhachev pre-
sented a long-range path planning algorithm based on Any-
time Dynamic Astar to efficiently generate complex plans
overlarge, obstacle-laden environments. However, these
methods have limitations and do not produce optimized path
to the goal position. In Japan, generally parking areas are
cluttered environment with narrow passages which makes
the autonomous parking more complicated. For cluttered
and narrow passages we always need the safest path, that
is, the path that can provide maximum distance from the
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obstacles around it.
It is necessary to overcome the above mentioned prob-

lems including computational costs and localization uncer-
tainty, so we proposed a new method to generate parking
path with maximum-clearance path planning: We proposed
a safe and smooth path planning method based on the binary
classification Support Vector Machine (SVM) method. The
method discussed in this paper is an implementation of our
previous works [17], [18] to apply in the real environment
with
(1) Forward and backward maneuver are considered to sat-
isfy the final position constraint and the number of gear
change are also considered.
(2) A modified Fast Marching Method (FMM) which is ap-
plicable for the parking path planning problem and provide
the optimal path.
(3) Parking schemes for the vehicle to handle different park-
ing situations.

The structure of this paper is as follow: Sect. 2 de-
scribes the overview of an autonomous parking assistant
system and the schemes for autonomous parking. Section 3
explains the global path planning method. Experimental re-
sults are presented in Sect. 4. Finally, the conclusion is pre-
sented in Sect. 5.

2. Proposal Autonomous Parking Scheme

2.1 Autonomous Path Planning System Overview

The whole system’s architecture and data flow diagram of
autonomous vehicle components are shown in Fig. 1. The
vehicle sensors data including laser data and IMU/odometer
have been used for preparing the global SLAM map as an
occupancy grid map. The global map is prepared in ad-
vance. We use the generated global map as a reference for
vehicle path planning.

The autonomous path planning is divided into two
phases such as global and local path planning.
(1) The global path planner will generate a path based on the
known or recorded data (the occupancy grid map).
(2) Based on the generated global path, at each timestamp of
the vehicle control, we generate the local path to avoid the
dynamic obstacles or the newly appeared obstacles.
In a longer timestamp, the global path can be called to gen-
erate a new global path. The details of the local planners are
presented in our previous work [17], [18].

2.2 Proposed Autonomous Pparking Scheme

We use the planners proposed in Sect. 3 and [18] to address
the realistic navigation scenario for an autonomous vehicle,
where narrow passages, moving obstacles must be taken into
consideration. When the vehicle begins to enter the area for
parking, two following situations can be exist.
A. There is no specific parking position, the vehicle have to
search for it. The parking scheme is shown in Fig. 2.
Step 1: Generate a path from current position or parking

Fig. 1 Autonomous parking architecture and data flow.

Fig. 2 Autoparking scheme.

Fig. 3 Parking with known position scheme.

area’s entrance to the exit
Step 2: Follow the generated path and detect parking loca-
tion.
Step 3: If one or more parking locations are detected, the
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Fig. 4 Example of a parking situation and parking scheme.

global path planner will be called to generate the path to
these locations. The final parking location will be chosen
based on the cost of distance travel, safety distance and num-
ber of backward maneuver. The parking position can be se-
lected to minimize the cost function (1).

C(path) = w1 length(path) + w2 margin(path)

+ w3 number of gear change(path) (1)

Step 4: The rest of the tasks are similar to Scheme B.
Step 5: If the vehicle can reach to the parking position, the
path will be stored in the library to be used in the future.
B. The parking position is already known in advance.
Step1: The global path planner will generate a path from
current position to parking position.
Step 2: While the vehicle travelling, the local path planner
will be called to generate local path to follow global way-
points.
Step3: If a moving obstacle appears, the local path planner
will generate a local path to avoid it.
Step 4: if no local path exist, the vehicle will stop and call
the global path planner to generate a new path (go to step 1).
Step 5: If no new path exist then the vehicle has to do the
loop stop and wait, try to generate new path. If after an n
number of attempts the vehicle still cannot find a new path
then it has to go backward along the travelled path and gen-
erate a new path again. If a new path is generated then go to
step 2.
Step 6: if the goal (pre-determined parking position) is occu-
pied then the vehicle have to detect a new parking position.

Figure 4 shows an example of parking situation. Fig-
ure 4.a shows that in the beginning, a parking position is
determined and a global path is generated from the vehi-
cle current position to the parking position. As shown in
Fig. 4.b, while the vehicle is following the generated global
path, a new car (new obstacle) appears and makes the path
unsafe. The local path planner will generate a new local path
to avoid the obstacle as shown in Fig. 4.c. Figure 4.d shows
that when the vehicle reached the planned parking position,
it found out that the position was occupied. Thus, the vehi-
cle has to find a new position to park. Based on the vehicle
stored information in the map, several empty positions are
selected and the vehicle will generate paths to these candi-
dates as shown in Fig. 4.e. The parking position and path
will be determined based on the cost function (1) and the
vehicle will follow this new generated path.

3. Global Path Planning with Improvement of Fast
Marching Method

The autonomous parking path planning must take into ac-
count a wide variety of factors such as the followings:
(1) The safety distance of the path to the obstacles (which
include the static or priory known obstacles and the newly
appear or moving obstacles).
(2) The total travel distance of the path.
(3) The length of path’s segments that the vehicle has to
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Fig. 5 2D FMM.

drive in backward maneuver.
(4) The number of times that the vehicle has to switch the
gear from forward to backward and vice versa.
(5) The curvature of the path to satisfy the kinematic con-
straints.
We assume that the vehicle is equipped with sensors for both
the front and the backward so that driving forward or back-
ward has the same meaning for the autonomous vehicle.

The objective of the autonomous parking planner is to
minimize the following cost defined over a path.

C(pi) = w1

N∑

i=1

d(pi) + w2

N−1∑

i=1

|g(pi) − g(pi−1)|

+ w3

N∑

i=1

Δpi + w4

N−1∑

i=1

|κ(pi)| (2)

where N is the number of path points, pi (i = 1..N) are the
points on the path, d(pi) is the reversed distance from the
path point to the obstacles, the distance between path points
Δpi = ‖pi− pi−1‖, g(pi) ∈ {1,−1} determine the motion gear:
(1 = forward) and (−1 = backward); κ(pi) is the curvature
of the path at point pi and w1, w2, w3, w4 are the weight
factors.

The proposed global path planning is the improve-
ment of the fast marching method to apply for parking path
planning.

3.1 The Fast Marching Method

The Fast Marching Method (FMM) [19] has been intro-
duced to solve the static Hamilton Jacobi (Eikonal) equa-
tion |∇U(x)| · F(x) = 1. Here, F(x) > 0 is the front mov-
ing speed at point x and U(x) is the function of travelled
time. 1/F(x) can also be known as objective cost and U(x)
is known as cost to go from start point to point x. As im-
plemented in the robotic navigation, the formulation can
be interpreted as path planning optimal problems (with the
consideration of Eq. (2)). Sethian [20] proposed to use the
Godunov Hamiltonian which is a one-sided derivative.

At each point (i, j) in the search graph (Fig. 5 a), the
unknown cost value u satisfies:

fi, j
2 = (max{u − Ui−1,j, u − Ui+1,j, 0})2 +

(max{u − Ui,j−1, u − Ui,j+1, 0})2 (3)

where U is the known cost value of the neighbor node of

(i, j), fi, j is the cost to travel between the nodes in the graph.
Starting with an initial position for the front, the method
systematically marches the front outwards one grid point at
a time as illustrated in Fig. 5 b.

The FMM algorithm is as follow:

1) Definitions
• Visited is the set of all points at which the cost to go

value U has been reached and will not be changed;
• Front is the set of next points to be examined and

for which, an estimate U of u was computed using Eq. (3)
only from Visited points;
•Unvisited is the set of all other grid points, for which

their cost to go value U is not yet estimated.
2) Initialization
• The starting point p0 is put to Visited set, U(p0) = 0;
• Front - the initial front is narrowed to the neighbors

of p0 with initial values U(p) = f(p);
· Unvisited is the set of all other grid points, U = ∞;
3) Marching Loop
• Let p = (imin, jmin) be the Front point with the small-

est cost U;
• Move it from the Front set to the Visited set (i.e.

Uimin, jmin is frozen);
• For each neighbor (i, j) of (imin, jmin):
a) If (i, j) is Unvisited, add it to the Front set and com-

pute a first estimate U of U using Eq. (3)
b) If (i, j) is in Front, update the value Ui,j using

Eq. (3).

An optimal path is generated by tracking backward the
points from goal to start via gradient descent by using the
computed values u.

The FMM has shown to generate a smoother path than
A* in 2D environment [21], [22]. However, major of exist-
ing applications of FMM for path planning are in 2D en-
vironment and the result paths are not feasible enough for
the car-like vehicle to follow [23]. In [24] Clement pro-
posed a method for underwater vehicle path planning but
this method does not consider either the position require-
ment (e.g. the heading angle at the start or goal point) or the
backward maneuver.

3.2 Improvement of Fast Marching Method

The path planning is performed on a 4D continuous search
space (x, y, θ, g), where (x, y) are 2D coordination, θ is
the vehicle heading angle and the fourth dimension (g ∈
{1,−1}) represents the current driving maneuver (forward or
reverse).

Instead of using directly FMM on this 4D space, in
this paper, we propose an improvement of Fast Marching
Method (FMM) for car-like vehicle path planning with:

(1) Increase the speed of the method by performing
a preprocessing or off-line calculation step to reduce the
search space.

(2) Add the obstacles’ clearance to the path based on
a safety field.
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Fig. 6 Global path planning.

Fig. 7 The travel time gradient at each point gives the estimation of travel
distance back to the goal.

(3) A continuous search space with consideration
of vehicle kinematic constraints and backward-forward
maneuver.

The overview of global path planning algorithm is de-
scribed in Fig. 6. Our method based on three main steps
which are described in the following sections.
A. Guiding Path Searching and distance measuring

We search the shortest path from the goal point to the
start position in 2D graph.

In this step, the cost value for travel between the grid
cells is fi, j = 1; and the neighbors are defined based on
the 4 connectivity of the cell as shown in Fig. 5 a. Notice
that only Visited points are considered to solve Eq. (3). We
examine neighbors of point (i, j) in 4-connexity. Let UA1 =

min(Ui−1,j,Ui+1,j) and UB1 = min(Ui,j−1,Ui,j+1). Assuming
that u ≥ UB1 ≥ UA1 Eq. (3) becomes:

f 2
i, j = (u − UA1)2 + (u − UB1)2 (4)

Let Δ = 2 f 2
i, j − (UA1 − UB1)2 (5)

If Δ > 0 then

u =
UA1 + UB1 +

√
Δ

2
(6)

Else u = UA1 + fi, j (7)

This step helps us avoid the local trap such as the
U-shaped obstacles, dead-ends and acquires the distance
from each cell on the graph to the goal as shown in Fig. 7.
In other word, we can find path from different point to the
goal point. This distance is called 2D-dist-to-goal and lately
can be used to speed up the searching in 4D space.
B. SVM for Safety Field

We pick up all the points on the borders (left and right
side) along this the guiding path as labeled data points to
input as training data sets for SVM as shown in Fig. 8.

Fig. 8 Generate two separate datasets of obstacles data points using RRT
guided path.

Fig. 9 The virtual safety field generated by SVM.

SVM will learn the data to find the hyperplane which
provide maximum margin to the two classes of data
sets [25]. The detail of applying SVM presented in our pre-
vious work [18].

SVM will provide a safety field along the separating
boundary as shown in Fig. 9. The gray amount represents
the clearance of the cell to the obstacles. The pixel closer to
the separating boundary will be safer.

The distance from the path point to the obstacles d(p)
is now calculated based on the distance to the hyperplane
with

d(p) =
|w · p + b|
‖w‖ (8)

w and b are hyperplane margin and bias achieved from the
training process.

Another benefit of this SVM applying step is that we
can limit the searching area in the safety zone, around the
separating boundary, so that the search space is reduced.
C. A continuous search space for parking path planning
Originally, the search space is portrayed as a 2D grid with
each cell associates with a continuous 3D state (x, y, θ) of
the vehicle. When a node is picked from the Front list of
FMM, it is expanded by applying several steering actions
(in our implementation, there are different steering angles
from max-left to max-right) to the state associated with the
node, and new children states are generated using a kine-
matic model of the vehicle:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ
ẏ
θ̇
φ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sinθ
cosθ

(tanφ)/l
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
vx +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
vy (9)
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Fig. 10 Search space.

where (x, y) represent the position of the center point of ve-
hicle’s rear wheel axis; θ is the vehicle’s heading angle, φ is
the steering angle, vx and vy are the longitudinal and rota-
tional velocity and l is the distance between the front and
rear wheel axes.

For each of these continuous children states, we com-
pute a grid cell that it falls into. Figure 10.a shows an exam-
ple of the searching space graph based on 3 steering angles:
max-right, 0 and max-left.

The cost value for travel between the nodes in the state
space fi. j is calculated based on Eq. (2).

Different to the 2D case, the neighbors of each cell are
based on the kinematic motion of the vehicle with consid-
ering different moving directions and steering angles. Fig-
ure 10.b shows the neighbors of one cell when apply 7 dif-
ferent steering angles for moving forward and backward.
D. Apply the FMM for path planning

Normally, the FMM will stop after the whole set of
available nodes in the graph is examined. Therefore, to
make the FMM algorithm more practically applicable, one
condition will be added to make the algorithm stop when
it reaches the goal position or the allowable runtime is
reached.

3) Marching Loop
• Let p = (imin, jmin) be the Front point with the smallest
cost U;
• If p is goal point then Goal Reached = true
• If Goal Reached and max run time are reached

then output current optimal path.

To make the algorithm convergence quicker to the goal
point, the cost value 2D-dist-to-goal will be added when
choosing the next point with smallest priority cost to be pro-
cessed from the Front list.

Priority(p) = u(p) + λ ∗ 2D-dist-to-goal(p) (10)

Figure 11 shows an example of the planning results
with the affection of λ to the search space and the result path.
When λ is large (Fig. 11 b), the method will quickly advance
to the goal point but the ending angle constraint will cause
it to expend more search space around the goal point. When
λ value is small, the method is slowly exploring the map
(Fig. 11 d). As shown in Fig. 11, the result paths are contin-
uous, smooth and stay away from the obstacles. Moreover,
the 2D-dist-to-goal can help reduce the search space there-
fore increase the speed of the algorithm.

Fig. 11 Global path generated by FMM.

After the global path is generated, the local path plan-
ner will be called to drive the vehicle follow this path and
avoid new or moving obstacles.

4. Simulation and Experiment

The algorithms implemented in this section used the same
cost function (2). The parameters we used are w1 = 2, w2 =

5, w3 = 1, w4 = 5 and λ = 1. We give more weight for gear
transition, safety and smoothness. The travelled distance
(w3) and remain distance have equal weight.

4.1 Heuristic Evaluation

To evaluate the effectiveness of the 2D-dist-to-goal in
Sect. 3.2 we compare our method with Gabriel’s landmark-
based for heuristically driven fast marching method [26].
In both methods, the nodes in the search graph are gener-
ated based on the kinematic model equation with the same
constant velocity value and steering angle values. Gabriel
method is applied with 40 landmarks uniformly distributed
on the map boundary.

We tested both methods with random round shape ob-
stacles (Case 1), a maze map with different local traps
(Case 2 and 3). As shown in Fig. 12 and Table 1, our method
is more effective for the maze environment or the map with
local trap (e.g. U shape, V shape obstacles. . . ).

4.2 Path Planning for Parking

We implement our method and compare with the Dolgov-
like-method [27]. The Dolgov-like method uses Hybrid-
State A* (H-A*) associated with Risk Potential Map (RP).
H-A* is a typical path planning method used by the Stanford
Racing Team for the DARPA Challenge 2007. We imple-
ment the algorithms in different types of map and measure
the average safety margin, curvature and gear transition of
each results path corresponding to each case.
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Fig. 12 Search space evaluation.

Table 1 Number of nodes generated.

4.2.1 Unstructured Map

We create simulation map to verify the algorithm in the con-
ditions of different obstacles’ shapes. As shown in Fig. 13,
the obstacles have random shapes; the algorithm can gen-
erate a path that satisfies the vehicle dynamic. Figure 14
shows the SLAM map of a narrow passage environment.
Figure 15 shows the paths generated in zig-zag type (or lad-
der shape) map.

4.2.2 Parkinglot Map

We apply the proposed global path planning algorithm in
parking lot maps as shown in Fig. 16, Fig. 17 and Fig. 18.
Figure 16 shows paths generated by both algorithms in
structured parking lot map. Figure 17 shows paths gen-
erated in a SLAM map of a practical environment with

Fig. 13 Case A: Simulation results of Hybrid A* (left) and proposed
method (right) in unstructured map with different obstacles shapes.

Fig. 14 Case B: Simulation results of Hybrid A* (upper) and proposed
method (lower) in narrow passage map with different obstacles shapes.

Fig. 15 Case C: Simulation results of Hybrid A* (upper) and proposed
method (lower) in ladder shape map.

other vehicles occupied parking lot. Figure 18 shows ex-
ample paths generated by proposed method in the condition
of other car (obstacle) show up on the lane to the parking
position.

Figures 14, 16 and 18 are real environments recorded
by onboard sensors to make a reference map. In order to
verify proposed method in more complicated environment,
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Fig. 16 Case D Hybrid A* (upper) and proposed method (lower) gener-
ated path in a parking area SLAM map with the appearance of other cars.

Fig. 17 D Hybrid A* (left) and proposed method (right) generated path
in a structured parking lot map in Case E (upper) and Case F (lower).

the map in Fig. 17 is artificially made.
Tables 2, 3, 4 and 5 correspondingly show a safety

margin, a number of gear transition, average curvature of
obtained paths and average computation time of proposed
method and Hybrid A* method. Both algorithms are imple-
mented in C++ on a 2.54Ghz Duo core computer.

The tested maps show various typical situation that
may happen in path planning. In the situations which in-
clude narrow passage like case A, B, E our method gener-
ated paths with smaller number of gear change. Moreover,
the average curvature is smaller and obstacle clearance is
larger in every cases. Our proposed method provides a bet-
ter quality path and SVM is faster than RP but for the whole
algorithm, it needs more computation time. The global path

Fig. 18 Path generated to park and avoid other moving vehicle interfere.

Table 2 Safety Margin for Obtained Paths (cell).

Table 3 Number of Gear change.

Table 4 Average curvature.

Table 5 Average computation time (ms).
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planning is often used as a pre-calculated step before the ve-
hicle travel and we call the local path planner after that to
deal with dynamic obstacles so that this computation time
could be acceptable.

5. Conclusion

We have presented a robust and practical method for au-
tonomous vehicle parking path planning. The main contri-
butions in our global path planning method are: (1) pro-
posed an optimal path planning algorithm which considers
the forward and backward moving maneuver, (2) the start
and goal postures, the kinematic constraints, (3) the maxi-
mum clearance from path to obstacles. This method is based
on FMM to find a parking path, SVM to obtain the obstacle
clearance and dynamic vehicle model to generate a feasible
path that satisfies the vehicle’s constraints. The benefits of
this approach in comparison with other typical related meth-
ods in the literature (including typical path planning method
Potential Field [28], Probabilistic Roadmap [29], Rapidly
Exploring Random Tree [30]) are: (1) this method works
well with probabilistic SLAM map, (2) this method has no
local minima problem, (3) the complexity of the method is
not affected by the shape of the obstacles. Moreover, it can
provide the most critical points within a path mathematically
clearly and the generated path is smooth, feasible for the ve-
hicle to follow. We also proposed schemes for autonomous
parking which generated different behavior to deal with dif-
ferent situation while parking. The proposed method for au-
tomatic parking is effective to handle different parking situ-
ation include narrow passage cases.
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