
2892
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

LETTER

Pixel and Patch Reordering for Fast Patch Selection in
Exemplar-Based Image Inpainting

Baeksop KIM†, Jiseong KIM†, Nonmembers, and Jungmin SO†a), Member

SUMMARY This letter presents a scheme to improve the running time
of exemplar-based image inpainting, first proposed by Criminisi et al. In
the exemplar-based image inpainting, a patch that contains unknown pix-
els is compared to all the patches in the known region in order to find the
best match. This is very time-consuming and hinders the practicality of
Criminisi’s method to be used in real time. We show that a simple bound-
ing algorithm can significantly reduce number of distance calculations, and
thus the running time. Performance of the bounding algorithm is affected
by the order of patches that are compared, as well as the order of pixels in
a patch. We present pixel and patch ordering schemes that improve the per-
formance of bounding algorithms. Experiments with well-known images
used in inpainting literature show that the proposed reordering scheme can
reduce running time of the bounding algorithm up to 50%.
key words: image inpainting, image completion, exemplar-based, bound-
ing, fast nearest-neighbor algorithm

1. Introduction

Image inpainting is a technique to fill in unknown regions
in an image. The applications of image inpainting in-
clude removing scratches and stains, recovering missing
parts of the image, and removing an unwanted object from
the image and replacing with the background plausible to
the human eye. This problem has gained significant inter-
est since Bertalmio et al. [2], and many different solutions
have been proposed. The solutions to image inpainting can
be largely categorized into two classes: PDE (Partial Dif-
ferential Equation)-based and exemplar-based. The PDE-
based methods [2], [3], [6], basically fill the missing region
by diffusing known pixels in the neighborhood while try-
ing to maintain structures. This is done by solving third
or fourth-order partial differential equations iteratively. The
PDE-based methods are good at filling small gaps such
as scratches but do not provide good results if the size of
the missing region is big. Criminisi et al. [1] proposed the
exemplar-based inpainting method, where the unknown re-
gion is iteratively filled by selecting the “best” patch from
the known region. The filling order is selected according to
a priority function, which favors maintaining the isophote
direction in the known region. The exemplar-based method
is well suited for filling in large gaps, such as removing un-
wanted objects from the image. Many improvements to the
original solution have been proposed in the line of exemplar-
based approach, in order to enhance the resulting image [4],

Manuscript received June 3, 2013.
Manuscript revised August 7, 2013.
†The authors are with the Dept. of Computer Engineering,

Hallym University, Korea.
a) E-mail: jso1@hallym.ac.kr (Corresponding author)

DOI: 10.1587/transinf.E96.D.2892

[5], [8].
The exemplar-based inpainting method [1] works as

follows. Define Φ as the source region (known region) and
Ω as the target region to be filled. The contour of the target
region is called “filling front”, defined by δΩ. Now we pick
an image patch Ψp centered at pixel p, where p is a pixel in
the filling front. Ψp is called the target patch. We search for
an image patch in the known region that is the most similar
to Ψp. The best-matched image patch, Ψq replaces Ψp, and
this finishes a single iteration. The iterations continue until
all pixels in the missing region are filled. The order of se-
lecting Ψp is of critical importance, since it will affect how
well the structures will be maintained. The priority of the
patch is defined as P(p) = C(p)D(p), where C(p) is called
the confidence term and D(p) is called the data term. C(p)
and D(p) are defined as follows.

C(p) =

∑
q∈Ψp∩ΩC(q)

|Ψp| , D(p) =
∇I⊥np

· np

α
(1)

In the above equation, |Ψp| is the area of Ψp, α is the
normalization factor. np is the unit normal vector orthogonal
to δΩ at p, and ∇I⊥np

is the isophote at p. The confidence
term C(p) is updated after every iteration.

In each iteration, the to-be-filled image patch Ψp must
be compared to every patch centered at q ∈ Φ (called can-
didate patch). To compare similarity of the two patches,
SSD (Sum of Squared Differences) of the known pixels is
used. This is a very time-consuming job, and it hinders the
practicality of the method to be used in real-time on small
devices such as smartphones. Efforts have been made to
speed up the process of finding the best patch. The most
simple method is to restrict search area to the neighbor-
hood of the unknown patch, assuming that the best patch
will be mostly found near the unknown patch [7]. Another
method [9] decomposes image into frequency coefficients
and selects only significant coefficients, thereby speeding
up the matching process. The two methods both try to im-
prove time complexity by neglecting insignificant informa-
tion. Although they can speed up the matching process,
the result can be different from Criminisi’s result. Our fo-
cus here is to speed up the process while maintaining the
same result as Criminisi’s. We use a bounding algorithm
to remove unnecessary comparisons. In addition, we order
patches and pixels to be compared such that the speed of the
bounding algorithm is improved. We discuss the bounding
algorithm, pixel reordering and patch reordering schemes in
the following sections, along with their effects on time com-

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

LETTER
2893

plexity of the exemplar-based inpainting.

2. Bounding Algorithm for Fast Search

Suppose the target patch Ψp has been selected, and we need
to find the most similar patch in the known region using the
SSD metric. The patch size is an algorithm parameter, and
we use 9× 9 pixels as in [1]. For each known pixel ci in Ψp,
the color difference δi is calculated against the pixel c′i in the
candidate patch Ψq as follows. In the equation, ci,R, ci,G, ci,B

are R, G, B values of pixel ci, respectively.

δi = (ci,R − c′i,R)2 + (ci,G − c′i,G)2 + (ci,B − c′i,B)2 (2)

We call δi the pixel distance. Now, the patch distance
between Ψp and Ψq denoted as Dp,q, is as follows.

Dp,q =
∑

i,ci∈Ψp∩(I−Ω)

δi (3)

For example, if the number of known pixels in Ψp is
k, we need to calculate δ value k times for each candidate
patch in the known region. However, if we know the patch
distance with the current best patch, we can reduce the num-
ber of calculating pixel distances. Suppose the current best
patch is qB. When we compare Ψp and Ψq, we can re-
duce calculations by bounding the patch distance at Dp,qB .
The patch comparison process is shown as a pseudocode in
Fig. 1.

This simple bounding algorithm can reduce significant
amount of calculation, as shown later in Table 3. In this
bounding algorithm, the candidate patch was selected in the
sequential order, starting from the patch in the top-left cor-
ner. However, the performance of bounding algorithm de-
pends on the order of comparing pixels and patches. In the
next sections, we propose pixel and patch reordering tech-
niques to improve performance of the bounding and algo-
rithm and further reduce computation time of inpainting.

3. Pixel Reordering Scheme

When comparing two patches, the pixel distance of cor-
responding pixels in the target and candidate patch are
summed up. If we have an upper bound, which is the patch
distance between the target patch and the current best patch,
then we can stop adding up once the sum exceeds the up-
per bound. Since the upper bound is fixed while comput-
ing patch distance, the best strategy is to calculate pixel dis-
tances in the descending order of pixel distance. In other

For each patch Ψq in (I −Ω)
Dp,q ← 0
For each pixel ci in Ψp ∩ (I −Ω)
δi = (ci,R − c′ i,R)2 + (ci,G − c′ i,G)2 + (ci,B − c′ i,B)2

Dp,q ← Dp,q + δi
If Dp,q > Dp,qB , break

If Dp,q < Dp,qB

qB ← q
Dp,qB ← Dp,q

Fig. 1 A bounding algorithm to find the best patch.

words, we want to order the pixel distance calculations so
that we can quickly reach the upper bound. However, we
do not know beforehand which pixel in the target patch will
show a large distance from the corresponding pixel in the
candidate patch. Thus, we use a statistical method to order
the pixels.

First we create a histogram by counting the number of
pixels for each color value in the image. Then, when com-
paring two patches, we start from the pixel with color that
has the least frequency. Here we use the gray-scale value (0
to 255) when counting the number of pixels for each color.
There are alternative ways to choose the pixels; (1) count
the number of pixels for each (R,G,B) value, (2) count the
number of pixels separately for RGB, add the counts, and
choose the pixel with the minimum sum, (3) count the num-
ber of pixels separately for RGB and choose the pixel with
the minimum count regardless of RGB. The first alterna-
tive requires too much memory to store the histogram. The
second and third alternatives achieve similar performances
with the gray-scale approach, although the exact numbers
were omitted due to lack of space.

Table 1 The test images used in performance evaluation of the proposed
schemes.

Title Original Marked Inpainted

Rein River

Rice Field

Woman

Pumpkin

Golf

Bungee

Cable Car

2894
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.12 DECEMBER 2013

Table 2 Correlation between frequency of gray-scale color and average
pixel distance.

Title Correlation

Rein River −0.1714
Rice Field −0.7235

Woman −0.6794
Pumpkin −0.4708

Golf −0.2145
Bungee −0.3219

Cable Car −0.7321

S = Ψp ∩ (I −Ω)
while S is not empty

Find pixel cm in S where cm = arg min H(cm)
Remove cm from S
δm = (cm,R − c′m,R)2 + (cm,G − c′m,G)2 + (cm,B − c′m,B)2

Dp,q ← Dp,q + δm
If Dp,q > Dp,qB , stop

Fig. 2 Calculating patch distance using pixel reordering.

The rationale behind using the histogram is that the
pixel distance will be large with high probability when com-
paring pixels with infrequently appearing color. To find out
if this is indeed true, we compute the correlation between
average pixel distance and the frequency of gray-scale color
that appears in the image. We use seven test images, which
include the images used in [1]. The images and their in-
painted results are shown in Table 1, and the correlation
values are shown in Table 2. The Rein River image has
the highest correlation value at −0.1714, and other images
have lower correlation value. This means that the frequency
of color has negative relationship with pixel distance. In
other words, if the color of a pixel appears less frequently
in the image, its pixel distance with another pixel tends to
be higher. Thus, selecting pixels in the increasing order of
color frequency can be beneficial.

Figure 2 shows the pseudocode for computing patch
distance using the pixel reordering. In Fig. 2, H(ci) is the
number of pixels in (I − Ω) which has the same gray-scale
color value as pixel ci. Note that we only need to calculate
the frequency of each gray-scale color once for inpainting
the whole image.

4. Patch Reordering Scheme

The pixel reordering scheme reduces number of calculations
by making the sum quickly reach the upper bound. If the
sum of pixel distances does not reach the upper bound af-
ter processing all known pixels, it means that a new up-
per bound is found, thus the upper bound is updated. An-
other way to speed up computation is to let the upper bound
quickly decrease, so that patch distances are computed with
the lowest upper bound as possible. This is done by re-
ordering the patch distance calculation. As discussed ear-
lier, some previous works have restricted search area to the
neighborhood of the target region, because the best match-
ing patch is likely to be near the target patch [7]. This ar-

Fig. 3 CDF of Manhattan distance between target patch and its best-
matching patch.

gument is intuitive, but cannot be proved to be true for all
images. Thus, we do not restrict the search area. Instead,
we order the patches so that the ones near the target patch is
processed earlier than the ones that are far away.

To see if this strategy is reasonable, we plot the cumu-
lative distribution function (CDF) of Manhattan distance be-
tween center of the target patch and center of the best candi-
date patch. If the distance is short for most cases, searching
from the nearer patches will be a good strategy. The CDF
is shown in Fig. 3. For five out of seven images, the best
patch was located less than 150 pixels away from the target
patch in 70% of the target patches. Considering the image
sizes (shown in Table 3), we can say that the best patches
are geometrically close to the target patch in typical cases.
However, this is not true for Woman and Cable Car. For
more than 50% of the target patches, the best patch is lo-
cated more than 200 pixels away. As shown in Fig. 5, patch
reordering does not give much improvement for these two
images. Note that in cases such as Woman and Cable Car,
restricting search area to the region near the target patch as
in [7] may degrade the resulting image.

Figure 4 shows the simple pseudocode for patch re-
ordering. Basically, the candidate patches are ordered so
that the one closest to the target patch is processed first. In
the pseudocode, M(p, q) is the Manhattan distance between
pixel p and q and is defined as M(p, q) = |px−qx|+ |py−qy|,
where px and py are x and y coordinates of pixel p, respec-
tively.

5. Performance Evaluation

We have evaluated performance of the proposed schemes
using seven images shown in Table 1. Table 3 shows the re-
sult in numbers and Fig. 5 shows the computation time nor-
malized to the performance of bounding algorithm without
pixel or patch reordering. First, we can see that just apply-
ing bounding algorithm significantly reduces the number of
pixel distance calculations. In addition, applying pixel and
patch reordering can further reduce computation time by 15-

LETTER
2895

Table 3 Number of pixel color difference calculations for various schemes. Units are in millions.

Title Size Criminisi’s Bounding algorithm Bounding with pixel reordering Bounding with pixel & patch reordering

Rein River 500 × 375 884.60 98.67 90.12 62.84
Rice Field 500 × 334 892.34 175.29 116.30 105.46

Woman 360 × 480 9399.88 1102.92 900.18 942.39
Pumpkin 472 × 332 2275.96 295.40 268.15 176.90

Golf 350 × 262 1287.17 187.07 151.03 133.18
Bungee 206 × 308 877.10 191.67 108.63 98.43

Cable Car 342 × 450 1188.42 276.23 174.02 172.06

For each patch Ψp

S = {q|q ∈ (I − {p})}
While S is not empty

Select q in S where q = arg minq M(p, q)
Remove q from S
If Ψq ⊂ (I −Ω)

Compute Dp,q

Fig. 4 The patch reordering algorithm. Patches closer to the target patch
are processed first.

Fig. 5 Computation cost for bounding with pixel reordering and bound-
ing with pixel & patch reordering, normalized to the cost of bounding al-
gorithm with no reordering.

50%. For some images such as Bungee and Cable Car,
the pixel reordering greatly helps speeding up the search.
For other images such as Rein River and Pumpkin, patch
reordering plays a crucial role in improving performance.
The two schemes can be synergically combined to speed
up the process of searching for the best patch. However,
in some cases such as Woman, patch reordering increases
the computation time. The reason can be deducted from
Fig. 3, which shows that the best patch in Woman is not
geometrically close to the target patch. In another example
of this kind, Cable Car, applying patch reordering does not
improve computation time significantly. Nevertheless, even
in these two cases, patch reordering does not significantly
worsen the performance. In summary, pixel reordering and
patch reordering can reduce running time of inpainting in
most cases. In other cases they can achieve similar perfor-

mance with bounding with no reordering. The amount of
performance improvement depends on the characteristics of
the inpainted image.

6. Conclusion

Image inpainting is a useful technique in image processing,
from removing scratches and stains to removing unwanted
objects from the image. An examplar-based inpainting algo-
rithm is quite successful in achieving the goal, but its long
processing time hinders its practicality in real time. In the
exemplar-based algorithm, the most time-consuming pro-
cess is to search for the best image patch that will replace
the target patch in the fill front. We propose schemes that
remove unnecessary calculations as much as possible, while
maintaining the same result as the original algorithm. By
ordering distance calculations of pixels and patches in a cer-
tain way, we can improve the performance of bounding al-
gorithm significantly. Experiments with well-known images
in inpainting literature show that the pixel and patch reorder-
ing schemes combined can speed up the search process up
to 50% compared with bounding with no reordering.

References

[1] A. Criminisi, P. Perez, and K. Toyama, “Region filling and object re-
moval by exemplar-based image inpainting,” IEEE Trans. Image Pro-
cess., vol.13, pp.1200–1212, Sept. 2004.

[2] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image in-
painting,” ACM SIGGRAPH, pp.417–424, 2000.

[3] I. Drori, D. Cohen-Or, and H. Yeshurun, “Fragment-based image
completion,” ACM Trans. Graphics, vol.22, no.3, pp.303–312, 2003.

[4] N. Komodakis and G. Tziritas, “Image completion using global opti-
mization,” IEEE CVPR, pp.442–452, 2006.

[5] J. Sun, L. Yuan, J. Jia, and H. Shum, “Image completion with structure
propagation,” ACM Trans. Graphics, vol.24, no.3, pp.861–868, 2005.

[6] T. Chan, S. Osher, and J. Shen, “The digital tv filter and nonlinear
denoising,” IEEE Trans. Image Process., vol.10, no.2, pp.231–241,
2001.

[7] Anupam, P. Goyal, and S. Diwakar, “Fast and Enhanced Algorithm for
Exemplar Based Image Inpainting,” Proc. SIVT, pp.325–330, 2010.

[8] W. Cheng, C. Hsieh, S. Lin, C. Wang, and J. Wu, “Robust algorithm
for exemplar-based image inpainting,” Proc. CGIV, pp.64–69, 2005.

[9] T. Kwok, H. Sheung, and C. Wang, “Fast query for exemplar-
based image completion,” IEEE Trans. Image Process., vol.19, no.12,
pp.3106–3115, 2010.

