
370
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.2 FEBRUARY 2013

LETTER

Bypass Extended Stack Processing for Anti-Thrashing Replacement
in Shared Last Level Cache of Chip Multiprocessors∗

Young-Sik EOM†, Jong Wook KWAK††a), Seong-Tae JHANG†††, Nonmembers, and Chu-Shik JHON†, Member

SUMMARY Chip Multiprocessors (CMPs) allow different applications
to share LLC (Last Level Cache). Since each application has different
cache capacity demand, LLC capacity should be partitioned in accor-
dance with the demands. Existing partitioning algorithms estimate the
capacity demand of each core by stack processing considering the LRU
(Least Recently Used) replacement policy only. However, anti-thrashing
replacement algorithms like BIP (Binary Insertion Policy) and BIP-Bypass
emerged to overcome the thrashing problem of LRU replacement policy in
a working set greater than the available cache size. Since existing stack pro-
cessing cannot estimate the capacity demand with anti-thrashing replace-
ment policy, partitioning algorithms also cannot partition cache space with
anti-thrashing replacement policy. In this letter, we prove that BIP replace-
ment policy is not feasible to stack processing but BIP-bypass is. We mod-
ify stack processing to accommodate BIP-Bypass. In addition, we propose
the pipelined hardware of modified stack processing. With this hardware,
we can get the success function of the various capacities with anti-thrashing
replacement policy and assess the cache capacity of shared cache adequate
to each core in real time.
key words: last level cache, stack processing, replacement policy, anti-
thrashing, cache partitioning, chip multi-processors

1. Introduction

Recently, the pressure on the memory system increases due
to the widening speed gap of processor and memory and
the increasing number of cores. One of the keys to obtain
high performance is to manage LLC (Last Level Cache) ef-
ficiently so that off-chip accesses are reduced.

Since each application has different cache capacity de-
mand, LLC capacity should be partitioned in accordance
with application demands. UCP (Utility-aware Cache Parti-
tioning) [3] estimates the cache utility of each core which
is the increased number of cache hits as cache capacity
increases through stack processing [1]. Then, they assign
cache ways to each core to obtain the maximum number of
hits. It uses only the LRU (Least Recently Used) replace-
ment policy.

The LRU replacement policy has the advantage of good

Manuscript received September 13, 2012.
†The authors are with School of EECS, Seoul National Univer-

sity, Korea.
††The author is with the Department of Computer Engineering,

Yeungnam University, Korea.
†††The author is with the Department of Computer Science, The

University of Suwon, Korea.
∗This work was supported by the 2012 Yeungnam Univer-

sity Research Grant and by GRRC program of Gyeonggi prov-
ince [(GRRC SUWON2012-B1) Cooperative CCTV Image Based
Context-Aware Process Technology].

a) E-mail: kwak@ynu.ac.kr
DOI: 10.1587/transinf.E96.D.370

performance for high locality workloads. However, it can
show thrashing behavior for a working set greater than the
available cache size. To alleviate thrashing problem, BIP
(Bimode Insertion Policy) [4] inserts most of new cache
blocks to the LRU position to preserve the cache contents
and inserts the rest of new blocks to the MRU position to
adapt to working set changes. BIP-Bypass [4] bypasses new
blocks instead of inserting them to LRU position.

In TADIP [2], each core determines whether or not it
use LRU or BIP as a replacement policy to attack thrash-
ing problem in CMP. However, TADIP cannot partition the
shared cache and each core cannot preserve its working set
in cache space.

Until now, there is no cache partitioning method with
anti-thrashing replacement policy, since there is no stack
processing method for anti-thrashing replacement policy. In
this letter, we prove that BIP is not feasible to stack process-
ing but BIP-Bypass is. In addition, we modify stack pro-
cessing to accommodate BIP-Bypass, and we propose new
hardware to implement stack processing for BIP-Bypass.

2. Stack Processing

2.1 Inclusion Property, Stack and Success Function

Let xt be the address of a trace in time t. Inclusion prop-
erty means that the cache contents Bt(C) must be a subset
of Bt(C + 1) for any time t and any capacity C on a trace as
follows.

Bt(1) ⊂ Bt(2) ⊂ Bt(3) · · ·
Stack algorithms are replacement algorithms that sat-

isfy inclusion property [1].
From the inclusion property, the cache contents for all

capacities can be represented in the following way. Stack is
an ordered address list S t = S t(1), S t(2), S t(3), . . ., where

S t(i) = Bt(i) − Bt(i − 1) for i = 1, 2, . . .

This can be used to efficiently determine the success
function F(C). Let Ct denote the least buffer capacity such
that xt ∈ Bt−1(C). Ct is called critical capacity because all
buffers larger than Ct contains xt from inclusion property.
Ct is simply the position of page xt in the stack S t−1. This
position is called stack distance Δt.

Let n(Δ) denote the number of times the stack distance
Δ is observed in processing a trace. Since stack distance

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



LETTER
371

Fig. 1 An example of stack distance frequency and success function.

equals critical capacity, the number of times that the refer-
enced address is found in the cache with capacity C is

N(C) =
C∑

Δ=1

n(Δ)

and success function is given by the expression where L is
the length of the trace

F(C) = N(C)/L.

n(Δ) can be determined from a set of distance counters.
All counters are set initially to zero, and the counter for each
distance Δ is incremented whenever that distance occurs.

Figure 1 shows the example of the stack distance fre-
quency function and the success function after the trace of
10 addresses. To find the number of hits for the buffer capac-
ity 3, N(3) = n(1)+n(2)+n(3) = 4 as indicated in Fig. 1 (b).
In this case, hit rate is F(3) = N(3)/10 = 0.4.

2.2 Total Ordering

Replacement algorithms that induce a total ordering on all
previous referenced addresses and use this ordering to make
replacement decisions satisfy inclusion property [1]. Two
representative replacement policies satisfying total ordering
are LRU and LFU (Least Frequently Used) with a break tie
scheme. They maintain just one priority list independent on
the cache capacity. When there is a new block to insert, they
choose the lowest priority block in the cache for replace-
ment. Replacement policies that do not hold total ordering
like FIFO should maintain one priority list per each cache
capacity. Therefore, replacement policies with total order-
ing are more area efficient when we want to evaluate various
cache capacities.

3. Correlation between Insertion and Promotion

Recent replacement policies consider insertion policy and
promotion policy independently. BIP [4] inserts new blocks
to LRU position or MRU position and promotes hit blocks
to the MRU position. PIPP [5] inserts new blocks to the po-
sition assigned for each core and promotes one step toward
MRU position in case of hit.

Figure 2 (a) shows the cache contents with size 1 to 5
after ‘a’, ‘b’, ‘c’, ‘d’, ‘e’ reference with MRU insertion pol-
icy. Note that inclusion property and total ordering hold.
Cache contents are ordered by priority list.

Fig. 2 An example of cache contents.

Fig. 3 An example of LRU list and stack.

Figure 2 (b), 2 (c) and 2 (d) show the cache contents
and priority list state changed by LRU, BIP and BIP-Bypass
respectively after new reference ‘b’. In Fig. 2 (b), LRU pro-
motes and inserts to MRU position. It does not break total
ordering. However, LRU is not anti-thrashing replacement
policy. In Fig. 2 (c), BIP promotes ‘b’ to MRU position at
hit and inserts ‘b’ to LRU position at miss. In this case,
the orders of (b, e) and (b, d) in the caches with capacity 4
and 5 are different from the orders in the cache with ca-
pacity 2 and 3. These discrepancies in ordering list break
total ordering and make a victim selection with single prior-
ity list impossible. This is why BIP is not feasible to stack
processing.

Promotion policy and insertion policy are dependent on
each other. In Fig. 2 (e), when ‘b’ is inserted to the LRU
position in the cache with capacity 3, ‘b’ cannot be pro-
moted over ‘d’ position in the cache with capacity 4 and 5
to satisfy total ordering. When ‘b’ is promoted one step to-
ward the MRU position in the caches with capacity 4 and 5,
‘b’ should be inserted to the LRU position in the caches with
capacity 2 and 3. Only MRU promotion and MRU inser-
tion policy have no ordering constraint because they pro-
mote and insert blocks to the same position regardless of
hits or misses.

In Fig. 2 (d), BIP-Bypass promotes ‘b’ to the MRU po-
sition in the cache with capacity 4 and 5 and bypasses ‘b’ in
the cache with capacity 1, 2 and 3. Since BIP-Bypass holds
total ordering, it is suited for efficient stack processing.
When using MRU insertion policy, BIP-Bypass must also
maintain MRU-promotion policy to keep the total ordering.

Figure 3 (a), 3 (b), 3 (c) and 3 (d) shows the LRU pri-
ority list and the stack of size 5 cache corresponding to
Fig. 2 (a), 2 (b), 2 (d) and 2 (e), respectively. Figure 3 (c)
shows that BIP-Bypass updates LRU priority list and stack
differently. Therefore, BIP-Bypass must maintain two lists
(LRU priority list and stack). Unlike BIP-Bypass, stack
processing for LRU replacement policy needs only one list,
since LRU priority list is equivalent to stack at any time as
in Fig. 3 (b).

4. Bypass Extended Stack Processing

Conventional stack processing is based on the demand pag-



372
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.2 FEBRUARY 2013

Fig. 4 An example of the insertion ‘e’.

Fig. 5 An example of the bypass.

ing which means that only newly referenced addresses
should be inserted to the cache. Since BIP-Bypass allows
new blocks to bypass, stack processing also should be mod-
ified to accommodate bypass.

4.1 Inclusion Condition

Yt(C) represents the replacement victim of Bt−1(C) at time t.
“Yt(C) is ∅” means that new block is bypassed and there is
no victim for replacement.

If inclusion property is satisfied up to and including
time t − 1, and there is a miss on C + 1 capacity, inclu-
sion property is satisfied if and only if inclusion condition is
satisfied at time t. Inclusion Condition is as follows.

1) If Yt(C) is not ∅, Yt(C + 1) is Yt(C) or S t−1(C + 1).
2) If Yt(C) is ∅, Yt(C + 1) is ∅ or S t−1(C + 1).
The proof of necessary condition for inclusion property

is as follows. 1) When Yt(C) is not ∅, if Yt(C + 1) is neither
Yt(C) nor S t−1(C + 1), Yt(C + 1) is an other block z or ∅. If
Yt(C + 1) is z, z is included in Bt(C), but not in Bt(C + 1),
which violates inclusion property. If Yt(C + 1) is ∅, new
block violates inclusion property. 2) When Yt(C) is ∅, if
Yt(C + 1) is neither ∅ nor S t−1(C + 1), Yt(C + 1) is an other
block z. z is included in Bt(C), but not in Bt(C + 1), which
violates inclusion property.

Inclusion condition is also sufficient, because if inclu-
sion condition holds, Bt(C) is a subset of Bt(C + 1).

Figure 4 is an example of the insertion ‘e’ to caches
with size 3 and 4. Figure 4 (a) is the initial state. When
‘e’ is inserted to the both caches, inclusion property is sat-
isfied when (Fig. 4 (b)) ‘b’ or (Fig. 4 (c)) ‘a’ is the victim of
cache with size 4. Choosing another block like ‘d’ (or ‘c’)
violates inclusion property since ‘d’ (or ‘c’) is in the cache
with size 3, but is not in the cache with size 4. We can see
that among Yt(C) and S t−1(C + 1), one becomes Yt(C + 1)
and the other becomes S t(C + 1).

Figure 5 is an example of a bypass ‘e’ to the cache with
size 3. Figure 5 (a) is an initial state. When ‘e’ is bypassed
by the cache with size 3, inclusion property is satisfied when
(Fig. 5 (b)) ‘a’ is the victim of the cache with size 4 or
(Fig. 5 (c)) the cache with size 4 bypasses ‘e’. Choosing
another block violates inclusion property. From inclusion
condition, we can see that only when Bt−1(C) bypasses new
block, Bt−1(C + 1) can bypass.

Fig. 6 The inclusion property violation of total ordering.

4.2 Total Ordering Inclusion Condition

Just total ordering alone does not satisfy inclusion property
in the presence of bypass. We define min(A) as the lowest
priority block in A, and max(A) as the highest priority block
in A.

From inclusion condition, if Yt(C) is ∅, Yt(C + 1) must
be ∅ or S t−1(C + 1). If Bt−1(C + 1) wants to insert a new
block, it can violate inclusion property since priority list can
choose a victim other than S t−1(C + 1). Total ordering pri-
ority list chooses min[Bt−1(C + 1)] as a victim, but it cannot
guarantee that min[Bt−1(C + 1)] is S t−1(C + 1). Therefore,
∅ is the only option for Yt−1(C + 1). To preserve the inclu-
sion property, if Yt(C) is ∅, Yt(C + 1) must be also ∅. In
other words, when we use priority list to make replacement
decisions, if all Yt(C) for every capacity C with miss is 1) ∅
or 2) not ∅, that is Total Ordering Inclusion Condition,
inclusion property is satisfied.

The proof of total ordering inclusion condition is as
follows.

If all Yt(C) is not ∅,
Yt(C) = min[Bt−1(C)] and

Yt(C + 1) = min[Bt−1(C + 1)]

= min[Bt−1(C), S t−1(C + 1)]

= min[min[Bt−1(C)], S t−1(C + 1)]

= min[Yt(C), S t−1(C + 1)]

From inclusion condition, inclusion property holds. If all
Yt(C) is ∅, inclusion property holds since all the cache con-
tents do not change.

Figure 6 shows the inclusion property violation when
we choose a victim by total ordering list without total order-
ing inclusion condition. Figure 6 (a) is the initial state after
the last reference ‘d’ is bypassed in the cache with size 3 and
inserted to the cache with size 4. Assume that a new refer-
ence ‘e’ occurs and the cache with size 3 bypasses ‘e’. In
Fig. 6 (b), if we insert ‘e’ to the cache with size 4, ‘d’ should
be replaced to preserve the inclusion property. However,
‘e’ is not the victim which total ordering priority list deter-
mines. In Fig. 6 (c), since ‘a’ is the lowest priority block,
‘a’ is replaced instead of ‘d’ and inclusion property is vio-
lated. To avoid this violation, cache with size 4 should also
bypass ‘e’.

4.3 Stack Update

At every reference, we need to update stack to maintain up-
to-date state as follows.

If Yt(C) is not ∅, by inclusion condition,



LETTER
373

S t(C + 1). = max[Yt(C), S t−1(C + 1)].

If Yt(C) is ∅, Yt(C + 1) is also ∅ by total ordering inclu-
sion condition. Since the contents of Bt−1(C) and Bt−1(C+1)
do not change,

S t(C + 1) = S t−1(C + 1).

5. Hardware for Bypass Extended Stack Processing

To evaluate the success function of various cache capaci-
ties with BIP-Bypass replacement policy in real time, we
need the hardware implementation of bypass extended stack
processing.

In this implementation, pipelined architecture is natu-
ral, since S t(C) and Yt(C) values of cache capacity C are
dependent on the values of capacity C − 1. In addition, it
also provides high bandwidth and scalability. Priority list is
also pipelined to match pipelined stack.

Figure 7 shows the conceptual hardware structure of
priority list and stack. Since all stages of stack need the
priority value of new block, the pipelined priority list is ac-
cessed first, and then the pipelined stack is accessed second.
Each stage of stack augments pri field which represents the
priority of stack entry. In our implementation, larger pri
value means lower priority.

Figure 7 also shows the example of pri update. Fig-
ure 7 (a) is the initial state of the LRU list and stack, corre-
sponding to Fig. 2 (a). In Fig. 7 (b), after new reference ‘b’,
it is promoted to the MRU position in priority list. To re-
flect the updated LRU list to pri field, pri values under the
position of ‘b’ equal to 4 are increased by one and pri value
of ‘b’ is set to one along the stages. The counter of stack ‘b’
is incremented by one to calculate the number of the refer-
ences of stack distance 4.

The Nth stage of the pipelined priority list means the
Nth entry from MRU position of priority list. New ref is
newly referenced address, and prev and addr are the ad-
dresses of N − 1 and N stages. At the first stage, New ref
becomes addr to emulate the promotion to the MRU posi-
tion. Figure 8 shows the Nth stage of the pipelined priority
list. In the purple box, if hit occurred in one of the previ-
ous stages, prev becomes addr. This is identical to shifting
previous stage to current stage. In the green box, if addr is
equal to New ref, current stage number N becomes the pri-
ority of New ref. Further stages just pass the priority to the
next stage. If each stage augments a counter for stack dis-
tance, this pipelined priority list can be used for stack for the
LRU replacement policy.

Figure 9 shows C + 1 stage of the pipelined stack.
Pri(A) is the priority value of A in stack. With the found
priority value at the priority list, the first stack stage starts.

Stage C + 1 represents the C + 1th stack entry. It calcu-
lates S t(C+1) and Yt(C+1) from S t−1(C+1) and Yt(C) and
turns Yt(C + 1) over stage C + 2. The green box updates the
counter which represents the number of references of C + 1
stack distance. New ref is compared to S t−1(C + 1). If they

Fig. 7 The conceptual hardware structure of priority list and stack.

Fig. 8 Nth stage of the pipelined priority list.

Fig. 9 C + 1th stage of the pipelined stack.

match, the counter for S (C + 1) is increased by one. The
blue box updates stack. It operates only when new block is
not bypassed. From inclusion condition and stack update, if
Pri[S t−1(C + 1)] is bigger than Pri[Yt(C)], S t−1(C + 1) be-
comes Yt+1(C + 1) and Yt(C) becomes S t(C + 1). Otherwise,
S t−1(C+1) becomes S t(C+1) and Yt(C) becomes Yt+1(C+1).
The purple box adjusts pri field. If Pri[S t(C + 1)] is smaller
than Pri[New ref], Pri[S t(C + 1)] is increased by one. If hit
occurs in this stage, one is assigned to Pri[S t(C + 1)].

First stage is slightly different from other stages. It con-
tains bypass decision logic which decides whether or not
it bypasses the newly referenced block. It generates by-
pass signal randomly with high probability to preserve cache
contents.



374
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.2 FEBRUARY 2013

6. Conclusion

BIP and BIP-Bypass are anti-thrashing replacement poli-
cies. In this letter, we proved that BIP replacement policy is
not feasible to stack processing but BIP-bypass is. We mod-
ified stack processing to accommodate bypass, and we pro-
posed the pipelined hardware architecture of stack process-
ing for BIP-Bypass. With this hardware, we can assess the
capacity demand of each core with anti-thrashing replace-
ment policy in real time. Using this information, shared
cache can be partitioned by anti-thrashing replacement pol-
icy as well as LRU replacement policy.

References

[1] J. Gecsei, D.R. Slutz, and I.L. Traiger, “Evaluation techniques for

storage hierarchies,” IBM System Journal, vol.9, no.2, pp.78–117,
1970.

[2] A. Jaleel, W. Hasenplaugh, M.K. Qureshi, J. Sebot, S.C. Steely
Jr., and J. Emer, “Adaptive insertion policies for managing shared
caches,” In PACT, 2008.

[3] M.K. Qureshi and Y.N. Patt, “Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches,” Proc. MICRO, 2006.

[4] M.K. Qureshi, A. Jaleel, Y.N. Patt, S.C. Steely Jr., and J. Emer, “Adap-
tive insertion policies for high performance caching,” pp.381–391, In
ISCA-2007.

[5] Y. Xie and G.H. Loh, “PIPP: Promotion/insertion pseudo-partitioning
of multi-core shared caches,” In ISCA-2009.


