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Adaptive Block-Wise Compressive Image Sensing Based on Visual
Perception

Xue ZHANG†, Nonmember, Anhong WANG†a), Member, Bing ZENG††b), Lei LIU†,
and Zhuo LIU†, Nonmembers

SUMMARY Numerous examples in image processing have demon-
strated that human visual perception can be exploited to improve processing
performance. This paper presents another showcase in which some visual
information is employed to guide adaptive block-wise compressive sensing
(ABCS) for image data, i.e., a varying CS-sampling rate is applied on dif-
ferent blocks according to the visual contents in each block. To this end,
we propose a visual analysis based on the discrete cosine transform (DCT)
coefficients of each block reconstructed at the decoder side. The analysis
result is sent back to the CS encoder, stage-by-stage via a feedback chan-
nel, so that we can decide which blocks should be further CS-sampled and
what is the extra sampling rate. In this way, we can perform multiple passes
of reconstruction to improve the quality progressively. Simulation results
show that our scheme leads to a significant improvement over the existing
ones with a fixed sampling rate.
key words: compressive sensing, human visual perception, adaptive sam-
pling, DCT

1. Introduction

The theory of compressive sensing (CS) has initiated a
tremendous wave of activity in the recent research of pro-
cessing sparse signals [1]–[3]. Due to the sparseness – an
intrinsic property in many signals in practice, CS can sam-
ple a signal at a rate much lower than the Nyquist rate while
still enabling a nearly exact reconstruction.

The sampling used in CS is usually implemented via a
random matrix. When applied to a 2-D image whose size
is usually quite big, however, CS would become very im-
practical because a huge memory is needed to store the ran-
dom sampling operator and the reconstruction is very ex-
pensive computationally. Efficient solutions have been pro-
posed recently to these problems. For instance, several fast
algorithms [4]–[6] have been developed to speed up the CS
reconstruction. Meanwhile, a block-wise compressive sens-
ing (BCS) scheme [7], [8] is proposed, which needs a very
small and fixed (cross all blocks) sampling matrix so as to
reduce the memory requirement significantly. This BCS
scheme focuses on comparing several reconstruction algo-
rithms, such as gradient projection for sparse reconstruction
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(GPSR), sparsity adaptive matching pursuits (SAMP), to-
tal variation (TV) based, and smoothed projected Landwe-
ber (SPL) with different transforms (e.g., DCT, DWT, and
contourlet transform). However, we notice that the im-
age acquisition is always implemented at a fixed sampling
rate, without considering the diversified contents in various
blocks. To overcome this drawback, we suggest in our re-
cent work [9] an adaptive block-wise compressive sensing
(ABCS) technique to achieve the progressive reconstruction.
In our ABCS method, we first apply BCS at a very low (and
fixed) rate to produce a base-layer. Then, each image block
will be further CS-sampled, but at varying rates, according
to image contents within each block.

More specifically, each block is classified into
“Smooth”, “Texture”, and “Other”, by examining the nor-
malized variance of each block against some pre-determined
thresholds. Such a classification is performed at the encoder
side using the original image and thus some overheads are
needed to signal the block type. In this work, we propose to
shift the classification to the decoder side to avoid overheads
and keep the encoder extremely simple. The analysis result
will be sent back to the encoder side, stage-by-stage, via a
feedback channel.

2. The Compressive Sensing Principle

Given a real-valued signal x ∈ RN (of length N), it is said
to be sparse if there exists a basis matrix Ψ ∈ RN×N (of size
N × N) such that x = Ψα, where ‖α‖0 = K � N (i.e., α
has K non-zero coefficients only). The CS theory tells us
that such a K-sparse x can be reconstructed (with certain
accuracy) by M measurements:

y = Φx = Φ(Ψα), (1)

where y ∈ RM denotes the measurement-vector of length
M, Φ is an M × N measurement (or sampling) matrix that is
incoherent with Ψ, and M = O (K log(N/K)), K < M � N.

Clearly, it is quite difficult to run CS directly on an im-
age of size N×N, simply because the image’s size is too big.
In the BCS method, an original image is first partitioned into
non-overlapped blocks of size W ×W. Then, each block xi

(where i stands for the block’s index) is sampled with the
same CS operator to produce m measurements:

yi = ΦW · xi, (2)

where ΦW is an m × W2 measurement matrix, m = M ×
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W2/N2, and m � W2. The equivalent sampling operator
Φ appeared in Eq. (1) for the whole image is a block-wise
diagonal matrix composed by ΦW . It is clear that the BCS
method requires much less storage.

3. Compressive Image Sensing Based on Visual Percep-
tion

3.1 ABCS Driven by Visual Perception

The proposed compressive image sensing scheme based on
visual analysis is shown in Fig. 1: An original image is di-
vided into W × W blocks; each block is first CS-sampled
at a very low (and fixed) rate and then reconstructed to get
the 1st-stage image (the base-layer). Here, the reconstruc-
tion is accomplished by the smoothed projected Landweber
(SPL) algorithm with DCT as the transform [8]. Afterward,
each block will be decided whether being CS-sampled again
according to the visual analysis result at the decoder side.

After the visual analysis, blocks are classified into
PLAIN, EDGE, and TEXTURE. Then, we take advantage
of a feedback channel to send the classification result back
to the encoder. According to the block type, we allocate
different rates to further CS-sample various blocks. Com-
paring with our earlier work [9] (that classifies blocks into
“Smooth”, “Texture”, and “Other”), we would like to high-
light the following: The classification in [9] is done on each
original image at the encoder side. In a practical CS sce-
nario, this is not realistic because each original image stands
only in the real world and thus is not available before being
sensed. Therefore, any classification (if needed) can only be
done at the receiver (or decoder) side upon the sensed image
– exactly as what is suggested in this work.

After the classification, the bit-allocation employed in
[9] follows the ordering: “Texture” > “Other” > “Smooth”.
Nevertheless, it is known that human visual perception is not
as purely linear as this. For instance, experience tells us that:
(1) when an image is compressed at a very low rate, most
blocks become very smooth and human eyes now are more
sensitive to the so-called blocking effect across neighbor-
ing smooth blocks rather than texture or other blocks; and
(2) the blocking effect will be diminishing gradually when
a higher rate is applied, whereas texture and other blocks
might still experience a serious distortion and thus human

Fig. 1 Compressive image sensing based on visual perception.

eyes now will pay more attention to them. As a result, the
bit allocation cannot be as linear as described above; instead,
a more sophisticated compromising is needed, see Sect. 3.3
for the details.

More differences between the current ABCS scheme
and the one presented in [9] are as follow:

• The current scheme shifts the classification to the de-
coder side. By doing so, we can keep the encoder to
be extremely simple to support applications such as
distributed video coding (DVC). This has also saved
all overheads that are required to be sent through the
down-link channel, as the block-type information is
transmitted back through an up-link channel.
• The classification in the current scheme is based on hu-

man visual perception which emphasizes EDGE (an
important visual pattern); whereas the previous one
only involves block-wise statistics of the 1st and 2nd

orders.
• The current classification needs to be run at each stage

whenever a newly reconstructed image is obtained at
the CS decoder. Thus, the block type may change from
one to another. For instance, most blocks will be clas-
sified as PLAIN at the 1st stage; but some of these
PLAIN blocks will be reclassified as EDGE or TEX-
TURE when an extra sampling rate is applied.

3.2 Block Classification

A visual model based on the block-wise DCT coefficients
has been proposed in [10]. Here, an image is divided into
8×8 blocks and each block is DCT-transformed. Each block
of DCT coefficients is divided into four indicative areas as
shown in Fig. 2, where the absolute sums of the DCT values
in these four areas are denoted as DC, L (low frequency),
E (edge), and H (high frequency), respectively. Then, each
block is assigned to the PLAIN, EDGE, or TEXTURE class
according to relations between the values of L, E, and H,
and some pre-determined thresholds, see [10] for the details.
We follow this model to perform the block classification in
this work.

3.3 Dynamic Bit-Allocation

Since the classification employed here is based on the re-
constructed image at the decoder side, most blocks will be
classified as PLAIN at the 1st stage, including many blocks

Fig. 2 Block classification employed in our work: four indicative areas
(with different marks) are fixed for all blocks.
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that would be otherwise classified as EDGE or TEXTURE
if the original image is used for classification (as we did in
[9]). Thus, it is natural that a higher rate should be assigned
to these PLAIN blocks at the 2nd stage. As the sampling rate
increases, some of these PLAIN blocks will be re-classified
as EDGE or TEXTURE and thus they continue to deserve
a higher rate at the following stages. At the same time, the
visual quality of those blocks that remain to be PLAIN will
be improved significantly at the 2nd stage so that any ad-
ditional random samples won’t be able to yield a notice-
able change visually. Based on these discussions, the bit-
allocation should have dynamic characteristics as follows:

At the 2nd stage: TEXTURE ≤ EDGE < PLAIN - nearly all
bits are allocated to PLAIN blocks;

At the 3rd stage: TEXTURE < EDGE - zero bits are allo-
cated to PLAIN blocks;

At the 4th stage: TEXTURE > EDGE.

Notice that, in this work, we do not try to find the op-
timal rate-allocation at various stages. Instead, our focus is
to demonstrate that such a dynamic allocation is necessary,
while leaving the optimal allocation problem to our future
work.

4. Simulation Results

We choose the BCS method proposed in [8] as the compar-
ison benchmark. However, we modify the block size to be
8 × 8 and choose the DCT as the transform for the recon-
struction. Notice that (1) it usually leads to a better perfor-
mance if a larger block size is used (e.g., 32 × 32 is used in
[8] and [9]) and (2) other transforms such as CT (which has
been used in [8] and [9]) and DWT (which is also included
in [8]) are able to yield a better performance, too. For all
experimental results presented below, we tried to maintain
all selections as simple as possible so as to focus on solely
demonstrating the effectiveness of adopting a dynamic bit-
allocation strategy.

Four random samples are taken for each block at the 1st

stage; and extra random samples will be added whenever a
new stage is needed. At the end of each stage, we count the
total number of random samples, and then average it over
all blocks to calculate an equivalent rate RBCS in order to
run the corresponding BCS (with the fixed rate RBCS to all

Fig. 3 Block classification maps for Lena (from left to right): using the original image, and ABCS
reconstructed images at RBCS = 4, 10, 16, and 22, respectively (“black” for PLAIN, “grey” for TEX-
TURE, and “white” for EDGE).

blocks).
Table 1 lists how many random samples are taken at

various stages for different block types where a few test
images have been included. Notice that the percentages in
parentheses are the portions of various blocks belonging to
different classes. The corresponding ΔRBCS is calculated ac-
cording to these percentages at each stage and then accumu-
lated to get RBCS.

Fig. 3 presents the block classification maps for Lena.
It can be observed that, with the increase of sampling rate,
the map gets closer to the one obtained from the original
image.

Table 2 presents the PSNR comparisons of the ABCS
and BCS methods. To differentiate various blocks, we
present in Table 2 the PSNR values for three types of blocks.
As the sampling rate increases, although we end up with
a PSNR loss in all PLAIN blocks, the visual effect does
not vary much when compared with the results achieved
by the corresponding BCS method. At the same time, a
much bigger PSNR improvement over the BCS method has
been achieved by our ABCS method for all EDGE and TEX-
TURE blocks. Over each entire image, we have experienced
a PSNR loss only at the 2nd stage, but achieved a significant
gain at the 3rd and 4th stages.

To have some visual comparisons between the BCS and
ABCS methods, we show in Fig. 4 some enlarged portions
for Lena, from which one can perceive a very noticeable
improvement by using our ABCS method. Notice that, for
a more fair comparison, we need to count the overhead bits

Table 1 Numbers of random samples taken for different blocks at
various stages (and their corresponding percentages).
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Table 2 PSNR at various stages for different test images.

Fig. 4 Visual comparisons between BCS and ABCS for Lena: three
portions are shown at various stages.

required during the feedback link; thus we have added one
more measurement to the fixed-rate BCS scheme. Addition-
ally, when compared to the BCS scheme, the extra complex-
ity happens at block classification at the decoder. However,
the computation consumed in this process is ignorable rel-
ative to CS reconstruction, but delivering a higher perfor-
mance.

5. Conclusions

This paper proposed an adaptive block-wise compressive
sensing (ABCS) technique that is driven by human visual
perception. One unique feature is that our visual analysis is

carried out using the DCT coefficients of each block recon-
structed at the decoder side; and the analysis result is sent
back to the CS encoder (assuming that an up-link channel is
available – which is true in most applications) to help choose
a new CS-sampling rate adaptively. Our proposed technique
keeps the simplicity of the CS coding, takes into account
the human eyes’ sensitivities to different block types, and
offers a progressive reconstruction. When compared with
the BCS method at a fixed sampling rate, our ABCS scheme
has achieved a remarkable improvement.
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