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PAPER

Integrating Ontologies Using Ontology Learning Approach

Lihua ZHAO†a), Nonmember and Ryutaro ICHISE†b), Member

SUMMARY The Linking Open Data (LOD) cloud is a collection of
linked Resource Description Framework (RDF) data with over 31 billion
RDF triples. Accessing linked data is a challenging task because each data
set in the LOD cloud has a specific ontology schema, and familiarity with
the ontology schema used is required in order to query various linked data
sets. However, manually checking each data set is time-consuming, espe-
cially when many data sets from various domains are used. This difficulty
can be overcome without user interaction by using an automatic method
that integrates different ontology schema. In this paper, we propose a Mid-
Ontology learning approach that can automatically construct a simple on-
tology, linking related ontology predicates (class or property) in different
data sets. Our Mid-Ontology learning approach consists of three main
phases: data collection, predicate grouping, and Mid-Ontology construc-
tion. Experiments show that our Mid-Ontology learning approach success-
fully integrates diverse ontology schema with a high quality, and effectively
retrieves related information with the constructed Mid-Ontology.
key words: mid-ontology, linked data, Semantic Web, ontology learning,
ontology integration

1. Introduction

The Linking Open Data (LOD) cloud is a collection of
Resource Description Framework (RDF) data in <subject,
predicate, object> triples [1]. The LOD cloud (as of
September 2011) contains 295 data sets mainly categorized
into seven domains: cross-domain, geographic, media, life
sciences, government, user-generated content, and publi-
cations. Things are represented using the Uniform Re-
source Identifier (URI), and identical or related things are
linked with the built-in OWL property owl:sameAs [2]. The
Web Ontology Language (OWL) is a semantic markup lan-
guage designed for sharing or publishing ontologies on the
Web [3].

Although many applications, such as linked data
browsers [4], semantic search engines [5], and some domain
specific applications [6], have been developed that demand
access to linked data sets, integrating ontology schema or
data sets from diverse domains remains a challenging prob-
lem [7]. This problem persists because multiple data sets
provide different values for the same predicate of an ob-
ject or provide different terms to represent the same pred-
icate [8]. SPARQL Protocol and RDF Query Language
(SPARQL) is a powerful RDF query language that enables
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Semantic Web users to access linked data [9]. However,
users must understand the ontology schema of the data sets
to construct SPARQL queries [10]. Learning all the on-
tology schema is not feasible and is time-consuming, be-
cause each data set has a specially designed ontology and
thus thousands of distinct ontology predicates might ex-
ist. For example, the postal code is represented using db-
onto:postalCode∗ in DBpedia, and is represented using geo-
onto:postalCode∗∗ in Geonames. If these two predicates are
integrated together into one ontology predicate, for instance,
in the mo-onto:postalCode, we can easily search places with
the same postal code in both DBpedia and Geonames by
only querying with the mo-onto:postalCode. Querying with
one simple ontology that integrates various ontologies can
simplify SPARQL queries and help Semantic Web applica-
tion developers to easily understand ontology schema so that
they may retrieve rich information from various linked data
sets.

To solve this problem, an automatic method to con-
struct a simple ontology that integrates ontology schema
from diverse domain data sets must be developed. Ontol-
ogy alignment, or ontology matching is commonly used to
find correspondences between ontologies to solve the on-
tology heterogeneity problem [11]. Ontology learning tech-
nology can automate the ontology construction process from
structured, semi-structured or unstructured data [12]. An on-
tology learning cycle that includes ontology design, ontol-
ogy learning, and validation phases is introduced in [13].
However, the majority of the research on ontology learning
technology focuses on text files [14], [15]. To adapt to the
LOD data sets, we designed an automatic ontology learning
approach, which can construct an integrated ontology from
various linked data sets.

In this paper, we present the automatic Mid-Ontology
learning approach, which includes ontology manipulations
such as ontology term extraction, ontology matching, and
ontology integration. Ontology integration is defined as a
process that generates a single ontology from different exist-
ing ontologies [16]. An automatically constructed ontology
is called a Mid-Ontology, and integrates related ontology
predicates from diverse linked data sets.

This paper is organized as follows. We start with the
introduction of our automatic Mid-Ontology learning ap-
proach, which involves data collection, predicate group-

∗db-onto: http://dbpedia.org/ontology/
∗∗geo-onto: http://www.geonames.org/ontology#
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Table 1 Collected data based on the db:Hamburg.

Predicate Object

db − prop : name “Free and Hanseatic City of Hamburg”@en
db − prop : population 1769117
db − onto : populationTotal 1769117
. . . . . . . . . . . .
geo − onto : o f f icialName “Hamburg”@de
geo − onto : o f f icialName “Free and Hanseatic City of Hamburg”@en
geo − onto : population 1739117
. . . . . . . . . . . .
skos : pre f Label “Hamburg (Germany)”@en
nyt − prop : f irst use 2006-12-12
nyt − prop : latest use 2010-05-14

ing, and Mid-Ontology construction. Next, we evaluate
our Mid-Ontology learning approach from five different per-
spectives: the effectiveness of data reduction, the quality of
Mid-Ontology, comparison results with previous work, the
effectiveness of information retrieval with a SPARQL query,
and the characteristics of the integrated predicates. Then,
we discuss the advantages of our Mid-Ontology learning ap-
proach and its possible applications, followed by some pre-
vious related research and a comparison with our approach.
In the last section, we present our conclusion and future
work.

2. Mid-Ontology Learning Approach

In the LOD cloud, data sets are linked with owl:sameAs at
an instance level, but few links exist at the class or prop-
erty level. Although the RDF link types owl:equivalentClass
and owl:equivalentProperty are designed to indicate that two
classes or properties refer to the same concept, there are only
few links at a class level or property level [9]. Hence, when-
ever linked data sets are queried with SPARQL, the predi-
cates of the ontology schema must be manually learned, an
infeasible task if there are thousands of distinct predicates.

Our aim is to automatically construct a simple ontology
that integrates ontology schema from various linked data
sets. By collecting linked instances, we can identify dif-
ferent predicates that indicate identical or related informa-
tion. For example, Table 1 shows the collected <predicate,
object> pairs of instances that indicate the place “Hamburg”
from DBpedia [17], Geonames, and NYTimes, where these
instances are linked with owl:sameAs. In Table 1, there are
three distinct predicates that indicate “Hamburg,” each be-
longing to a different data set. If we can integrate these re-
lated predicates into one predicate, we can query the entire
data sets with one single predicate that indicates the name
of a place.

In this section, we describe the architecture of our Mid-
Ontology learning approach, as shown in Fig. 1. The archi-
tecture of our approach comprises three phases: data collec-
tion, predicate grouping, and Mid-Ontology construction.

2.1 Data Collection

Although the SameAs (owl:sameAs) link is designed to link

Fig. 1 Architecture of our Mid-Ontology learning approach.

identical things, it also links related or similar things in pub-
lished linked data sets [18]. Hence, we can find identical or
related information if we investigate instances linked with
owl:sameAs. In this section, we describe our data collection
phase in three steps: extract data linked with owl:sameAs,
remove noisy instances of the core data set, and collect pred-
icates and objects to construct the final data set for our Mid-
Ontology learning.

2.1.1 Extract Data Linked with owl:sameAs

To extract data linked with owl:sameAs, we have to select a
core data set, which serves as a hub of several linked data
sets. A good core data set should have inward or outward
links to other data sets from diverse domains. After the core
data set selection, we also collect all the instances that have
the SameAs links with instances in the core data set.

For instance, if we select DBpedia as the core data set,
then we select all the DBpedia instances that have SameAs
links with other data sets, such as Geonames and NYTimes.
Table 1 shows an example of the collected data based on
the DBpedia instance db:Hamburg†. Because both the in-
stances http://data.nytimes.com/N78784173230527526471
and http://sws.geonames.org/2911297/ are connected with
db:Hamburg, we also collect the contents of these two URIs.

2.1.2 Remove Noisy Instances of the Core Data Set

We say an instance is noisy, if none of the triples of the
instance contains information that can represent the charac-
teristics of the instance. For instance, if all the triples of an
instance are SameAs links or broken links, we cannot learn
any information that can represent the characteristics of an
instance. We remove these noisy instances of the core data
set before collecting predicates and objects.

2.1.3 Collect Predicates and Objects

Data collection is based on each retrieved instance of the
core data set, from which we collect all the <predicate,
object> pairs of the instance and of the instances connected
with the instance. Hereafter, we use PO to represent a
<predicate, object> pair.

In this PO collection step, we do not collect the triples
with the SameAs link, because we have already collected

†db: http://dbpedia.org/resource/
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triples of the linked instances. Furthermore, for the in-
stances of the core data set, if there is any link to another
instance of the core data set, we also collect triples from the
linked instance. In addition, if an instance has a redirection
to another instance, we also collect triples from the redi-
rected instance, which normally contains richer information
than the original instance. The collected data consists of PO
pairs based on each instance of the core data set, which is
used for the predicate grouping phase.

2.2 Predicate Grouping

The grouping of related predicates from different ontology
schema is critical to Mid-Ontology construction, because
there exist many similar ontology predicates that represent
the same thing. The predicate grouping phase consists of
three main steps: group predicates by exact matching, prune
sets of PO pairs by similarity matching, and refine sets of
PO pairs using extracted relations such as domain and range
of the predicates.

2.2.1 Group Predicates by Exact Matching

The first step in predicate grouping is to create the initial
sets of PO pairs that share identical information or the same
object by the exact string matching method. The collected
data set is based on each instance of the selected core data,
which consists of PO pairs. We perform a pairwise compar-
ison of POi and POj and create the initial sets S 1, S 2, . . . , S k

by checking whether they share an identical predicate or ob-
ject. Here, S is a set of PO pairs.

For example, in Table 1, both geo-onto:officialName
and db-prop:name† have the same object, “Free and
Hanseatic City of Hamburg”@en, and the predicate geo-
onto:officialName has another object, “Hamburg”@de.
Hence, these two predicates and objects are grouped to-
gether to create an initial set. After creating initial sets for
all the PO pairs, we create initial sets for each PO pair that
has not yet been grouped. For instance, nyt-prop:first use††
is in an initial set by itself because no predicate has the same
object “2006-12-12” and no identical predicate exists in the
data.

2.2.2 Prune Sets of PO pairs by Similarity Matching

The second step in predicate grouping is pruning the ini-
tial sets by string-based similarity matching and knowledge-
based similarity matching, which are commonly used to
match ontologies at the concept level [19]. We observed
that some of the same values that are written in different lan-
guages and some semantically identical words, such as U.K.
and United Kingdom, may be ignored in the exact matching
step. Therefore, similarity matching is required to group se-
mantically similar predicates.

In our approach, we adopted four string-based sim-
ilarity measures, namely, prefix, suffix, Levenshtein dis-
tance, and n-gram, as introduced in [20], [21], and nine

knowledge-based similarity measures [22], namely, LCH,
RES, HSO, JCN, LESK, PATH,WUP, LIN, and VECTOR,
which are based on WordNet (a large lexical database of
English [23]). String-based similarity measures are applied
to compare objects of predicates, because objects may con-
tain URIs instead of lexical labels or phrases. However,
knowledge-based similarity measures are applied to com-
pare pre-processed terms of predicates because the terms of
predicates are more likely to have semantic meanings that
can be recognized as a concept. In the following, the term
TS indicates the pre-processed terms of the predicates in S ,
the term OS indicates the objects stored in S , and the term
PS indicates the predicates stored in S .

To extract the terms of predicates, we pre-process each
predicate of the PO pairs by performing natural language
processing (NLP), which includes tokenizing terms, remov-
ing stop words, and stemming terms using the porter stem-
ming algorithm [24]. NLP is a key method for the data pre-
processing phase, in which terms are extracted from ontolo-
gies; this method helps improve the performance of ontol-
ogy building [25].

Sim(S i, S j) is the similarity between S i and S j, which
is calculated using the formula:

Sim(S i, S j) =
StrSim(OS i ,OS j ) +WNSim(TS i ,TS j )

2

where StrSim(OS i ,OS j ) is the average of the four string-
based similarity values and WNSim(TS i ,TS j ) is the average
of the nine applied WordNet-based similarity values. For
WordNet-based similarity measures, we do not count on
the term pairs that have no similarity value returned from
WordNet-based similarity measures. Because if we count
on them, it means that we treat the similarity value as zero.
However, no returned similarity value from WordNet-based
similarity measures does not mean the similarity is zero.

If Sim(S i, S j) is higher than a predefined similarity
threshold, we consider that these two initial sets share simi-
lar predicates, and we merge these two sets. After compar-
ing all the pairwise initial sets, we remove the initial set S i if
it has not been merged during this pruning process and has
only one PO pair.

Here, we show how to calculate the similarity be-
tween two initial sets S i and S j, where these two initial
sets are created based on Table 1. Suppose S i includes
db-prop:population and db-onto:populationTotal with the
object “1769117”, and set S j includes the predicate geo-
onto:population with the object “1739117”. TS i includes
“population” and “total”, while TS j includes “population”.
Here, OS i is “1769117” and OS j is “1739117”.

We performed four string-based similarity measures,
including prefix, suffix, Levenshtein, and n-gram, on the two
objects, “1769117” and “1739117”. The similarity values
for prefix, suffix, Levenshtein, and n-gram are 0.29, 0.56,
0.4, and 0.86, respectively. Hence, the string-based similar-
ity StrSim(OS i ,OS j ) is 0.5275, which is the average of the 4

†db-prop: http://dbpedia.org/property/
††nyt-prop: http://data.nytimes.com/elements/
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Table 2 WordNet-based similarity on pairwise terms.

Pairwise Terms LCH RES HSO JCN LESK PATH WUP LIN VECTOR

population, population 1 1 1 1 1 1 1 1 1
population, total 0.4 0 0 0.06 0.03 0.11 0.33 0 0.06

string-based similarity values. Table 2 shows the WordNet-
based similarity values of the pairwise terms in S i and S j.
WNSim(TS i ,TS j ) is 0.5825, which is the average of the 15
similarity values returned by WordNet-similarity measures,
as listed in Table 2. Hence, the final similarity Sim(S i, S j)
is 0.555, which is the average of 0.5275 and 0.5825. If this
value is higher than the predefined similarity threshold, we
merge S i and S j. In this work, we set the default similarity
threshold to 0.5.

The pruned sets of PO pairs are created by perform-
ing pairwise similarity measures on the initial sets and are
passed to the refining process.

2.2.3 Refine Sets of PO Pairs Using Extracted Relations

The final step of predicate grouping is to split the predicates
of each pruned S i according to the relations of rdfs:domain
and rdfs:range [26]. Even though the objects or terms of
predicates are similar, the predicates may belong to differ-
ent domains or ranges. For further refinement, we determine
the frequency of each pruned S i in all of the data and keep
any S i that appears with a frequency that is higher than the
predefined frequency threshold. This refining process is ap-
plicable to any type of objects because we only consider the
domain and range information. The final refined sets of PO
pairs are passed to the next phase, Mid-Ontology construc-
tion.

2.3 Mid-Ontology Construction

According to the refined sets of PO pairs, we construct the
Mid-Ontology with automatically selected terms and a spe-
cially designed predicate.

2.3.1 Select Terms for Mid-Ontology

To perform automatic term selection, we pre-process all the
terms of the predicates in each set by tokenization, stop
word removal, and stemming. During the pre-process, non-
literal terms and stop words are removed because they can
not convey meanings. We also keep the original terms be-
cause sometimes a single word is ambiguous when it is
used to represent a set of terms. For example, “area” and
“areaCode” have different meanings but may have the same
frequency because the former is extracted from the latter.
Hence, when two terms have the same frequency, we choose
the longer one. The predicate mo-onto:Term is designed to
represent a class term, where the “Term” is automatically
selected.

2.3.2 Construct Relations

We designed a predicate mo-prop:hasMembers to link
sets of predicates with the Mid-Ontology classes. This
predicate indicates that a set of integrated predicates
are members of a Mid-Ontology class. We use the
relation mo-prop:hasMembers instead of the existing
owl:equivalentClass or owl:equivalentProperty in order to
reduce the number of triples to connect the integrated pred-
icates. For example, if the number of integrated predi-
cates in a set S i is n, we need n ∗ (n − 1) triples to con-
nect all the pairs of predicates using owl:equivalentClass
or owl:equivalentProperty. However, by connecting with
our Mid-Ontology classes, we only need n triples with mo-
prop:hasMembers.

2.3.3 Construct Mid-Ontology

A Mid-Ontology is automatically constructed with refined
sets of integrated predicates, automatically selected terms,
and a designed predicate mo-prop:hasMembers, which links
sets of predicates and Mid-Ontology classes.

2.4 Implementation

Many Semantic Web tools are developed to help researchers
query linked data, publish linked data, or manage enormous
data sets. Virtuoso† is a high-performance server that sup-
ports the storage of a large RDF data, provides a SPARQL
endpoint, and supports the creation of RDF models [27].
Therefore, we used Virtuoso to store linked data sets and
queried SPARQL examples for experiments. A Virtuoso
Jena RDF Data Provider is also provided, enabling Java ap-
plications to directly query the Virtuoso RDF data through
Jena RDF Frameworks.

For knowledge-based similarity matching, we used
WordNet::Similarity†† [22], which is implemented in Perl.
Several WordNet-based similarity measuring algorithms are
implemented in this tool. If two terms are identical, we re-
turn 1, which is the maximum similarity value; otherwise,
we apply WordNet-based similarity measures. The similar-
ity measures JCN, PATH, WUP, LIN, and VECTOR return
normalized values between zero and one. However, the sim-
ilarity values of LCH, RES, HSO, and LESK are not normal-
ized. To normalize the similarity values of LCH, RES, HSO,
and LESK measures, we divide the returned values by the
maximum value that can be obtained from all the pairwise
terms in the collected data set. The normalized similarity

†http://virtuoso.openlinksw.com/
††http://wn-similarity.sourceforge.net/
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Simalg is calculated using the formula:

Simalg =
WordNetalg

Maxalg

where WordNetalg indicates the returned value from Word-
Net::Similarity tool and Maxalg indicates the maximum
value we obtained from the WordNetalg. The Maxalg of LCH,
RES, HSO, and LESK are 3.7, 10, 16, and 5.6, respectively.

3. Experimental Evaluation

In this section, we first introduce the experimental data used
in our experiments. Then we evaluate the Mid-Ontology
learning approach from five different perspectives: the effec-
tiveness of data reduction, the quality of constructed Mid-
Ontology with different combinations of data sets, the com-
parison of the Mid-Ontologies created in our current work
with previous work, the effectiveness of information re-
trieval with a SPARQL example, and the analysis of the
characteristics of integrated predicates in the Mid-Ontology.
This experimental evaluation is an extension of previous
work [28], [29] with more linked data sets to show the adapt-
ability of our method on different combinations of data sets.

3.1 Experimental Data

We used the following four data sets in the LOD cloud to
evaluate our approach.

DBpedia is a core cross-domain data set that describes over
3.5 million things including persons, places, music al-
bums, movies, video games, organizations, species,
and diseases. DBpedia has more than 232 million RDF
triples and more than 8.9 million distinct URIs.

Geonames is a data set that is categorized in the ge-
ographic domain and contains more than 7 million
unique URIs that represent geographical information
on places across the world.

NYTimes data is a small data set that consists of 10,467
subject headings, where 4,978 are about people, 1,489
are about organizations, 1,910 are about locations, and
498 are about descriptors.

LinkedMDB is the Linked Movie DataBase, which con-
tains high-quality interlinks to movie-related data in
the LOD cloud as well as links to movie-related
web pages. LinkedMDB consists of approximately
6 million RDF triples and more than 0.5 million enti-
ties.

Figure 2 shows the SameAs links connecting the above
four data sets, plotted using Cytoscape [30]. In this figure,
the size of a node is determined by the total number of dis-
tinct instances in a data set on a logarithmic scale. The thick-
ness of an arc is determined by the number of SameAs links
on a logarithmic scale. The number of SameAs links are
labeled on each arc, which links different data sets.

In addition to the SameAs links, there are links
at class and property level, which are linked with

Fig. 2 SameAs links between data sets.

Table 3 Number of instances in each data set.

Data Number of owl:sameAs Noisy Instances
Instances Retrieval Removal

DBpedia 8,955,728 163,916 115,364
Geonames 7,479,714 128,482 82,055
NYTimes 10,467 10,408 9,242
LinkedMDB 503,242 29,526 28,946

owl:equivalentClass and owl:equivalentProperty. However,
in our experimental data sets, there is no owl:equivalentClass
link among them. Although we found 10 pairs of properties
linked with owl:equivalentProperty in DBpedia, most of the
properties are removed during the data collection phase be-
cause of their infrequent usage in the data sets. Hence, these
few links between classes and properties do not affect the
evaluation results with our approach.

3.2 Evaluation of Data Reduction

We evaluate the effectiveness of data reduction during the
data collection phase by comparing the number of distinct
instances in the original data sets with the number of distinct
instances we extracted after performing the owl:sameAs re-
trieval process and the noisy instances removal process.

DBpedia has served as a hub within the Web of Data
because of its breath of topical coverage and the wealth of
inward and outward links connecting instances in DBpedia
to instances in other data sets [9]. Hence, we select DBpedia
as a core data set and collect all the instances that have the
SameAs links as do instances in DBpedia.

The instances of DBpedia that contain only the follow-
ing predicates db-prop:wordnet-type†, owl:sameAs, and db-
prop:hasPhotoCollection are defined as “noisy” and are re-
moved from the collected linked instances. We reduce the
data in such a way because although these instances have
SameAs links, from them we cannot learn any information
that can represent the characteristics of a DBpedia instance.
For example, most of the db-prop:hasPhotoCollection link
to a broken link from which we cannot extract information
about the link.

The instances of four data sets kept after the data re-
duction process are shown in Table 3. These retained in-

†db-prop: http://dbpedia.org/property/
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Table 4 Comparison results of constructed Mid-Ontologies.

Data set Mid-Ontology Number of Classes Number of Predicates Accuracy Correctly Labeled Correctly Grouped Predicate Richness

DBpedia MO1 no prune refine 9 228 78.34% 6 (66.67%) 6 (66.67%) 25.33
Geonames MO1 no prune 14 203 82.53% 10 (71.43%) 9 (64.29%) 14.5
NYTimes MO1 no refine 21 166 93.92% 16 (76.19%) 19 (90.48%) 7.90

MO1 23 148 94.18% 19 (82.61%) 19 (82.61%) 6.43
DBpedia MO2 no prune refine 10 240 77.94% 7 (70%) 6 (60%) 24

Geonames MO2 no prune 15 238 78.23% 11 (73.33%) 8 (53.33%) 15.87
LinkedMDB MO2 no refine 19 157 93.16% 15 (78.95%) 17 (89.47%) 8.26

MO2 24 150 96.92% 21 (87.5%) 22 (91.67%) 6.25
DBpedia MO3 no prune refine 9 99 84.76% 7 (77.78%) 6 (66.67%) 11

LinkedMDB MO3 no prune 15 82 85.76% 13 (86.67%) 10 (66.67%) 5.47
NYTimes MO3 no refine 10 120 95.39% 9 (90%) 9 (90%) 12

MO3 14 106 93.77% 13 (92.86%) 12 (85.71%) 7.57
DBpedia MO4 no prune refine 9 169 71.58% 5 (55.56%) 5 (55.56%) 18.78

Geonames MO4 no prune 14 155 79.99% 9 (64.29%) 9 (64.29%) 11.07
NYTimes MO4 no refine 18 111 94.63% 15 (83.33%) 16 (88.89%) 6.17
LinkedMDB MO4 22 105 94.84% 19 (86.36%) 20 (90.91%) 4.77

stances are used for our Mid-Ontology learning approach
to discover related classes and properties. For example, the
db:Hamburg in Table 1 is kept after the data reduction pro-
cess because it has SameAs links to instances of other data
sets and it is not a “noisy” instance. Therefore, we crawl
the SameAs links shown in Fig. 2 and collect <predicate,
object> pairs from the interlinked instances as listed in Ta-
ble 1.

Table 3 illustrates the number of distinct instances
that exist before and after linked data retrieval and noisy
instances removal are performed during the data collec-
tion process. The data sets contain 8,955,728 DBpedia in-
stances, 7,479,714 Geonames instances, 10,467 NYTimes
instances, and 503,242 LinkedMDB instances. After the
linked data retrieval process, we extracted 163,916 DBpe-
dia instances, 128,482 Geonames instances, 10,408 NY-
Times instances, and 29,526 LinkedMDB instances, which
are 1.83%, 1.72%, 99.44%, and 5.87% of the number of in-
stances in the data sets, respectively.

Then, we pre-process the extracted sub-data set by re-
moving noisy DBpedia instances. After the noisy instances
removal, we obtained 115,364 DBpedia instances, 82,055
Geonames instances, 9,242 NYTimes instances, and 28,946
LinkedMDB instances, which are 70.78%, 63.86%, 88.80%,
and 98.04% of the number of instances in the extracted
linked data, respectively.

We dramatically scaled down the data sets by collecting
information of linked instances in the data collection phase
so as to keep instances that share related information. Fur-
thermore, we successfully removed noisy instances, which
may affect the quality of the constructed ontology.

3.3 Ontology Evaluation

To evaluate the quality of the constructed Mid-Ontology
(MO), we calculate the accuracy of the Mid-Ontology us-
ing the following formula:

ACC(MO) =

∑n
i=1
|Correct Predicates in Ci |

|Ci |
n

where n is the number of classes in the Mid-Ontology, and
|Ci| indicates the number of predicates in class Ci. The
ACC(MO) is the average of the accuracy of each class in
the Mid-Ontology. If all related or identical predicates are
correctly integrated in each class, ACC(MO) reaches 1.

Table 4 shows the improvements achieved by our
Mid-Ontology approach through a comparison of the Mid-
Ontologies constructed with and without our approach using
different combinations of data sets, as illustrated in the first
column. The main features of our approach are the PO set
pruning with similarity measures and the PO set refining by
checking the ranges and domains of predicates. The sec-
ond column lists the Mid-Ontologies constructed by differ-
ent approaches, that is, MOi no prune refine is constructed
without the pruning and refining processes, MOi no prune
is constructed without the pruning process, MOi no refine
is constructed without the refining process, and MOi is con-
structed with both the pruning and refining processes. The
third column lists the number of classes, and the fourth col-
umn lists the number of predicates in the constructed Mid-
Ontology. The following columns list the accuracy, the per-
centage of correctly labeled terms, the percentage of cor-
rectly grouped classes, and the Predicate Richness (PR) of
the constructed Mid-Ontology.

3.3.1 Evaluation of Pruning Process

To evaluate the accuracies of the constructed Mid-
Ontologies, we manually check predicates in each class to
determine whether they share identical or related informa-
tion, and we examine whether each term can represent the
predicates in that class without disambiguation. The perfor-
mance of the pruning process can be evaluated by compar-
ing the results of MOi no prune refine and MOi no refine,
and the results of MOi no prune and MOi.

For example, in the first case, which is performed on
DBpedia, Geonames, NYTimes, the pruning process signif-
icantly improved the accuracy of the Mid-Ontology, that is,
from 78.34% to 93.92% and from 82.53% to 94.18%, with
a p-value 0.01. Here, the p-value is calculated using a t-test
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to measure the statistical significance of improvement. The
p-value calculated on eight pairwise accuracies from four
different cases is 2.0E-5, indicating that our pruning process
significantly improves the accuracy of the Mid-Ontology.

The pruning process is applicable to any type of ob-
jects, but it is not an optimized method. Since we con-
sider the numerical values of objects as literals in the sim-
ilarity matching, it may cause incorrect similarity values.
This problem can be solved by applying different similarity
measurements for different types of objects as introduced in
[31].

3.3.2 Evaluation of Refining Process

We can compare the results of MOi no prune refine and
MOi no prune, and the results of MOi no refine and MOi

to evaluate the performance of the refining process. For ex-
ample, in the first case, the refining process improved the ac-
curacy of the Mid-Ontology, that is, from 78.34% to 82.53%
and from 93.92% to 94.18%. Although the improvements of
the refining process from four different cases are not signif-
icant, with a p-value 0.056, this value is close to the signifi-
cant level 0.05.

The reason of insignificant improvements on the refin-
ing process is that most of the predicates in the ontologies
have no definition of range and domain. For instance, there
is no domain and range information in the LinkedMDB and
NYTimes data sets. In Geonames, there are 12 range infor-
mation and 21 domain information. However, all the ontol-
ogy predicates are defined as geo:Feature. DBpedia has over
6000 predicates for describing instances, but less than 20%
of them have domain and range information. We will seek
for a solution to improve the performance of refining pro-
cess on the data sets, which are lack of domain and range
information.

The decrease of the accuracy in this experiment is
caused in the third case, where the accuracy of MO3 is
slightly lower than that of MO3 no refine. One reason
for this decrease is that in the MO3, db-onto:producer
and db-prop:playername are divided from the largest
class mid-onto:name and grouped into a new class mo-
onto:playername after the refinement step because both
predicates indicate the name of a person. However, the db-
onto:producer is related to movies and db-prop:palyername
is related to sports. Hence, we define this set as incorrect,
and the accuracy of mo-onto:playername is 50%, decreasing
the accuracy of MO3 by approximately 2.27%. Another rea-
son for the accuracy decrease is that there are not as many
links as there are in other cases; in other words, fewer DB-
pedia instances are retrieved during the data collection. The
number of DBpedia instances in the third case is only 30%
of the number of instances in the last case. Hence, because
of the limited number of extracted instances, the refining
process failed to improve the accuracy.

3.3.3 Evaluation of Correctly Lableled and Grouped Sets

As we can see from Table 4, the percentages of correctly
labeled sets and correctly grouped classes of MOi are im-
proved compared to the results obtained when the group
pruning or group refining processes were not performed.

Although the percentage of correctly labeled terms
for MOi is higher than in the case of methods that do
not involve group pruning or group refining, such as
MOi no prune refine, MOi no prune, and MOi no refine,
the label accuracy is not affected by the pruning and refin-
ing processes. Some of the automatically labeled terms are
ambiguous to represent the precise meaning of the terms in
a set. Hence, we define these unclear terms as incorrectly
labeled terms. An example of an incorrectly labeled term in
the fourth case in Table 4 is “date”, which should represent
the “release date” of a movie. The term “date” is selected be-
cause it appeared most frequently in the preprocessed terms
of the set. However, this term is too ambiguous that we can
not figure out whether it is a release date of a movie.

The percentage of correct groups is significantly im-
proved after performing pruning process, with a p-value
6.27E-6. However, the improvement of the refining process
is not significant, with a p-value 0.3. Although the accura-
cies of correct groups are high with the experimental data
sets, there are some incorrect groups. An example of an in-
correct group is the one including predicates about longitude
and latitude. This wrong group is caused by the coincidence
when the value of longitude and latitude are similar. Fur-
thermore, due to the lack of domain and range information
of the predicates that indicating longitude and latitude, they
are not separated during the refining process.

3.3.4 Evaluation of Predicate Richness

As Table 4 shows, when both pruning and refining are con-
ducted, the total number of predicates from the data sets are
decreased and the total number of classes are increased. To
determine whether we successfully retrieved related predi-
cates and removed redundant predicates, we introduce the
term Predicate Richness (PR), which is calculated using the
following formula:

PR =
|Number of Predicates|
|Number of Classes|

where PR indicates the average number of predicates
in a class of the ontology. As we can see from Table 4, the
cases with a low PR have a high accuracy. Hence, accord-
ing to the high accuracy and the low PR, we can conclude
that through the pruning and refining process we success-
fully removed redundant predicates, which may reduce the
accuracy of the Mid-Ontology.

3.4 Comparison Results with Previous Work

We compare our experimental results performed on DBpe-



ZHAO and ICHISE: INTEGRATING ONTOLOGIES USING ONTOLOGY LEARNING APPROACH
47

Table 5 Comparison results on DBpedia, Geonames, and NYTimes.

Mid-Ontology Number of Number of Accuracy Correctly
Classes Predicates Grouped

Previous MO 29 180 90.10% 22 (75.86%)
Current MO 23 148 94.18% 19 (82.61%)

Table 6 Predicates grouped in mo-onto:date.

<rdf:Description rdf:about=“mo-onto:date”>
<mo-prop:hasMembers rdf:resource=“db-prop:released”/>
<mo-prop:hasMembers rdf:resource=“db-onto:releaseDate”/>
<mo-prop:hasMembers rdf:resource=“mdb-movie:initial release date”/>
<mo-prop:hasMembers rdf:resource=“dc:date”/>

</rdf:Description>

dia, Geonames, and NYTimes with previous work intro-
duced in [28]. The main difference in our current work is
that we did not consider instances in the core data set if
there is no link to instances from other data sets. Further-
more, during the PO collection, we also collect from redi-
rected instances which may contain more information than
the original instance.

The comparison results of the Mid-Ontology between
previous work and current work are described in Table 5.
The number of classes and predicates are decreased in our
current work, because we did not consider instances which
have SameAs links, but only link to other instances in the
same data set. The accuracy and correctly grouped predi-
cates are improved by 4.5% and 8.9%, respectively in our
current work comparing with previous work. Since we col-
lected more information from redirected instances, which
usually contain more PO pairs than the original instance,
the accuracy of integrated predicates is increased compar-
ing with previous work.

3.5 Evaluation with a SPARQL Example

We evaluate the effectiveness of information retrieval with
the Mid-Ontology constructed via our approach using DB-
pedia, Geonames, NYTimes, and LinkedMDB data sets by
presenting a SPARQL query example.

Table 6 shows one of the classes in the Mid-Ontology,
that integrates predicates indicating the release date of a
movie from DBpedia and LinkedMDB. The predicates db-
prop:released and db-onto:releaseDate are used in DBpedia,
while mdb-movie:initial release date and dc:date† are used
in LinkedMDB. This set does not contain any NYTimes and
Geonames predicates because there is no predicate that indi-
cates a movie’s release date in both data sets. Table 7 shows
a SPARQL example in which this mo-onto:date is used to
find movies that are released on 2000-10-03. This SPARQL
query automatically queries with all the predicates listed un-
der mo-onto:date, as shown in Table 6.

We identify 46 movies with mo-onto:date, where 44
are from DBpedia and 2 are from LinkedMDB. However,
with the single predicate listed in Table 8, we can find 37,
43, 2, and 2 movies. Because the predicates grouped in this
class all correctly represent the release date of a movie, the
returned results are all correct. The result queried with mo-

Table 7 A SPARQL example: Find movies released on 2000-10-03.

SELECT DISTINCT ?movies
WHERE{ <mo-onto:date> mo-prop:hasMembers ?prop.
?movies ?prop ?date.
FILTER REGEX(?date, “2000-10-03”).}

Table 8 SPARQL example results with each single predicate.

Single property for the release date of a movie Number of Results

db-prop:released 37
db-onto:releaseDate 43
mdb-movie:initial release date 2
dc:date 2

Table 9 Sample classes in the Mid-Ontology.

Data sets Mid-Ontology class

DBpedia mo-onto:producer
mo-onto:areacode

DBpedia & Geonames mo-onto:population
mo-onto:postal

DBpedia & LinkedMDB mo-onto:date
DBpedia & Geonames & NYTimes & LinkedMDB mo-onto:name

onto:date is a combination of the results retrieved with each
predicate in that set. Furthermore, it is difficult to manu-
ally find all four predicates that indicate the release date in
different data sets.

As this example shows, our approach simplifies
SPARQL queries and returns all the possible results with-
out user interaction; conversely, it is time-consuming to find
each single predicate manually through user interaction.

3.6 Characteristics of Integrated Ontology Predicates

We evaluate whether our approach successfully integrates
related predicates by illustrating examples of classes in the
Mid-Ontology. Table 9 shows some of the classes in the
Mid-Ontology, which integrated predicates from the DBpe-
dia, Geonames, NYTimes, and LinkedMDB instances.

The classes listed in the first row include only predi-
cates from DBpedia ontology, which indicate the producer
of a movie and the area code of a place. The second row
lists classes that integrate predicates from both DBpedia
and Geonames, which indicate the population and postal
code of a place. The third row includes the release date
of a movie, which integrates predicates from DBpedia and
LinkedMDB. The last row includes a predicate that inte-
grates predicates from DBpedia, Geonames, NYTimes, and
LinkedMDB, which indicates the name of persons, places,
news, or movies.

From the characteristics of the integrated classes, we
can observe that the linked instances between DBpedia and
Geonames are about places, and the instances that link DB-
pedia and LinkedMDB are based on the release date of a
movie, and all the predicates that refer to the label of a thing
in four data sets are integrated in mo-onto:name. The pred-
icate mo-onto:name includes the name of a place, a movie,

†dc: http://purl.org/dc/terms/
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an actor or actress, a news title, etc.
However, we may miss some predicates that should

be integrated together. For example, the predicate mdb-
movie:runtime† and db-prop:runtime both indicate the run-
time of a movie, but these two predicates do not appear in
the final Mid-Ontology. This failure of integration occurs
because we filter out sets that have a frequency lower than
predefined threshold: 0.1% of the number of retrieved core
data instances. Hence, when the threshold is high, some sets
such as “runtime” and “prominence” are filtered out.

Another interesting observation is that some predicate
terms that are written in different languages are integrated
together. For instance, db-prop:einwohner is integrated
in the mo-onto:population, which means “the population”
in German. Other predicates such as geo-onto:population
and db-onto:populationTotal have clear terms in English,
which are also integrated in the mo-onto:population. An-
other example is db-prop:vorwahl which is also in Ger-
man meaning the area code of a place. Two predicates
db-prop:areaCode and db-onto:areaCode are integrated to-
gether with db-prop:vorwahl in the mo-onto:areaCode. The
terms written in English are easy to understand, but it is im-
possible to identify the term “einwohner” or “vorwahl” if
we do not know German.

4. Discussion

Experimental results demonstrate that our Mid-Ontology
learning approach successfully integrates predicates from
different data sets. The automatically constructed Mid-
Ontology has a high quality and can be applied in the infor-
mation retrieval field. Because the Mid-Ontology integrates
the most related predicates, we can search related triples
or instances from the LOD cloud with a simple SPARQL
query.

Furthermore, our Mid-Ontology learning approach is
implemented with the collected data set that is extracted
with owl:sameAs. Hence, with our Mid-Ontology in a
SPARQL query, it is possible to find missing links that
should be linked with owl:sameAs. For example, the pred-
icate mo-onto:date has predicates in DBpedia and Linked-
MDB that indicate the release date of a movie. Therefore,
we can find the same movie in DBpedia and LinkedMDB
by searching movies that are released on the same date with
the same title. From the results of the SPAQL query in Ta-
ble 7, we found one missing link that should connect two
instances db:Scooby-Doo and the Alien Invaders and mdb-
film:45394††. The db:Scooby-Doo and the Alien Invaders
has predicates db-prop:released and db-onto:releaseDate
with the value “2000-10-03”, and the LinkedMDB instance
mdb-film:45394 has predicates mdb-movie:initial release
date and dc:date with the same value, “2000-10-03”. This
LinkedMDB instance also indicates the movie “Scooby-
Doo and the Alien Invaders”, but there is no owl:sameAs
link between these two instances.

Therefore, we can find missing links with our Mid-
Ontology if there exist predicates from different domains

grouped under the same Mid-Ontology class. In our con-
structed Mid-Ontology, we can find missing links according
to the predicates mo-onto:birthdate, mo-onto:population,
mo-onto:postalcode, etc. In some SPARQL queries, we
can find many missing links that should be connected with
“owl:sameAs”. For example, we can use mo-onto:birthdate
to find out persons who were born on the same day. With
mo-onto:birthdate, we found 18 instances of persons who
were born on “1961-08-04”, where 4 of them indicate
“Barack Obama”, but no SameAs links among these in-
stances. Hence, we can add SameAs links among the in-
stances.

Although, it is difficult to find out all the missing links
in the linked data, we can discover missing links with a spe-
cific SPARQL query template.

5. Related Work

Some researchers have proposed similar ideas about con-
structing an intermediate-layer ontology and reducing data
sets. For instance, the authors in [32] automatically gener-
ated alignments from linked instances in the Linked Data,
especially geospatial, zoology, and genetics data sources.
During data preprocessing, they only considered linked in-
stances and removed unimportant properties to reduce the
search space. Their algorithm discovers equivalent and
subsumption relations and models one Linked Data source
through ontology alignment. However, their approach is
limited to specific domains of data sets, while our approach
can be applied to data sets from any domain. Furthermore,
they only focused on ontology alignment at the class level
and did not consider at the property level, which is useful to
find related instances from different data sets.

Some researchers have proposed the construction of
an intermediate-level ontology to connect general ontolo-
gies and an upper ontology. The authors in [33] intro-
duced a method to construct an intermediate-level ontology
by mapping an upper ontology, PROTON, to the concepts
of DBpedia, Geonames, and Freebase described in the Fact-
Forge. They enriched the upper ontology by adding 166 new
classes and 73 new properties; the resulting ontology was
large. The Semantic Web users would have to understand
this large ontology to construct SPARQL queries. In order
to link the concepts and properties in DBpedia and Geon-
ames with PROTON, they manually designed the rules with
subsumption relations from FactForge to PROTON. This
approach is not scalable when there are many data sets to
be linked with the PROTON. In contrast, our approach is
fully automated to integrate related predicates from linked
instances.

The authors in [34] applied debugging method for map-
ping lightweight ontologies. They applied machine learning
method to learn a classifier that can determine disjointness
of two classes, with the features of the taxonomic overlap,

†mdb-movie: http://data.linkedmdb.org/resource/movie/
††mdb-film: http://data.linkedmdb.org/resource/film/
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semantic distance, object properties, label similarity, and
WordNet similarity. Although the experimental results show
improvements comparing with other ontology matching sys-
tems, their method is limited to expressive lightweight on-
tologies and manual preprocessing is necessary. In fact, real
data sets are lack of expressive disjointness axioms and con-
tain large ontologies. They evaluated mapping results with
gold standard that is created by three people who are famil-
iar with the ontology in the specific domain. However, this
kind of measurement is infeasible for large ontologies from
various domains. Since we use real LOD data sets with large
ontologies, we are not able to create gold standard ontology
mappings created by experts to evaluate our ontology.

The scalability and time efficiency is important for an-
alyzing large data. The authors in [35] introduced a time-
efficient approach for large-scale link discovery in the linked
data sets. They utilized the triangle inequality to compute
the similarities between instances and filter out a large num-
ber of instance pairs to reduce the computation space. Al-
though they significantly reduced the running time in the
experiments, they did not evaluated the quality of the dis-
covered links. Furthermore, the best number of exemplars
and the threshold for different pairs of source and target data
sets should be tested, and it is time-consuming to discover
links on several large data sets.

The authors in [36] analyzed the basic properties of
the SameAs network, the Pay-Level-Domain network, and
the Class-Level similarity network. They analyzed the Pay-
Level-Domain network to examine how data publishers are
connected by comparing the five most frequent types. How-
ever, when only frequent types are considered, it is not pos-
sible to determine exactly how data are connected.

In contrast to the approaches adopted in the related
research described above, our Mid-Ontology learning ap-
proach is aimed at constructing a small ontology by integrat-
ing predicates and can be directly applied to Semantic Web
applications. With our Mid-Ontology, we can easily deter-
mine the types of things that are linked together by observ-
ing the characteristics of the integrated predicates. Further-
more, user interaction is not needed for the Mid-Ontology
construction, and our approach is applicable to linked data
sets as long as they are connected by SameAs links.

The drawbacks of our approach are that a hub data set
is necessary to extract linked instances and that related pred-
icates cannot be identified if data sets are not directly con-
nected in the LOD cloud. One possible solution is to inves-
tigate the connected components [36] in the LOD cloud by
applying clustering technology and by analyzing the con-
tents of the connected components.

6. Conclusion and Future Work

In this paper, we proposed a Mid-Ontology learning ap-
proach that involves the use of Linked Open Data and
can help Semantic Web application developers integrate di-
verse ontology schema without learning the entire ontology
schema. The main procedures of our approach are data col-

lection, the ontology predicate grouping process, and Mid-
Ontology construction. The predicate grouping algorithm
applied lexical similarity matching to collect similar predi-
cates and implemented the relation extraction method to re-
fine predicate sets. Our approach can automatically extract
the most related predicates between linked data sets and in-
tegrate them in the Mid-Ontology. Experiments show that
the amount of data can be dramatically reduced in the data
collection phase and that the accuracy of the Mid-Ontology
can be significantly improved by pruning and refining pro-
cesses with different combinations of data sets. Comparing
with our previous research [28], the accuracy is improved
when performing on the same data sets. Furthermore, with
the Mid-Ontology, related information can be effectively re-
trieved by a simple SPARQL query, and we can easily recog-
nize how the instances are linked from the characteristics of
integrated predicates. The Mid-Ontology constructed with
our approach can be used to search semantic data or identify
missing SameAs links.

In future work, we will apply our approach to the Bil-
lion Triple Challenge (BTC) data set, which is collected by
crawling real-world linked data. Because our current ap-
proach only considers data sets directly linked with a hub
data set, it cannot extract relations by crawling links at more
than one depth. We plan to extend our approach so that it
can crawl at two or three depths of links to collect interest-
ing information from the linked data.
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