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Semi-Supervised Nonparametric Discriminant Analysis∗

Xianglei XING†a), Nonmember, Sidan DU†b), Member, and Hua JIANG†, Nonmember

SUMMARY We extend the Nonparametric Discriminant Analysis
(NDA) algorithm to a semi-supervised dimensionality reduction technique,
called Semi-supervised Nonparametric Discriminant Analysis (SNDA).
SNDA preserves the inherent advantages of NDA, that is, relaxing the
Gaussian assumption required for the traditional LDA-based methods.
SNDA takes advantage of both the discriminating power provided by the
NDA method and the locality-preserving power provided by the manifold
learning. Specifically, the labeled data points are used to maximize the sep-
arability between different classes and both the labeled and unlabeled data
points are used to build a graph incorporating neighborhood information of
the data set. Experiments on synthetic as well as real datasets demonstrate
the effectiveness of the proposed approach.
key words: semi-supervised learning, nonparametric discriminant analy-
sis, manifold learning

1. Introduction

Dimensionality reduction plays an important role in infor-
mation processing, pattern recognition and machine learn-
ing. Over the years, many dimensionality reduction tech-
niques [1]–[3] have been proposed. From the perspective of
machine learning, these dimensionality reduction methods
can be classified into three categories: unsupervised learn-
ing, supervised learning, and semi-supervised learning.

Principal component analysis (PCA) [4], as a classical
unsupervised algorithm, seeks the directions of maximum
variance for optimal reconstruction. If the data is embedded
in the linear subspace, PCA is guaranteed to discover the
dimensionality of the subspace and produce a compact rep-
resentation in the form of an orthonormal basis. However,
for the data on a nonlinear embedded subspace, PCA has
difficulty in discovering the underlying manifold structure.
To discover the intrinsic manifold structure of the data, non-
linear dimension reduction algorithms such as locally linear
embedding (LLE) [5] and Laplacian eigenmap (LE) [6] were
developed. However, they are defined only on the training
data points and they do not yield a method for mapping new
test points. Locality preserving projections (LPP) [7] was
developed to solve this problem. LPP utilizes linear projec-
tion function whose properties are similar to the nonlinear
maps to project new data points.

Manuscript received August 20, 2012.
Manuscript revised November 6, 2012.
†The authors are with the School of Electronic Science and

Engineering, Nanjing University, Nanjing, 210093, China.
∗This work was supported by the National Science Foundation

of China (NSFC No.61271231).
a) E-mail: xingxianglei@gmail.com
b) E-mail: coff128@nju.edu.cn (Corresponding author)

DOI: 10.1587/transinf.E96.D.375

Linear discriminant analysis (LDA) [8], as a super-
vised algorithm, aims to find the most discriminative fea-
tures that simultaneously maximize the between-class dis-
similarity and minimize the within-class dissimilarity to in-
crease class separability. When sufficient label information
is available, LDA can achieve significantly better perfor-
mance than PCA. However, it suffers a fundamental limi-
tation originating from the assumption that the sample vec-
tors of each class are generated from underlying multivari-
ate Normal distributions of common covariance matrix but
different means. Thus, the performance of LDA notably
degrades when the actual distribution is non-Gaussian. To
address this problem, nonparametric discriminant analysis
(NDA) [9], [10] was developed to overcome the problem
by introducing a new definition for the between-class scat-
ter matrix, which explicitly emphasizes the samples near
the boundary and utilizes the whole training set, instead of
merely the class centers. However, when the number of
training samples is much smaller than the dimensionality of
the feature space, NDA and LDA both suffer the small sam-
ple size (SSS) problem due to severe under-sampling of the
underlying data distribution. As a result, the generalization
capability on testing samples can not be guaranteed.

Semi-supervised Discriminant Analysis (SDA) [11]
which makes use of both labeled and unlabeled samples is a
reasonable solution to deal with the problem of insufficient
training (labeled) samples. However, like other LDA-based
methods, SDA still assumes the samples in each class sat-
isfy the Gaussian distribution. Thus, it suffers performance
degradation when the intrinsic geometrical structure is gen-
erated from non-Gaussian distribution.

We proposed a semi-supervised dimensionality reduc-
tion algorithm, called Semi-supervised Nonparametric Dis-
criminant Analysis (SNDA). SNDA aims to best preserve
the discriminative information as well as the intrinsic geo-
metric structure in data. Specifically, we construct a nearest
neighbor graph to discretely model the manifold structure.
Using graph Laplacian, we incorporate the manifold struc-
ture into the objective function of the standard NDA as a reg-
ularization term. SNDA preserves the inherent advantages
of NDA that the Normal assumption is relaxed. SNDA use
both labeled and unlabeled samples to estimate the manifold
structure of the data. Therefore, it overcomes the SSS prob-
lem in the NDA algorithm. Moreover, SNDA shares many
of the data representation properties of nonlinear techniques
such as LLE and LE, while it yields linear projective maps
making it fast and suitable for practical application.
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2. Multiclass Nonparametric Discriminant Analysis

Suppose we have a set of N samples x1, x2, · · · , xN ∈ RD,
belonging to C class. In LDA, the data are projected from
the original D dimensional space to a C − 1 dimensional
subspace through an optimal linear transformation matrix,
such that ratio of the determinant of between-class matrix
to that of the within-class matrix is maximized. There are
three disadvantages in LDA. First, the rank of the between
class matrix is at most C−1, so the number of the final LDA
feature has an upper limit C − 1. However, it is often insuf-
ficient to separate the classes well with only C − 1 features,
especially when C � D. Second, the boundary structure of
classes is not taken into account in computing between-class
scatter matrix, which has been shown to be essential in clas-
sification. Third, LDA cannot perform well in the cases of
non-Gaussian distribution because it is based on the assump-
tion that all classes share the Gaussian distribution with the
same covariance matrix.

NDA has been proposed to solve the aforementioned
problems. Nonparametric between-class scatter matrix and
within-class scatter matrix are defined as:
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j=1
j�i
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Ni∑
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where xi
l denotes the lth samples from class i, Np(xi

l, j) is
the pth nearest neighbor from class j to the face vector xi

l.
In our experiments, k is chosen as the median of the training
(labeled) sample number for each class as recommended in
[10]. The weighting function w(i, j, p, l) is defined as:
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min{do(xi
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l, i)), d
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where o is a control parameter between zero and infinity, and
d(xi

l,Np(xi
l, i)) is the Euclidean distance between two vec-

tors. The weighting function has the property that near the
classification boundary it takes on values close to 0.5 and
drops off to zeros if the samples are far away from the clas-
sification boundary [9]. This weighting function is used to
emphasize the boundary information. The optimal transfor-
mation matrix (A = [α1, α2, · · · , αd]) is defined as:

Aopt = argmax
A

|AT S bA|
|AT S wA| (4)

The optimal projection matrix is formed by the eigen-
vectors corresponding to the non-zero eigenvalues of a gen-
eralized eigenvalue problem.

3. Semi-Supervised Nonparametric Discriminant Anal-
ysis

In this section, we try to extend the NDA algorithm to in-

corporate the manifold structure illustrated by both labeled
and unlabeled data. The traditional NDA is a supervised-
learning algorithm in nature. Therefore, only the labeled
data can be utilized by NDA. In practice, the labeled sam-
ples are expensive to obtain. When there are no sufficient
training samples, NDA often suffers from the small sample
size problem and an extremely degenerated S w is generated.
Regularized Discriminant Analysis (RDA) [12] was devel-
oped to solve the above problem. The objective function of
NDA with a regularization term can be written as follows:

argmax
α

αT S bα

αT S wα + γαTα
(5)

where αTα is the Tikhonov regularizer, and γ is the param-
eter controlling the balance between the model complexity
and the empirical loss.

Motivated by the success of RDA, a semi-supervised
NDA (SNDA) is developed here by incorporating the man-
ifold structure when a set of unlabeled samples available.
The objective function of SNDA is defined as follows:

argmax
α

αT S bα

αT S wα + γ1αTα + γ2JMR(α)
(6)

where JMR is a data-dependent manifold regularizer which
plays a central role in preserving the manifold structure
in data. The manifold assumption [13], which states that
the target function varies smoothly along the manifold, has
played a key role in manifold regularization. Specifically,
if two points are close on the manifold, they are likely to
have the same label. However, the data manifold is usually
unknown in practice. To reflect the geometric structure of
the manifold, we can construct a nearest neighbor graph on
a scatter of data points. Consider a graph G with N vertices
where each vertex corresponds to a data point. Define the
corresponding edge weight matrix W as follows:

Wi j =

⎧⎪⎪⎨⎪⎪⎩
1 if xi ∈ Np(x j) or x j ∈ Np(xi)

0 otherwise.
(7)

where Np(xi) denotes the set of p nearest neighbors of xi.
According to the spectral graph theory [14], the crite-

rion used to measure the smoothness after the mapping can
be defined as follows:
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1
2
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where D is a diagonal matrix with Dii =
∑

j W(i, j), L =
D − W is the Laplacian matrix of graph G, and X =

[x1, x2, · · · , xN]. Observe that if xi and x j are linked by
an edge (Wi j = 1), it incurs a heavy penalty in the cost
function when the respective αT xi, αT x j are far apart in the
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Table 1 SNDA algorithm.

Input: Data set X = {Xl, Xu}, balance parameters λ1, λ2, control
parameter o, number of nearest neighbors p

Output: A low-dimensional representation of x with enhanced dis-
criminatory power. y = AT x

Algorithm:
1: Calculate S b and S w based on the labeled training samples in Xl

using Eqs. (1) and (2);
2: Construct a p-nearest neighbor graph matrix W based on all training
samples in X using Eq. (7) and calculate the graph Laplacian matrix
L = D −W;
3: Calculate the optimal projections by the generalized eigenvalue
problem (9), and the projection matrix A = [α1, α2, · · · , αd] where αi’s
are the eigenvectors corresponding to the largest d eigenvalues.
4: Transform original samples into the embedded subspace by y = AT x

low-dimensional subspace. In addition, if the points are not
neighbors, they do not affect the minimization because their
respective weights are zeros. The cost function is minimized
when the mapping function varies smoothly on the graph.

The optimal projective vector α’s are the eigenvectors
corresponding to the maximum eigenvalues of the following
generalized eigenvalue problem:

S bα = η(S w + λ1I + λ2XLXT )α (9)

Our SNDA algorithm is summarized in Table 1.

4. Experiments

Several experiments were performed to investigate the per-
formance of the proposed SNDA. We begin with a syn-
thetic example to emphasize the ideas behind the proposed
method. Then we proceed with experiments on real world
data in order to compare our method to other approaches.

4.1 Synthetic Data

We generated a synthetic 3D cylinder data set, consisting
of three cylinders: two concentric cylinders and a verti-
cal cylinder. As shown in Fig. 1 (a), the data set has large
within-class variations, thus the in-cluster data distribution
is far from Gaussian. About 15% data are kept as test ex-
amples, 2% data are used as labeled data and 83% data
are used as unlabeled data. We then visually compare our
SNDA with several famous dimensionality reduction tech-
niques: PCA, LDA, NDA, and SDA. The test data points
are projected from 3D to 2D by the above algorithms. The
dimensionality reduction results of our SNDA and other al-
gorithms are shown in the last five sub-figures of Fig. 1. The
SNDA’s parameters are set to λ1 = 0, λ2 = 0.25, o = 8 and
p = 7 in the experiment.

As can be observed from Fig. 1, the proposed SNDA
performs much better than the other algorithms such that the
remaining 2D projection is easy to perceive as a three cluster
arrangement and has much more discriminating power than
the other four algorithms. Specifically, the PCA algorithm
has the smallest discriminating power of all in this example,
as can be observed in Fig. 1 (b). This result is because PCA

(a) Three 3D cylinders. (b) PCA

(c) LDA (d) NDA

(e) SDA (f) SNDA

Fig. 1 Example of dimensionality reduction on a 3D data set.

chooses the directions of maximum variance without paying
particular attention to the underlying class structure. The
LDA algorithm successfully separates the projective data
points of the blue cylinder from that of the two concentric
cylinders, see Fig. 1 (c). However, the projective data points
of the two concentric cylinders are obviously overlapped.
This result is because LDA suffers a fundamental limitation
originating from the assumption that the sample vectors of
each class satisfy the Gaussian distribution. This restric-
tion also exists in the SDA algorithm, which is in nature
the couple of LDA and manifold assumption, as can be ob-
served from Fig. 1 (e). The NDA algorithm, where the Nor-
mal assumption is relaxed, has more discriminating power
than LDA, see Fig. 1 (d).

4.2 Real World Data

In this subsection, we compare our SNDA algorithm
with five popular algorithms in dimensionality reduction:
PCA−LDA [8], PCA−LFDA [15], NDA [10], LPP [7] and
SDA [11]. After dimensionality reduction has been per-
formed, we apply a simple nearest-neighbor classifier to per-
form classification in the embedding space. We evaluate
these algorithms on five benchmark data sets, including two
UCI [16] data sets, a TDT2 [17] document data set, and two
image data sets: USPS [18] and COIL20 [19]. See Table 2
for more details. Specifically, for the USPS data set, we per-
formed three experiments with the highly confusing digits:
binary classification of digits 4 vs. 9, three-way classifica-
tion of 1, 7, 9 and four-way classification 1, 4, 7, 9. For the
TDT2 document data set, 10 categories from the largest 4th-
13th are kept in this experiment. For the high-dimensional
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Table 3 Average classification errors for each method on each data set. Each number inside brackets
shows the corresponding standard derivation.

Data set PCA−LDA PCA−LFDA NDA LPP SDA SNDA
LSD 0.2198(0.0208) 0.2040(0.0226) 0.2301(0.0193) 0.1978(0.0237) 0.2299(0.0279) 0.1891(0.0152)
Vehicle 0.3067(0.0418) 0.2988(0.0364) 0.2807(0.0307) 0.3866(0.0463) 0.3827(0.0441) 0.3232(0.0360)
USPS(4 vs. 9) 0.0765(0.0361) 0.0681(0.0344) 0.0757(0.0353) 0.1052(0.0286) 0.0673(0.0258) 0.0456(0.0147)
USPS(1, 7, 9) 0.0696(0.0157) 0.0565(0.0173) 0.0669(0.0193) 0.0572(0.0132) 0.0554(0.0181) 0.0429(0.0111)
USPS(1, 4, 7, 9) 0.0923(0.0214) 0.0861(0.0213) 0.1229(0.0245) 0.1003(0.0160) 0.1020(0.0189) 0.0763(0.0177)
COIL20 0.1109(0.0265) 0.1067(0.0239) 0.1042(0.0189) 0.0919(0.0182) 0.0565(0.0177) 0.0465(0.0176)
TDT2 0.2447(0.0431) 0.2294(0.0461) 0.1267(0.0372) 0.1527(0.0552) 0.0939(0.0300) 0.0698(0.0254)

Table 2 Statistics of the data sets and the number of labeled data for
each data set.

Data set #Dim (D) #Inst (n) #Class (C) #Labeled (l)
LSD 36 6435 6 20
Vehicle 18 846 4 20
USPS(4 vs. 9) 256 1673 2 20
USPS(1, 7, 9) 256 2882 3 20
USPS(1, 4, 7, 9) 256 3734 4 20
COIL20 1024 1440 20 10
TDT2 36,771 3008 10 10

data set such as COIL20 and TDT2, we first apply PCA to
reduce the dimension to 256 for computational efficiency.

For each data set, we randomly select 15% data points
as test data and l data points from each class as labeled data.
The remaining data points form the unlabeled data. Table 2
shows the number of the labeled points for each data set.
There are four important parameters in SNDA algorithm:
the balance parameters λ1, λ2, the control parameter o, and
the number of nearest neighbors p. In our experiments, we
empirically set them to 0.01, 0.25, 8, and 7, respectively. We
perform 20 random trials and report the mean and standard
derivation over the 20 trials. The experimental results are
listed in Table 3. For each data set, the lowest classifica-
tion error is shown in bold. As we can see, the performance
of SNDA is better than other methods in most situations.
Specifically, for LSD, USPS, COIL20 and TDT2 which may
contain manifold structure, the performance of SNDA is the
best of all and SNDA offers significant performance gain
over the traditional NDA algorithm. For Vehicle which may
not contain any manifold structure, the performance of NDA
is the best of all and SNDA ranks No.2. Moreover, SNDA
outperforms its semi-supervised manifold learning competi-
tor on all the data set.

5. Conclusions

In this study, we have presented a new approach for semi-
supervised dimensionality reduction. By making use of both
labeled and unlabeled data in learning a linear transforma-
tion, this approach overcomes a serious limitation of NDA
under situations where labeled data are limited. Inheriting
the advantages of NDA, SNDA overcomes the limitation of
the LDA-based methods that the samples of each class sat-
isfy the Gaussian distribution assumption. SNDA utilizes
the relative benefits of both the discriminant analysis and
the manifold learning paradigms. Experimental results have

validated the effectiveness of our method.
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