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Modeling Interactions between Low-Level and High-Level Features
for Human Action Recognition

Wen ZHOU†a), Chunheng WANG†, Baihua XIAO†, Zhong ZHANG†, Nonmembers, and Yunxue SHAO†, Member

SUMMARY Recognizing human action in complex scenes is a chal-
lenging problem in computer vision. Some action-unrelated concepts, such
as camera position features, could significantly affect the appearance of lo-
cal spatio-temporal features, and therefore the performance of low-level
features based methods degrades. In this letter, we define the action-
unrelated concept: the position of camera as high-level features. We ob-
serve that they can serve as a prior to local spatio-temporal features for
human action recognition. We encode this prior by modeling interactions
between spatio-temporal features and camera position features. We in-
fer camera position features from local spatio-temporal features via these
interactions. The parameters of this model are estimated by a new max-
margin algorithm. We evaluate the proposed method on KTH, IXMAS and
Youtube actions datasets. Experimental results show the effectiveness of
the proposed method.
key words: action recognition, camera position features, local spatio-
temporal features, interactions

1. Introduction

In the human-action recognition field, low-level features
have evolved considerably. Sparse local spatio-temporal
(ST) features have shown advantages in human action
recognition [1], [2]. Besides these hand-designed features,
hierarchical invariant ST features [3] that are learned from
data directly are also proposed for human action recogni-
tion. They achieve impressive performance on many real-
istic video datasets. However, ST features are limited in
capturing semantics information and often yield a represen-
tation with inadequate discriminative power for larger, more
complex datasets. Consequently, high-level features are in-
troduced to enrich ST features with semantic information
and give a robust representation for human action recogni-
tion [4], [5].

Both low-level and high-level features have been ex-
plored considerably for human action recognition. How-
ever, little work has been developed for modeling inter-
actions between low-level and high-level features. Here,
action-unrelated concepts such as camera position features
are defined as high-level features in the proposed method.
We believe that there are strong connections between ST
features and camera position features. Concretely, camera
position features can be inferred from ST features via these
connections. In addition, camera position features can be
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Fig. 1 Interactions between ST and camera position features. In (a),
camera position features are inferred from ST features. In (b), camera po-
sition features are assigned as prior to ST features via connections between
these two types of features.

seen as a prior to guide ST features for human action recog-
nition also via these connections. A more detailed descrip-
tion is shown in Fig. 1. In Fig. 1 (a), due to camera move-
ment, a lot of unwanted background Spatio-Temporal In-
terest Points (STIPs) are detected from videos. However,
only the discriminative STIPs reflect the camera position
features, which are described in purple and green lines in
Fig. 1 (a) respectively. Due to our discriminative learning,
we build strong connections between discriminative features
and the camera position features. Thus, camera position fea-
tures can be inferred from local ST features.

In this letter, we model interactions between ST fea-
tures and camera position features for human action recog-
nition. Given a set of test videos, our model automatically
infers the camera position and utilizes these features cou-
pled with ST features to recognize human action simulta-
neously. The parameters of the model are estimated by a
new max-margin algorithm. By modeling the interactions
between ST features and camera position features, we show
that our algorithm improves the performance of human ac-
tion recognition on several action datasets.

2. Modeling Interactions between ST and Camera Po-
sition Features

Given a video, we recognize human action using ST features
which are interacted with camera position features. The ST
features extracted from these videos are suffered from a lot
of noise due to the unconstraint environment. On the other
hand, since videos contain human actions which are acted
under different camera positions, ST features extracted from
these videos are suffered from large variation.

A graphical illustration of our model is shown in Fig. 2.
Since we do not know which ST feature is connected to
specified camera position feature, we build a full connec-
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Fig. 2 A graphical illustration of our method. Our model can be thought
as a shallow network, where camera position features interact with ST fea-
tures directly.

tion between ST and camera features. Then, we formulate
our model as follows:

y = max
h∈H

(xT wh), (1)

where x ∈ RD and h ∈ H denote the ST and camera position
features respectively, and w ∈ RD×H is the weight of connec-
tions. Large values of w mean close relations between ST
and camera position features.

The formulation of our model is similar with [6] in
some respects. However, there are several significant differ-
ences between the proposed method and [6]. First, these two
methods use different features which results in different in-
ference and parameters learning algorithm. In the proposed
method, h is unknown and we treat it as latent variable. In
[6], Pirsiavash et al. only use low-level features (HOG fea-
tures) to represent visual data. Second, since h is latent vari-
able, the inference algorithm need to find the optimal value
of h to maximize (1) and use the maximum value as the
output of our classifier. However, Pirsiavash et al. predict
the label by calculating the output of linear classifier in [6].
Third, in order to infer the latent variable h correctly and
predict the class label accurately, we design our parameter
learning algorithm to minimize two types of losses which
are related to these two task while Pirsiavash et al. minimize
the standard hinge loss to correctly predicts the class label.

3. Model Learning

Given the training videos of actions with labeled camera
position features {hi}Ni=1, where N is the number of train-
ing videos, the learning step needs to achieve two goals: to
discover the camera position features and to estimate pa-
rameters for the potential weights to maximize the discrim-
ination between different actions. In our model, these two
goals are combined together, which is reflect by parameter
w. In other words, we discover camera position features
using w, and w also represents the parameters of discrimi-
native model. To achieve these goals, we propose a novel
max-margin learning framework for parameter estimation.
Let (xi,hi, yi) ∈ RD × H × {−1,+1} be a training sample,
where xi is ST feature, hi is the camera position feature and
yi is the class label of xi. We use P and N to denote the
positive and negative training set respectively.

We introduce two slack variables ξi and ηi for each
sample xi into objective function. These two slack variables
have different purposes. The slack variable ξi denotes the
hinge loss which penalizes the difference between the pre-
dicted class label and yi. Minimizing the slack variable ξi
aims at finding the parameters w to correctly predict the
class label yi. Meanwhile, minimizing the slack variable
ηi aims at finding the parameters w to correctly predict the
camera position features hi, which is obtained by maximiz-
ing the difference between xT

i whi and maxh∈H\hi
{xT

i wh}.
This guarantees that the maximum score is obtained when
hi is correctly predicted. As for regularization term, since
videos with different camera position features share little
ST features, it is inappropriate to enforce other constraints
on the parameters w. Then, we only add the matrix norm
regularization into objective function. Then, the objective
function is defined as follows:

min
w,ξ,η

1
2
‖w‖22 + β

∑

i

ξi + γ
∑

i

ηi

s.t. ∀i, ξi ≥ 0, ηi ≥ 0

yi(xT
i whi) ≥ 1 − ξi

∀i ∈ P, xT
i whi ≥ max

h∈H\hi

{xT
i wh} + 1 − ηi

∀i ∈ N , max
h∈H
{xT

i wh} ≤ −1 + ηi

(2)

where ‖w‖2 is the L2 norm of w, β and γ are normalization
constants.

Since optimization problem (2) has a total of N|H| +
|N| constraints, it makes standard quadratic programming
solvers unsuitable for this type of problem when |H| is
extremely large. As in [7], we propose a learning algo-
rithm which aims at finding a small set of active constraints
that ensure a sufficiently accurate solution. It successively
tighten the original problem using a cutting plane method.
Pseudocode of the algorithm is depicted in Algorithm 1.

4. Model Inference

Define the set of action labels as A = {1, . . . , A}, we apply
one-vs-all strategy for multi-class classification. We treat
one action as positive examples and other actions as nega-
tive examples. Given a new test video V , histogram of ST
features x is used to represent V . Then, inference is formu-
lated as follows:

y = sgn(max
h∈H

(xT wkh)), k = 1, . . . , A. (3)

It is achieved by finding a best configuration of camera po-
sition features to maximize the function (1).

Computational complexity: We use |A| to denote the
total number of action class. Since for each action class,
the inference process enumerates every possible configura-
tion of camera position features, the total cost of inference
is |A|DH , where DH is the dimension of camera position
features.
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Algorithm 1: Algorithm for solving optimization
problem (2)

Input: ε, (xi,hi,yi), i = 1, . . . ,N

1 Initialize: SPi ← ∅, SNi ← ∅,
2 Q← (xi,hi,yi) i = 1, . . . ,N
3 repeat
4 for i ∈ P do
5 LossP(h) = 1 − xT

i w(hi − h),
6 where w ≡ arg minw h ∈ SPj
7 compute ĥ = arg maxh∈H LossP(h)
8 compute ηi = max{0,maxh∈SPi LossP(h)}
9 if LossP(ĥ) > ηi + ε then

10 SPi = SPi ∪ {ĥ}
11 end
12 end
13 for i ∈ N do
14 LossN (h) = 1 + xT

i wh,
15 compute ĥ = arg maxh∈H LossN (h)
16 compute ηi = max{0,maxh∈SNi LossN (h)}
17 if LossN (ĥ) > ηi + ε then
18 SNi = SNi ∪ {ĥ}
19 end
20 end
21 w← optimize object function (2) over S

⋃
Q,

S = SPi ∪i SNi
22 until no S i has changed during iteration;

5. Experiments

We adopt STIPs detector [8] to obtain local ST features.
Bag-of-words (BOW) model is used to quantize these ST
features. Then, a video is represented by histogram vector
x. In our experiment, we combine several sub-vocabularies
to acquire the final vocabularies where sub-vocabularies are
generated per action class separately.

KTH dataset. Considering the well-controlled envi-
ronments of KTH action dataset, we define camera position
feature h that it only involves the viewpoints. Specifically,
h is a binary vector whose elements indicate the presence
of specified viewpoints. We define h as 8-dimensional bi-
nary vector. h1, . . . , h8 ∈ {0, 1} denote that people act toward
west, northwest, north, northeast, east, southeast, south and
southwest respectively, where hi (i = 1, . . . , 8) denotes the i-
th element of h. The size of sub-vocabularies are set to 1500.

IXMAS dataset. Due to the small moves of human
body in this dataset, Harris3D detector fails to detect STIPs
from some videos. Then, we employ primitive features in
[9]. We perform a clustering of the feature space to quan-
tize the primitive features. We represent activities using his-
tograms of the frames assigned to each cluster. We use five
dimensional vector to denote the camera position features.
Each element of this vector denotes the presence of five dif-
ferent views in videos. Since our goal is not to recognize
human action cross view, we do not use the common exper-
imental setting. Instead, we apply 4-fold cross validation to
demonstrate the advantage of the proposed model.

Youtube dataset. We obtain the average accuracy over

25-fold cross-validation. Since some videos in this dataset
contain actions with different viewpoints, videos are seg-
mented into several clips and each clip is labeled with one
type of viewpoint. In this experiment, we only consider the
variation of viewpoints. We define camera position features
as 4 dimensional binary vector to capture the viewpoints’
variation of human activities. These 4 binary variables in-
dicate west, north, east, and south respectively. The size of
sub-vocabularies is set to 5000. Then, the size of final vo-
cabulary is 55000.

Baseline. In order to validate the advantages of our
method, we use linear SVM coupled with BOW model as
our baseline method. Liblinear tools [10] is utilized as clas-
sifier of baseline method.

5.1 Experimental Results

The camera position features for test samples are unknown.
We obtain the camera position features automatically using
(3) and also choose the class label using (3). The baseline
method yields an average precision of 90.5%, whereas our
model is 92.3% on KTH actions dataset. BOW model cou-
pled with χ2 kernel SVM [2] achieves 91.8%. Our method
achieves 100%, 97.2%, 93.1%, 81.9%, 81.3% and 100%
for boxing, hand clapping, hand waving, jogging, running
and walking respectively, and the baseline method achieves
97.9%, 95.8%, 86.8%, 77.1%, 87.5% and 97.9% corre-
spondingly. The main confusion occurs between jogging
and running due to the similar appearance of these two ac-
tions. In most actions, our method achieves superior results
compared with [2]. In order to validate the advantages of
our model, we conduct a synthetic experiment which injects
noise into BOW representation on KTH actions dataset. The
noise is injected into bag-of-words representation for train-
ing data as follows: x̃ = x + R · mnrnd(Ns,P, 1), where x is
BOW representation and mnrnd(·) is matlab function which
generates random variable from P. P is a multinomial distri-
bution whose elements pk =

1
d , k = 1, . . . , d, where d is the

dimension of x. R and Ns are two parameters which control
the strength of injected noise. Higher values of R and Ns

indicate more noise in x̃. Figure 3 reports the performance
of our method and the baseline method after injecting noise
when K = 800. With the higher value of both R and Ns,
our method significantly outperforms the baseline method
which uses linear SVM. As shown in Fig. 3, with increasing
values of R and Ns, the recognition accuracy of our method
almost does not degrade, while the linear SVM degrades sig-
nificantly. This supports our claim that the proposed method
discovers discriminative co-occurrence information for ST
and camera position features, which is robust to noise.

Since Sadanand and Corso [5] use richer representation
for videos, they report a recognition accuracy of 98% on
KTH actions dataset. However, there are three main advan-
tages of our method compared to [5]. First, our method au-
tomatically reports the high-level features (camera position
features) and provides a semantic description for videos.
Second, since the method described in [5] uses FFT-based
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Fig. 3 Performance of our method and linear SVM after noise injecting
on KTH action dataset. The blue, green and red lines denote the perfor-
mance of linear SVM with R = 4, 8 and 12 respectively, and cyan, magenta,
yellow lines denote the performance of our method with R = 4, 8 and 12
respectively.

Fig. 4 Comparison of our method and our baseline with different sizes
of the sub-vocabularies on IXMAS action dataset.

Table 1 Average accuracy on Youtube actions dataset by action class.

Actions [11] [3] [12] Baseline1 Baseline2 Ours

Cycle 73 86.9 - 72.2 88.2 93.9
Dive 81 93 - 88 97 99
Golf 86 85 - 95 98 98
Juggle 54 64 - 72 90 89
Jump 79 87 - 81 89 99
Ride horse 72 76 - 67 79 84
Basketball 53 46.5 - 81 87 90
Volleyball 73.3 81 - 94 100 100
Swing 57 88 - 76 87 95
Tennis 80 56 - 90 96 97
Walk 75 78.1 - 55.9 86.1 82.3
Average 71.2 76.5 87.0 79.3 91.5 93.7

convolution, it is computational inefficient compared to our
method. Third, our method is a framework to incorporate
different types of features. Other combinations of different
type features can also applied into our framework includ-
ing local ST features and action-related concepts such as the
movements of body parts (e.g. legs, hands and knee).

The best result of our method achieves 80.3% on IX-
MAS action dataset while BOW model achieves 77.4%,
shown in Fig. 4. Figure 4 gives the comparison of our
method and the baseline with different sizes of the sub-
vocabularies. From Fig. 4 we can see that, our baseline
achieves the best result with K = 3000, and our method
is 6500, where K is the size of sub-vocabularies.

Table 1 gives the average accuracy and comparison
with other methods on Youtube actions dataset by action
class. Baseline1 and Baseline2 denote the baseline method

with K = 800, and K = 5000 respectively. Due to the
large size of final vocabulary (5000*11 class), our base-
line method achieves 91.5%. Our baseline method achieves
82.8%, 84.4%, 87.8%, 90.8% and 91.5% when K = 1000,
2000, 3000, 4000 and 5000 respectively. We achieve 93.7%
recognition rate for the Youtube actions by modeling in-
teractions between camera position features and spatio-
temporal features. It is approximately 7% better than the
current best published results. Our method obtains better
results compared to [3], [11]. Our method also gives better
results compared to our baseline method since our camera
position features capture the camera position variation for
this complex and challenging dataset.

6. Conclusion

In this work, we model interactions between low-level and
high-level features for human action recognition. We ob-
serve that camera position features (high-level features) can
be inferred from ST features (low-level features), and cam-
era position features can serve as prior to ST features. By
modeling the interactions, our method can infer camera po-
sition features from ST features automatically and also im-
poses constraints on ST features. We evaluate our method
on several action datasets to demonstrate the advantages of
our method. Although we focus on the interactions between
local ST features and camera position features in this work,
other combinations of different type features can also ap-
plied into our framework.
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